mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								//  (C) Copyright John Maddock 2007.
							 | 
						||
| 
								 | 
							
								//  Use, modification and distribution are subject to the
							 | 
						||
| 
								 | 
							
								//  Boost Software License, Version 1.0. (See accompanying file
							 | 
						||
| 
								 | 
							
								//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
							 | 
						||
| 
								 | 
							
								#include <boost/math/concepts/real_concept.hpp>
							 | 
						||
| 
								 | 
							
								#define BOOST_TEST_MAIN
							 | 
						||
| 
								 | 
							
								#include <boost/test/unit_test.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/test/floating_point_comparison.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/math/distributions/non_central_chi_squared.hpp> 
							 | 
						||
| 
								 | 
							
								#include <boost/type_traits/is_floating_point.hpp>
							 | 
						||
| 
								 | 
							
								#include <boost/array.hpp>
							 | 
						||
| 
								 | 
							
								#include "functor.hpp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "handle_test_result.hpp"
							 | 
						||
| 
								 | 
							
								#include "table_type.hpp"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <iostream>
							 | 
						||
| 
								 | 
							
								#include <iomanip>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
							 | 
						||
| 
								 | 
							
								      {\
							 | 
						||
| 
								 | 
							
								      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(a, b, prec); \
							 | 
						||
| 
								 | 
							
								      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
							 | 
						||
| 
								 | 
							
								            {\
							 | 
						||
| 
								 | 
							
								         std::cerr << "Failure was at row " << i << std::endl;\
							 | 
						||
| 
								 | 
							
								         std::cerr << std::setprecision(35); \
							 | 
						||
| 
								 | 
							
								         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
							 | 
						||
| 
								 | 
							
								         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
							 | 
						||
| 
								 | 
							
								            }\
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define BOOST_CHECK_EX(a, i) \
							 | 
						||
| 
								 | 
							
								      {\
							 | 
						||
| 
								 | 
							
								      unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK(a); \
							 | 
						||
| 
								 | 
							
								      if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
							 | 
						||
| 
								 | 
							
								            {\
							 | 
						||
| 
								 | 
							
								         std::cerr << "Failure was at row " << i << std::endl;\
							 | 
						||
| 
								 | 
							
								         std::cerr << std::setprecision(35); \
							 | 
						||
| 
								 | 
							
								         std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
							 | 
						||
| 
								 | 
							
								         std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\
							 | 
						||
| 
								 | 
							
								            }\
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType>
							 | 
						||
| 
								 | 
							
								RealType naive_pdf(RealType v, RealType lam, RealType x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   // Formula direct from 
							 | 
						||
| 
								 | 
							
								   // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html
							 | 
						||
| 
								 | 
							
								   // with no simplification:
							 | 
						||
| 
								 | 
							
								   RealType sum, term, prefix(1);
							 | 
						||
| 
								 | 
							
								   RealType eps = boost::math::tools::epsilon<RealType>();
							 | 
						||
| 
								 | 
							
								   term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x);
							 | 
						||
| 
								 | 
							
								   for(int i = 1;; ++i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      prefix *= lam / (2 * i);
							 | 
						||
| 
								 | 
							
								      term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x);
							 | 
						||
| 
								 | 
							
								      sum += term;
							 | 
						||
| 
								 | 
							
								      if(term / sum < eps)
							 | 
						||
| 
								 | 
							
								         break;
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   return sum * exp(-lam / 2);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType>
							 | 
						||
| 
								 | 
							
								void test_spot(
							 | 
						||
| 
								 | 
							
								   RealType df,    // Degrees of freedom
							 | 
						||
| 
								 | 
							
								   RealType ncp,   // non-centrality param
							 | 
						||
| 
								 | 
							
								   RealType cs,    // Chi Square statistic
							 | 
						||
| 
								 | 
							
								   RealType P,     // CDF
							 | 
						||
| 
								 | 
							
								   RealType Q,     // Complement of CDF
							 | 
						||
| 
								 | 
							
								   RealType tol)   // Test tolerance
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp);
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      cdf(dist, cs), P, tol);
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_EXCEPTIONS
							 | 
						||
| 
								 | 
							
								   try{
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								   catch(const std::overflow_error&)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								   if((P < 0.99) && (Q < 0.99))
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      // We can only check this if P is not too close to 1,
							 | 
						||
| 
								 | 
							
								      // so that we can guarantee Q is reasonably free of error:
							 | 
						||
| 
								 | 
							
								      //
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         cdf(complement(dist, cs)), Q, tol);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         quantile(dist, P), cs, tol * 10);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         quantile(complement(dist, Q)), cs, tol * 10);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         dist.find_non_centrality(df, cs, P), ncp, tol * 10);
							 | 
						||
| 
								 | 
							
								      BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								         dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10);
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class RealType> // Any floating-point type RealType.
							 | 
						||
| 
								 | 
							
								void test_spots(RealType)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								#ifndef ERROR_REPORTING_MODE
							 | 
						||
| 
								 | 
							
								   RealType tolerance = (std::max)(
							 | 
						||
| 
								 | 
							
								      boost::math::tools::epsilon<RealType>(),
							 | 
						||
| 
								 | 
							
								      (RealType)boost::math::tools::epsilon<double>() * 5) * 150;
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // At float precision we need to up the tolerance, since 
							 | 
						||
| 
								 | 
							
								   // the input values are rounded off to inexact quantities
							 | 
						||
| 
								 | 
							
								   // the results get thrown off by a noticeable amount.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if(boost::math::tools::digits<RealType>() < 50)
							 | 
						||
| 
								 | 
							
								      tolerance *= 50;
							 | 
						||
| 
								 | 
							
								   if(boost::is_floating_point<RealType>::value != 1)
							 | 
						||
| 
								 | 
							
								      tolerance *= 20; // real_concept special functions are less accurate
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::cout << "Tolerance = " << tolerance << "%." << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   using boost::math::chi_squared_distribution;
							 | 
						||
| 
								 | 
							
								   using  ::boost::math::chi_squared;
							 | 
						||
| 
								 | 
							
								   using  ::boost::math::cdf;
							 | 
						||
| 
								 | 
							
								   using  ::boost::math::pdf;
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Test against the data from Table 6 of:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // "Self-Validating Computations of Probabilities for Selected 
							 | 
						||
| 
								 | 
							
								   // Central and Noncentral Univariate Probability Functions."
							 | 
						||
| 
								 | 
							
								   // Morgan C. Wang; William J. Kennedy
							 | 
						||
| 
								 | 
							
								   // Journal of the American Statistical Association, 
							 | 
						||
| 
								 | 
							
								   // Vol. 89, No. 427. (Sep., 1994), pp. 878-887.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(6),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.00393),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.2498463724258039e-2),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.2498463724258039e-2),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(5),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(9.23636),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.8272918751175548),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.8272918751175548),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(11),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(21),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(24.72497),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.2539481822183126),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.2539481822183126),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(31),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(6),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(44.98534),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.8125198785064969),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.8125198785064969),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(51),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(38.56038),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.8519497361859118e-1),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.8519497361859118e-1),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance * 2);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(100),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(16),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(82.35814),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.1184348822747824e-1),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.1184348822747824e-1),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(300),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(16),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(331.78852),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.7355956710306709),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.7355956710306709),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(500),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(21),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(459.92612),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.2797023600800060e-1),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.2797023600800060e-1),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.00016),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.6121428929881423e-2),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.6121428929881423e-2),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								   test_spot(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // degrees of freedom
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1),   // non centrality
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.00393),   // Chi Squared statistic
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.3033814229753780e-1),       // Probability of result (CDF), P
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(1 - 0.3033814229753780e-1),           // Q = 1 - P
							 | 
						||
| 
								 | 
							
								      tolerance);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage
							 | 
						||
| 
								 | 
							
								   boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12));
							 | 
						||
| 
								 | 
							
								   RealType x = 7;
							 | 
						||
| 
								 | 
							
								   using namespace std; // ADL of std names.
							 | 
						||
| 
								 | 
							
								   // mean:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      mean(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(8 + 12), tol2);
							 | 
						||
| 
								 | 
							
								   // variance:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      variance(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(64), tol2);
							 | 
						||
| 
								 | 
							
								   // std deviation:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      standard_deviation(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(8), tol2);
							 | 
						||
| 
								 | 
							
								   // hazard:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      hazard(dist, x)
							 | 
						||
| 
								 | 
							
								      , pdf(dist, x) / cdf(complement(dist, x)), tol2);
							 | 
						||
| 
								 | 
							
								   // cumulative hazard:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      chf(dist, x)
							 | 
						||
| 
								 | 
							
								      , -log(cdf(complement(dist, x))), tol2);
							 | 
						||
| 
								 | 
							
								   // coefficient_of_variation:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      coefficient_of_variation(dist)
							 | 
						||
| 
								 | 
							
								      , standard_deviation(dist) / mean(dist), tol2);
							 | 
						||
| 
								 | 
							
								   // mode:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      mode(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500));
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      median(dist),
							 | 
						||
| 
								 | 
							
								      quantile(
							 | 
						||
| 
								 | 
							
								      boost::math::non_central_chi_squared_distribution<RealType>(
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(8),
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(12)),
							 | 
						||
| 
								 | 
							
								      static_cast<RealType>(0.5)), static_cast<RealType>(tol2));
							 | 
						||
| 
								 | 
							
								   // skewness:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      skewness(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(0.6875), tol2);
							 | 
						||
| 
								 | 
							
								   // kurtosis:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      kurtosis(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(3.65625), tol2);
							 | 
						||
| 
								 | 
							
								   // kurtosis excess:
							 | 
						||
| 
								 | 
							
								   BOOST_CHECK_CLOSE(
							 | 
						||
| 
								 | 
							
								      kurtosis_excess(dist)
							 | 
						||
| 
								 | 
							
								      , static_cast<RealType>(0.65625), tol2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   // Error handling checks:
							 | 
						||
| 
								 | 
							
								   check_out_of_range<boost::math::non_central_chi_squared_distribution<RealType> >(1, 1);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(0, 1), 0), std::domain_error);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(-1, 1), 0), std::domain_error);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(1, -1), 0), std::domain_error);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), -1), std::domain_error);
							 | 
						||
| 
								 | 
							
								   BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), 2), std::domain_error);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								} // template <class RealType>void test_spots(RealType)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								T nccs_cdf(T df, T nc, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <class T>
							 | 
						||
| 
								 | 
							
								T nccs_ccdf(T df, T nc, T x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Real, typename T>
							 | 
						||
| 
								 | 
							
								void do_test_nc_chi_squared(T& data, const char* type_name, const char* test)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								   typedef typename T::value_type row_type;
							 | 
						||
| 
								 | 
							
								   typedef Real                   value_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::cout << "Testing: " << test << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST
							 | 
						||
| 
								 | 
							
								   value_type(*fp1)(value_type, value_type, value_type) = NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								   value_type(*fp1)(value_type, value_type, value_type) = nccs_cdf;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								   boost::math::tools::test_result<value_type> result;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST))
							 | 
						||
| 
								 | 
							
								   result = boost::math::tools::test_hetero<Real>(
							 | 
						||
| 
								 | 
							
								      data,
							 | 
						||
| 
								 | 
							
								      bind_func<Real>(fp1, 0, 1, 2),
							 | 
						||
| 
								 | 
							
								      extract_result<Real>(3));
							 | 
						||
| 
								 | 
							
								   handle_test_result(result, data[result.worst()], result.worst(),
							 | 
						||
| 
								 | 
							
								      type_name, "non central chi squared CDF", test);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST))
							 | 
						||
| 
								 | 
							
								#ifdef NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST
							 | 
						||
| 
								 | 
							
								   fp1 = NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST;
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								   fp1 = nccs_ccdf;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								   result = boost::math::tools::test_hetero<Real>(
							 | 
						||
| 
								 | 
							
								      data,
							 | 
						||
| 
								 | 
							
								      bind_func<Real>(fp1, 0, 1, 2),
							 | 
						||
| 
								 | 
							
								      extract_result<Real>(4));
							 | 
						||
| 
								 | 
							
								   handle_test_result(result, data[result.worst()], result.worst(),
							 | 
						||
| 
								 | 
							
								      type_name, "non central chi squared CDF complement", test);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::cout << std::endl;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename Real, typename T>
							 | 
						||
| 
								 | 
							
								void quantile_sanity_check(T& data, const char* type_name, const char* test)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								#ifndef ERROR_REPORTING_MODE
							 | 
						||
| 
								 | 
							
								   typedef typename T::value_type row_type;
							 | 
						||
| 
								 | 
							
								   typedef Real                   value_type;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // Tests with type real_concept take rather too long to run, so
							 | 
						||
| 
								 | 
							
								   // for now we'll disable them:
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   if(!boost::is_floating_point<value_type>::value)
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   // These sanity checks test for a round trip accuracy of one half
							 | 
						||
| 
								 | 
							
								   // of the bits in T, unless T is type float, in which case we check
							 | 
						||
| 
								 | 
							
								   // for just one decimal digit.  The problem here is the sensitivity
							 | 
						||
| 
								 | 
							
								   // of the functions, not their accuracy.  This test data was generated
							 | 
						||
| 
								 | 
							
								   // for the forward functions, which means that when it is used as
							 | 
						||
| 
								 | 
							
								   // the input to the inverses then it is necessarily inexact.  This rounding
							 | 
						||
| 
								 | 
							
								   // of the input is what makes the data unsuitable for use as an accuracy check,
							 | 
						||
| 
								 | 
							
								   // and also demonstrates that you can't in general round-trip these functions.
							 | 
						||
| 
								 | 
							
								   // It is however a useful sanity check.
							 | 
						||
| 
								 | 
							
								   //
							 | 
						||
| 
								 | 
							
								   value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100;
							 | 
						||
| 
								 | 
							
								   if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
							 | 
						||
| 
								 | 
							
								      precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								   for(unsigned i = 0; i < data.size(); ++i)
							 | 
						||
| 
								 | 
							
								   {
							 | 
						||
| 
								 | 
							
								      if(Real(data[i][3]) == 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else if(data[i][3] < 0.9999f)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]);
							 | 
						||
| 
								 | 
							
								         value_type pt = data[i][2];
							 | 
						||
| 
								 | 
							
								         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if(data[i][4] == 0)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])));
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      else if(data[i][4] < 0.9999f)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4]));
							 | 
						||
| 
								 | 
							
								         value_type pt = data[i][2];
							 | 
						||
| 
								 | 
							
								         BOOST_CHECK_CLOSE_EX(pt, p, precision, i);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if(boost::math::tools::digits<value_type>() > 50)
							 | 
						||
| 
								 | 
							
								      {
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Sanity check mode, the accuracy of
							 | 
						||
| 
								 | 
							
								         // the mode is at *best* the square root of the accuracy of the PDF:
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_EXCEPTIONS
							 | 
						||
| 
								 | 
							
								         try{
							 | 
						||
| 
								 | 
							
								            value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]));
							 | 
						||
| 
								 | 
							
								            value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m);
							 | 
						||
| 
								 | 
							
								            BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i);
							 | 
						||
| 
								 | 
							
								            BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i);
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         catch(const boost::math::evaluation_error&) {}
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								         // Sanity check degrees-of-freedom finder, don't bother at float
							 | 
						||
| 
								 | 
							
								         // precision though as there's not enough data in the probability
							 | 
						||
| 
								 | 
							
								         // values to get back to the correct degrees of freedom or 
							 | 
						||
| 
								 | 
							
								         // non-cenrality parameter:
							 | 
						||
| 
								 | 
							
								         //
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_EXCEPTIONS
							 | 
						||
| 
								 | 
							
								         try{
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								            if((data[i][3] < 0.99) && (data[i][3] != 0))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               BOOST_CHECK_CLOSE_EX(
							 | 
						||
| 
								 | 
							
								                  boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]),
							 | 
						||
| 
								 | 
							
								                  data[i][0], precision, i);
							 | 
						||
| 
								 | 
							
								               BOOST_CHECK_CLOSE_EX(
							 | 
						||
| 
								 | 
							
								                  boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]),
							 | 
						||
| 
								 | 
							
								                  data[i][1], precision, i);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								            if((data[i][4] < 0.99) && (data[i][4] != 0))
							 | 
						||
| 
								 | 
							
								            {
							 | 
						||
| 
								 | 
							
								               BOOST_CHECK_CLOSE_EX(
							 | 
						||
| 
								 | 
							
								                  boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])),
							 | 
						||
| 
								 | 
							
								                  data[i][0], precision, i);
							 | 
						||
| 
								 | 
							
								               BOOST_CHECK_CLOSE_EX(
							 | 
						||
| 
								 | 
							
								                  boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])),
							 | 
						||
| 
								 | 
							
								                  data[i][1], precision, i);
							 | 
						||
| 
								 | 
							
								            }
							 | 
						||
| 
								 | 
							
								#ifndef BOOST_NO_EXCEPTIONS
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								         catch(const std::exception& e)
							 | 
						||
| 
								 | 
							
								         {
							 | 
						||
| 
								 | 
							
								            BOOST_ERROR(e.what());
							 | 
						||
| 
								 | 
							
								         }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								   }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								template <typename T>
							 | 
						||
| 
								 | 
							
								void test_accuracy(T, const char* type_name)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								#include "nccs.ipp"
							 | 
						||
| 
								 | 
							
								   do_test_nc_chi_squared<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
							 | 
						||
| 
								 | 
							
								   quantile_sanity_check<T>(nccs, type_name, "Non Central Chi Squared, medium parameters");
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "nccs_big.ipp"
							 | 
						||
| 
								 | 
							
								   do_test_nc_chi_squared<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
							 | 
						||
| 
								 | 
							
								   quantile_sanity_check<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters");
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 |