Rename wsprd_exp.c to wsprd.c and eliminate wsprd_exp.c.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6572 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
Steven Franke 2016-04-03 19:09:07 +00:00
parent bf5195414a
commit 0574251ff0
3 changed files with 262 additions and 1489 deletions

View File

@ -470,6 +470,7 @@ set (wsprd_CSRCS
lib/wsprd/wsprsim_utils.c lib/wsprd/wsprsim_utils.c
lib/wsprd/wsprd_utils.c lib/wsprd/wsprd_utils.c
lib/wsprd/fano.c lib/wsprd/fano.c
lib/wsprd/jelinek.c
lib/wsprd/tab.c lib/wsprd/tab.c
lib/wsprd/nhash.c lib/wsprd/nhash.c
lib/init_random_seed.c lib/init_random_seed.c
@ -775,7 +776,7 @@ endif ()
find_package (OpenMP) find_package (OpenMP)
# #
# fftw3 single precsion library # fftw3 single precision library
# #
find_package (FFTW3 COMPONENTS double single threads REQUIRED) find_package (FFTW3 COMPONENTS double single threads REQUIRED)

View File

@ -37,16 +37,16 @@
#include <fftw3.h> #include <fftw3.h>
#include "fano.h" #include "fano.h"
#include "jelinek.h"
#include "nhash.h" #include "nhash.h"
#include "wsprd_utils.h" #include "wsprd_utils.h"
#include "wsprsim_utils.h" #include "wsprsim_utils.h"
//#include "lib/init_random_seed.h"
#define max(x,y) ((x) > (y) ? (x) : (y)) #define max(x,y) ((x) > (y) ? (x) : (y))
// Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT, // Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT,
// FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE // FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE
#define PATIENCE FFTW_ESTIMATE #define PATIENCE FFTW_ESTIMATE
fftw_plan PLAN1,PLAN2,PLAN3; fftwf_plan PLAN1,PLAN2,PLAN3;
unsigned char pr3[162]= unsigned char pr3[162]=
{1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0, {1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,
@ -64,15 +64,18 @@ unsigned long nr;
int printdata=0; int printdata=0;
//*************************************************************************** //***************************************************************************
unsigned long readc2file(char *ptr_to_infile, double *idat, double *qdat, unsigned long readc2file(char *ptr_to_infile, float *idat, float *qdat,
double *freq, int *wspr_type) double *freq, int *wspr_type)
{ {
float buffer[2*65536]; float *buffer;
double dfreq; double dfreq;
int i,ntrmin; int i,ntrmin;
char *c2file[15]; char *c2file[15];
FILE* fp; FILE* fp;
buffer=malloc(sizeof(float)*2*65536);
memset(buffer,0,sizeof(float)*2*65536);
fp = fopen(ptr_to_infile,"rb"); fp = fopen(ptr_to_infile,"rb");
if (fp == NULL) { if (fp == NULL) {
fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile); fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile);
@ -96,12 +99,13 @@ unsigned long readc2file(char *ptr_to_infile, double *idat, double *qdat,
} else { } else {
return 1; return 1;
} }
free(buffer);
} }
//*************************************************************************** //***************************************************************************
unsigned long readwavfile(char *ptr_to_infile, int ntrmin, double *idat, double *qdat ) unsigned long readwavfile(char *ptr_to_infile, int ntrmin, float *idat, float *qdat )
{ {
int i, j, npoints; unsigned long i, j, npoints;
int nfft1, nfft2, nh2, i0; int nfft1, nfft2, nh2, i0;
double df; double df;
@ -123,8 +127,8 @@ unsigned long readwavfile(char *ptr_to_infile, int ntrmin, double *idat, double
return 1; return 1;
} }
double *realin; float *realin;
fftw_complex *fftin, *fftout; fftwf_complex *fftin, *fftout;
FILE *fp; FILE *fp;
short int *buf2; short int *buf2;
@ -139,9 +143,9 @@ unsigned long readwavfile(char *ptr_to_infile, int ntrmin, double *idat, double
nr=fread(buf2,2,npoints,fp); //Read raw data nr=fread(buf2,2,npoints,fp); //Read raw data
fclose(fp); fclose(fp);
realin=(double*) fftw_malloc(sizeof(double)*nfft1); realin=(float*) fftwf_malloc(sizeof(float)*nfft1);
fftout=(fftw_complex*) fftw_malloc(sizeof(fftw_complex)*nfft1); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft1);
PLAN1 = fftw_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE); PLAN1 = fftwf_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE);
for (i=0; i<npoints; i++) { for (i=0; i<npoints; i++) {
realin[i]=buf2[i]/32768.0; realin[i]=buf2[i]/32768.0;
@ -152,10 +156,10 @@ unsigned long readwavfile(char *ptr_to_infile, int ntrmin, double *idat, double
} }
free(buf2); free(buf2);
fftw_execute(PLAN1); fftwf_execute(PLAN1);
fftw_free(realin); fftwf_free(realin);
fftin=(fftw_complex*) fftw_malloc(sizeof(fftw_complex)*nfft2); fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2);
for (i=0; i<nfft2; i++) { for (i=0; i<nfft2; i++) {
j=i0+i; j=i0+i;
@ -164,24 +168,24 @@ unsigned long readwavfile(char *ptr_to_infile, int ntrmin, double *idat, double
fftin[i][1]=fftout[j][1]; fftin[i][1]=fftout[j][1];
} }
fftw_free(fftout); fftwf_free(fftout);
fftout=(fftw_complex*) fftw_malloc(sizeof(fftw_complex)*nfft2); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2);
PLAN2 = fftw_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE); PLAN2 = fftwf_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE);
fftw_execute(PLAN2); fftwf_execute(PLAN2);
for (i=0; i<nfft2; i++) { for (i=0; i<nfft2; i++) {
idat[i]=fftout[i][0]/1000.0; idat[i]=fftout[i][0]/1000.0;
qdat[i]=fftout[i][1]/1000.0; qdat[i]=fftout[i][1]/1000.0;
} }
fftw_free(fftin); fftwf_free(fftin);
fftw_free(fftout); fftwf_free(fftout);
return nfft2; return nfft2;
} }
//*************************************************************************** //***************************************************************************
void sync_and_demodulate(double *id, double *qd, long np, void sync_and_demodulate(float *id, float *qd, long np,
unsigned char *symbols, float *f1, float fstep, unsigned char *symbols, float *f1, int ifmin, int ifmax, float fstep,
int *shift1, int lagmin, int lagmax, int lagstep, int *shift1, int lagmin, int lagmax, int lagstep,
float *drift1, int symfac, float *sync, int mode) float *drift1, int symfac, float *sync, int mode)
{ {
@ -192,24 +196,23 @@ void sync_and_demodulate(double *id, double *qd, long np,
* symbols using passed frequency and shift. * * symbols using passed frequency and shift. *
************************************************************************/ ************************************************************************/
float dt=1.0/375.0, df=375.0/256.0, fbest=0.0;
int i, j, k;
double pi=4.*atan(1.0),twopidt;
float f0=0.0,fp,ss;
int lag;
static float fplast=-10000.0; static float fplast=-10000.0;
double i0[162],q0[162],i1[162],q1[162],i2[162],q2[162],i3[162],q3[162]; static float dt=1.0/375.0, df=375.0/256.0;
double p0,p1,p2,p3,cmet,totp,syncmax,fac; static float pi=3.14159265358979323846;
double c0[256],s0[256],c1[256],s1[256],c2[256],s2[256],c3[256],s3[256]; float twopidt, df15=df*1.5, df05=df*0.5;
double dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
int i, j, k, lag;
float i0[162],q0[162],i1[162],q1[162],i2[162],q2[162],i3[162],q3[162];
float p0,p1,p2,p3,cmet,totp,syncmax,fac;
float c0[256],s0[256],c1[256],s1[256],c2[256],s2[256],c3[256],s3[256];
float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
dphi3, cdphi3, sdphi3; dphi3, cdphi3, sdphi3;
float fsum=0.0, f2sum=0.0, fsymb[162]; float f0=0.0, fp, ss, fbest=0.0, fsum=0.0, f2sum=0.0, fsymb[162];
int best_shift = 0, ifreq; int best_shift = 0, ifreq;
int ifmin=0, ifmax=0;
syncmax=-1e30; syncmax=-1e30;
if( mode == 0 ) {ifmin=0; ifmax=0; fstep=0.0; f0=*f1;} if( mode == 0 ) {ifmin=0; ifmax=0; fstep=0.0; f0=*f1;}
if( mode == 1 ) {lagmin=*shift1;lagmax=*shift1;ifmin=-5;ifmax=5;f0=*f1;} if( mode == 1 ) {lagmin=*shift1;lagmax=*shift1;f0=*f1;}
if( mode == 2 ) {lagmin=*shift1;lagmax=*shift1;ifmin=0;ifmax=0;f0=*f1;} if( mode == 2 ) {lagmin=*shift1;lagmax=*shift1;ifmin=0;ifmax=0;f0=*f1;}
twopidt=2*pi*dt; twopidt=2*pi*dt;
@ -219,21 +222,21 @@ void sync_and_demodulate(double *id, double *qd, long np,
ss=0.0; ss=0.0;
totp=0.0; totp=0.0;
for (i=0; i<162; i++) { for (i=0; i<162; i++) {
fp = f0 + ((float)*drift1/2.0)*((float)i-81.0)/81.0; fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0;
if( i==0 || (fp != fplast) ) { // only calculate sin/cos if necessary if( i==0 || (fp != fplast) ) { // only calculate sin/cos if necessary
dphi0=twopidt*(fp-1.5*df); dphi0=twopidt*(fp-df15);
cdphi0=cos(dphi0); cdphi0=cos(dphi0);
sdphi0=sin(dphi0); sdphi0=sin(dphi0);
dphi1=twopidt*(fp-0.5*df); dphi1=twopidt*(fp-df05);
cdphi1=cos(dphi1); cdphi1=cos(dphi1);
sdphi1=sin(dphi1); sdphi1=sin(dphi1);
dphi2=twopidt*(fp+0.5*df); dphi2=twopidt*(fp+df05);
cdphi2=cos(dphi2); cdphi2=cos(dphi2);
sdphi2=sin(dphi2); sdphi2=sin(dphi2);
dphi3=twopidt*(fp+1.5*df); dphi3=twopidt*(fp+df15);
cdphi3=cos(dphi3); cdphi3=cos(dphi3);
sdphi3=sin(dphi3); sdphi3=sin(dphi3);
@ -262,7 +265,7 @@ void sync_and_demodulate(double *id, double *qd, long np,
for (j=0; j<256; j++) { for (j=0; j<256; j++) {
k=lag+i*256+j; k=lag+i*256+j;
if( (k>0) & (k<np) ) { if( (k>0) && (k<np) ) {
i0[i]=i0[i] + id[k]*c0[j] + qd[k]*s0[j]; i0[i]=i0[i] + id[k]*c0[j] + qd[k]*s0[j];
q0[i]=q0[i] - id[k]*s0[j] + qd[k]*c0[j]; q0[i]=q0[i] - id[k]*s0[j] + qd[k]*c0[j];
i1[i]=i1[i] + id[k]*c1[j] + qd[k]*s1[j]; i1[i]=i1[i] + id[k]*c1[j] + qd[k]*s1[j];
@ -285,18 +288,18 @@ void sync_and_demodulate(double *id, double *qd, long np,
totp=totp+p0+p1+p2+p3; totp=totp+p0+p1+p2+p3;
cmet=(p1+p3)-(p0+p2); cmet=(p1+p3)-(p0+p2);
ss=ss+cmet*(2*pr3[i]-1); ss = (pr3[i] == 1) ? ss+cmet : ss-cmet;
if( mode == 2) { //Compute soft symbols if( mode == 2) { //Compute soft symbols
if(pr3[i]) { if(pr3[i]==1) {
fsymb[i]=p3-p1; fsymb[i]=p3-p1;
} else { } else {
fsymb[i]=p2-p0; fsymb[i]=p2-p0;
} }
} }
} }
ss=ss/totp;
if( ss/totp > syncmax ) { //Save best parameters if( ss > syncmax ) { //Save best parameters
syncmax=ss/totp; syncmax=ss;
best_shift=lag; best_shift=lag;
fbest=f0; fbest=f0;
} }
@ -330,16 +333,16 @@ void sync_and_demodulate(double *id, double *qd, long np,
/*************************************************************************** /***************************************************************************
symbol-by-symbol signal subtraction symbol-by-symbol signal subtraction
****************************************************************************/ ****************************************************************************/
void subtract_signal(double *id, double *qd, long np, void subtract_signal(float *id, float *qd, long np,
float f0, int shift0, float drift0, unsigned char* channel_symbols) float f0, int shift0, float drift0, unsigned char* channel_symbols)
{ {
float dt=1.0/375.0, df=375.0/256.0; float dt=1.0/375.0, df=375.0/256.0;
int i, j, k; int i, j, k;
double pi=4.*atan(1.0),twopidt, fp; float pi=4.*atan(1.0),twopidt, fp;
double i0,q0; float i0,q0;
double c0[256],s0[256]; float c0[256],s0[256];
double dphi, cdphi, sdphi; float dphi, cdphi, sdphi;
twopidt=2*pi*dt; twopidt=2*pi*dt;
@ -386,30 +389,30 @@ void subtract_signal(double *id, double *qd, long np,
/****************************************************************************** /******************************************************************************
Fully coherent signal subtraction Fully coherent signal subtraction
*******************************************************************************/ *******************************************************************************/
void subtract_signal2(double *id, double *qd, long np, void subtract_signal2(float *id, float *qd, long np,
float f0, int shift0, float drift0, unsigned char* channel_symbols) float f0, int shift0, float drift0, unsigned char* channel_symbols)
{ {
double dt=1.0/375.0, df=375.0/256.0; float dt=1.0/375.0, df=375.0/256.0;
double pi=4.*atan(1.0), twopidt, phi=0, dphi, cs; float pi=4.*atan(1.0), twopidt, phi=0, dphi, cs;
int i, j, k, ii, nsym=162, nspersym=256, nfilt=256; //nfilt must be even number. int i, j, k, ii, nsym=162, nspersym=256, nfilt=256; //nfilt must be even number.
int nsig=nsym*nspersym; int nsig=nsym*nspersym;
int nc2=45000; int nc2=45000;
double *refi, *refq, *ci, *cq, *cfi, *cfq; float *refi, *refq, *ci, *cq, *cfi, *cfq;
refi=malloc(sizeof(double)*nc2); refi=malloc(sizeof(float)*nc2);
refq=malloc(sizeof(double)*nc2); refq=malloc(sizeof(float)*nc2);
ci=malloc(sizeof(double)*nc2); ci=malloc(sizeof(float)*nc2);
cq=malloc(sizeof(double)*nc2); cq=malloc(sizeof(float)*nc2);
cfi=malloc(sizeof(double)*nc2); cfi=malloc(sizeof(float)*nc2);
cfq=malloc(sizeof(double)*nc2); cfq=malloc(sizeof(float)*nc2);
memset(refi,0,sizeof(double)*nc2); memset(refi,0,sizeof(float)*nc2);
memset(refq,0,sizeof(double)*nc2); memset(refq,0,sizeof(float)*nc2);
memset(ci,0,sizeof(double)*nc2); memset(ci,0,sizeof(float)*nc2);
memset(cq,0,sizeof(double)*nc2); memset(cq,0,sizeof(float)*nc2);
memset(cfi,0,sizeof(double)*nc2); memset(cfi,0,sizeof(float)*nc2);
memset(cfq,0,sizeof(double)*nc2); memset(cfq,0,sizeof(float)*nc2);
twopidt=2.0*pi*dt; twopidt=2.0*pi*dt;
@ -425,18 +428,18 @@ void subtract_signal2(double *id, double *qd, long np,
// //
for (i=0; i<nsym; i++) { for (i=0; i<nsym; i++) {
cs=(double)channel_symbols[i]; cs=(float)channel_symbols[i];
dphi=twopidt* dphi=twopidt*
( (
f0 + ((float)drift0/2.0)*((float)i-(float)nsym/2.0)/((float)nsym/2.0) f0 + (drift0/2.0)*((float)i-(float)nsym/2.0)/((float)nsym/2.0)
+ (cs-1.5)*df + (cs-1.5)*df
); );
for ( j=0; j<nspersym; j++ ) { for ( j=0; j<nspersym; j++ ) {
ii=nspersym*i+j; ii=nspersym*i+j;
refi[ii]=refi[ii]+cos(phi); //cannot precompute sin/cos because dphi is changing refi[ii]=cos(phi); //cannot precompute sin/cos because dphi is changing
refq[ii]=refq[ii]+sin(phi); refq[ii]=sin(phi);
phi=phi+dphi; phi=phi+dphi;
} }
} }
@ -448,15 +451,15 @@ void subtract_signal2(double *id, double *qd, long np,
// leave nfilt zeros as a pad at the beginning of the unfiltered reference signal // leave nfilt zeros as a pad at the beginning of the unfiltered reference signal
for (i=0; i<nsym*nspersym; i++) { for (i=0; i<nsym*nspersym; i++) {
k=shift0+i; k=shift0+i;
if( (k>0) & (k<np) ) { if( (k>0) && (k<np) ) {
ci[i+nfilt] = id[k]*refi[i] + qd[k]*refq[i]; ci[i+nfilt] = id[k]*refi[i] + qd[k]*refq[i];
cq[i+nfilt] = qd[k]*refi[i] - id[k]*refq[i]; cq[i+nfilt] = qd[k]*refi[i] - id[k]*refq[i];
} }
} }
//quick and dirty filter - may want to do better //lowpass filter and remove startup transient
double w[nfilt], norm=0, partialsum[nfilt]; float w[nfilt], norm=0, partialsum[nfilt];
memset(partialsum,0,sizeof(double)*nfilt); memset(partialsum,0,sizeof(float)*nfilt);
for (i=0; i<nfilt; i++) { for (i=0; i<nfilt; i++) {
w[i]=sin(pi*(float)i/(float)(nfilt-1)); w[i]=sin(pi*(float)i/(float)(nfilt-1));
norm=norm+w[i]; norm=norm+w[i];
@ -491,7 +494,7 @@ void subtract_signal2(double *id, double *qd, long np,
} }
k=shift0+i; k=shift0+i;
j=i+nfilt; j=i+nfilt;
if( (k>0) & (k<np) ) { if( (k>0) && (k<np) ) {
id[k]=id[k] - (cfi[j]*refi[i]-cfq[j]*refq[i])/norm; id[k]=id[k] - (cfi[j]*refi[i]-cfq[j]*refq[i])/norm;
qd[k]=qd[k] - (cfi[j]*refq[i]+cfq[j]*refi[i])/norm; qd[k]=qd[k] - (cfi[j]*refq[i]+cfq[j]*refi[i])/norm;
} }
@ -508,7 +511,7 @@ void subtract_signal2(double *id, double *qd, long np,
} }
unsigned long writec2file(char *c2filename, int trmin, double freq unsigned long writec2file(char *c2filename, int trmin, double freq
, double *idat, double *qdat) , float *idat, float *qdat)
{ {
int i; int i;
float *buffer; float *buffer;
@ -550,15 +553,18 @@ void usage(void)
printf("Options:\n"); printf("Options:\n");
printf(" -a <path> path to writeable data files, default=\".\"\n"); printf(" -a <path> path to writeable data files, default=\".\"\n");
printf(" -c write .c2 file at the end of the first pass\n"); printf(" -c write .c2 file at the end of the first pass\n");
printf(" -C maximum number of decoder cycles per bit, default 10000\n");
printf(" -d deeper search. Slower, a few more decodes\n");
printf(" -e x (x is transceiver dial frequency error in Hz)\n"); printf(" -e x (x is transceiver dial frequency error in Hz)\n");
printf(" -f x (x is transceiver dial frequency in MHz)\n"); printf(" -f x (x is transceiver dial frequency in MHz)\n");
printf(" -H do not use (or update) the hash table\n"); printf(" -H do not use (or update) the hash table\n");
printf(" -J use the stack decoder instead of Fano decoder\n");
printf(" -m decode wspr-15 .wav file\n"); printf(" -m decode wspr-15 .wav file\n");
printf(" -q quick mode - doesn't dig deep for weak signals\n"); printf(" -q quick mode - doesn't dig deep for weak signals\n");
printf(" -s single pass mode, no subtraction (same as original wsprd)\n"); printf(" -s single pass mode, no subtraction (same as original wsprd)\n");
printf(" -v verbose mode (shows dupes)\n"); printf(" -v verbose mode (shows dupes)\n");
printf(" -w wideband mode - decode signals within +/- 150 Hz of center\n"); printf(" -w wideband mode - decode signals within +/- 150 Hz of center\n");
printf(" -z x (x is fano metric table bias, default is 0.42)\n"); printf(" -z x (x is fano metric table bias, default is 0.45)\n");
} }
//*************************************************************************** //***************************************************************************
@ -567,7 +573,7 @@ int main(int argc, char *argv[])
extern char *optarg; extern char *optarg;
extern int optind; extern int optind;
int i,j,k; int i,j,k;
unsigned char *symbols, *decdata; unsigned char *symbols, *decdata, *channel_symbols;
signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0}; signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0};
char *callsign, *call_loc_pow; char *callsign, *call_loc_pow;
char *ptr_to_infile,*ptr_to_infile_suffix; char *ptr_to_infile,*ptr_to_infile_suffix;
@ -575,38 +581,39 @@ int main(int argc, char *argv[])
char wisdom_fname[200],all_fname[200],spots_fname[200]; char wisdom_fname[200],all_fname[200],spots_fname[200];
char timer_fname[200],hash_fname[200]; char timer_fname[200],hash_fname[200];
char uttime[5],date[7]; char uttime[5],date[7];
int c,delta,maxpts=65536,verbose=0,quickmode=0; int c,delta,maxpts=65536,verbose=0,quickmode=0,more_candidates=0, stackdecoder=0;
int writenoise=0,usehashtable=1,wspr_type=2, ipass; int writenoise=0,usehashtable=1,wspr_type=2, ipass;
int writec2=0, npasses=2, subtraction=1; int writec2=0, npasses=2, subtraction=1;
int shift1, lagmin, lagmax, lagstep, worth_a_try, not_decoded; int shift1, lagmin, lagmax, lagstep, ifmin, ifmax, worth_a_try, not_decoded;
unsigned int nbits=81; unsigned int nbits=81, stacksize=200000;
unsigned int npoints, metric, maxcycles, cycles, maxnp; unsigned int npoints, metric, cycles, maxnp;
float df=375.0/256.0/2; float df=375.0/256.0/2;
float freq0[200],snr0[200],drift0[200],sync0[200]; float freq0[200],snr0[200],drift0[200],sync0[200];
int shift0[200]; int shift0[200];
float dt=1.0/375.0, dt_print; float dt=1.0/375.0, dt_print;
double dialfreq_cmdline=0.0, dialfreq, freq_print; double dialfreq_cmdline=0.0, dialfreq, freq_print;
float dialfreq_error=0.0; double dialfreq_error=0.0;
float fmin=-110, fmax=110; float fmin=-110, fmax=110;
float f1, fstep, sync1, drift1; float f1, fstep, sync1, drift1;
float psavg[512]; float psavg[512];
double *idat, *qdat; float *idat, *qdat;
clock_t t0,t00; clock_t t0,t00;
double tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0; float tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0;
double tsync1=0.0,tsync2=0.0,ttotal=0.0; float tsync1=0.0,tsync2=0.0,ttotal=0.0;
struct result { char date[7]; char time[5]; float sync; float snr; struct result { char date[7]; char time[5]; float sync; float snr;
float dt; double freq; char message[23]; float drift; float dt; float freq; char message[23]; float drift;
unsigned int cycles; int jitter; }; unsigned int cycles; int jitter; };
struct result decodes[50]; struct result decodes[50];
char *hashtab; char *hashtab;
hashtab=malloc(sizeof(char)*32768*13); hashtab=malloc(sizeof(char)*32768*13);
memset(hashtab,0,sizeof(char)*32768*13); memset(hashtab,0,sizeof(char)*32768*13);
int nh; int nh;
symbols=malloc(sizeof(char)*nbits*2); symbols=malloc(sizeof(char)*nbits*2);
decdata=malloc((nbits+7)/8); decdata=malloc(sizeof(char)*11);
channel_symbols=malloc(sizeof(char)*nbits*2);
callsign=malloc(sizeof(char)*13); callsign=malloc(sizeof(char)*13);
call_loc_pow=malloc(sizeof(char)*23); call_loc_pow=malloc(sizeof(char)*23);
float allfreqs[100]; float allfreqs[100];
@ -614,31 +621,29 @@ int main(int argc, char *argv[])
memset(allfreqs,0,sizeof(float)*100); memset(allfreqs,0,sizeof(float)*100);
memset(allcalls,0,sizeof(char)*100*13); memset(allcalls,0,sizeof(char)*100*13);
int uniques=0, noprint=0; int uniques=0, noprint=0, ndecodes_pass=0;
// init_random_seed();
// Parameters used for performance-tuning: // Parameters used for performance-tuning:
maxcycles=10000; //Fano timeout limit unsigned int maxcycles=10000; //Decoder timeout limit
double minsync1=0.10; //First sync limit float minsync1=0.10; //First sync limit
double minsync2=0.12; //Second sync limit float minsync2=0.12; //Second sync limit
int iifac=3; //Step size in final DT peakup int iifac=8; //Step size in final DT peakup
int symfac=50; //Soft-symbol normalizing factor int symfac=50; //Soft-symbol normalizing factor
int maxdrift=4; //Maximum (+/-) drift int maxdrift=4; //Maximum (+/-) drift
double minrms=52.0 * (symfac/64.0); //Final test for plausible decoding float minrms=52.0 * (symfac/64.0); //Final test for plausible decoding
delta=60; //Fano threshold step delta=60; //Fano threshold step
float bias=0.45; //Fano metric bias (used for both Fano and stack algorithms)
t00=clock(); t00=clock();
fftw_complex *fftin, *fftout; fftwf_complex *fftin, *fftout;
#include "./metric_tables.c" #include "./metric_tables.c"
int mettab[2][256]; int mettab[2][256];
float bias=0.42;
idat=malloc(sizeof(double)*maxpts); idat=malloc(sizeof(float)*maxpts);
qdat=malloc(sizeof(double)*maxpts); qdat=malloc(sizeof(float)*maxpts);
while ( (c = getopt(argc, argv, "a:ce:f:Hmqstwvz:")) !=-1 ) { while ( (c = getopt(argc, argv, "a:cC:de:f:HJmqstwvz:")) !=-1 ) {
switch (c) { switch (c) {
case 'a': case 'a':
data_dir = optarg; data_dir = optarg;
@ -646,8 +651,14 @@ int main(int argc, char *argv[])
case 'c': case 'c':
writec2=1; writec2=1;
break; break;
case 'C':
maxcycles=(unsigned int) strtoul(optarg,NULL,10);
break;
case 'd':
more_candidates=1;
break;
case 'e': case 'e':
dialfreq_error = strtof(optarg,NULL); // units of Hz dialfreq_error = strtod(optarg,NULL); // units of Hz
// dialfreq_error = dial reading - actual, correct frequency // dialfreq_error = dial reading - actual, correct frequency
break; break;
case 'f': case 'f':
@ -656,14 +667,17 @@ int main(int argc, char *argv[])
case 'H': case 'H':
usehashtable = 0; usehashtable = 0;
break; break;
case 'm': case 'J': //Stack (Jelinek) decoder, Fano decoder is the default
stackdecoder = 1;
break;
case 'm': //15-minute wspr mode
wspr_type = 15; wspr_type = 15;
break; break;
case 'q': case 'q': //no shift jittering
quickmode = 1; quickmode = 1;
break; break;
case 's': case 's': //single pass mode (same as original wsprd)
subtraction = 0; //single pass mode (same as original wsprd) subtraction = 0;
npasses = 1; npasses = 1;
break; break;
case 'v': case 'v':
@ -674,7 +688,7 @@ int main(int argc, char *argv[])
fmax=150.0; fmax=150.0;
break; break;
case 'z': case 'z':
bias=strtof(optarg,NULL); //fano metric bias (default is 0.42) bias=strtod(optarg,NULL); //fano metric bias (default is 0.45)
break; break;
case '?': case '?':
usage(); usage();
@ -682,6 +696,10 @@ int main(int argc, char *argv[])
} }
} }
if( stackdecoder ) {
stack=malloc(stacksize*sizeof(struct snode));
}
if( optind+1 > argc) { if( optind+1 > argc) {
usage(); usage();
return 1; return 1;
@ -695,7 +713,7 @@ int main(int argc, char *argv[])
mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) ); mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) );
} }
FILE *fp_fftw_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer; FILE *fp_fftwf_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer;
strcpy(wisdom_fname,"."); strcpy(wisdom_fname,".");
strcpy(all_fname,"."); strcpy(all_fname,".");
strcpy(spots_fname,"."); strcpy(spots_fname,".");
@ -713,9 +731,9 @@ int main(int argc, char *argv[])
strncat(spots_fname,"/wspr_spots.txt",20); strncat(spots_fname,"/wspr_spots.txt",20);
strncat(timer_fname,"/wspr_timer.out",20); strncat(timer_fname,"/wspr_timer.out",20);
strncat(hash_fname,"/hashtable.txt",20); strncat(hash_fname,"/hashtable.txt",20);
if ((fp_fftw_wisdom_file = fopen(wisdom_fname, "r"))) { //Open FFTW wisdom if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "r"))) { //Open FFTW wisdom
fftw_import_wisdom_from_file(fp_fftw_wisdom_file); fftwf_import_wisdom_from_file(fp_fftwf_wisdom_file);
fclose(fp_fftw_wisdom_file); fclose(fp_fftwf_wisdom_file);
} }
fall_wspr=fopen(all_fname,"a"); fall_wspr=fopen(all_fname,"a");
@ -725,7 +743,7 @@ int main(int argc, char *argv[])
if((ftimer=fopen(timer_fname,"r"))) { if((ftimer=fopen(timer_fname,"r"))) {
//Accumulate timing data //Accumulate timing data
nr=fscanf(ftimer,"%lf %lf %lf %lf %lf %lf %lf", nr=fscanf(ftimer,"%f %f %f %f %f %f %f",
&treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&ttotal); &treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&ttotal);
fclose(ftimer); fclose(ftimer);
} }
@ -736,7 +754,7 @@ int main(int argc, char *argv[])
t0 = clock(); t0 = clock();
npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat); npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat);
treadwav += (double)(clock()-t0)/CLOCKS_PER_SEC; treadwav += (float)(clock()-t0)/CLOCKS_PER_SEC;
if( npoints == 1 ) { if( npoints == 1 ) {
return 1; return 1;
@ -763,9 +781,9 @@ int main(int argc, char *argv[])
// Do windowed ffts over 2 symbols, stepped by half symbols // Do windowed ffts over 2 symbols, stepped by half symbols
int nffts=4*floor(npoints/512)-1; int nffts=4*floor(npoints/512)-1;
fftin=(fftw_complex*) fftw_malloc(sizeof(fftw_complex)*512); fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
fftout=(fftw_complex*) fftw_malloc(sizeof(fftw_complex)*512); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
PLAN3 = fftw_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE); PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE);
float ps[512][nffts]; float ps[512][nffts];
float w[512]; float w[512];
@ -789,10 +807,8 @@ int main(int argc, char *argv[])
//*************** main loop starts here ***************** //*************** main loop starts here *****************
for (ipass=0; ipass<npasses; ipass++) { for (ipass=0; ipass<npasses; ipass++) {
if( ipass == 1 && uniques == 0 ) break; if( ipass > 0 && ndecodes_pass == 0 ) break;
if( ipass == 1 ) { //otherwise we bog down on the second pass ndecodes_pass=0;
quickmode = 1;
}
memset(ps,0.0, sizeof(float)*512*nffts); memset(ps,0.0, sizeof(float)*512*nffts);
for (i=0; i<nffts; i++) { for (i=0; i<nffts; i++) {
@ -801,7 +817,7 @@ int main(int argc, char *argv[])
fftin[j][0]=idat[k] * w[j]; fftin[j][0]=idat[k] * w[j];
fftin[j][1]=qdat[k] * w[j]; fftin[j][1]=qdat[k] * w[j];
} }
fftw_execute(PLAN3); fftwf_execute(PLAN3);
for (j=0; j<512; j++ ) { for (j=0; j<512; j++ ) {
k=j+256; k=j+256;
if( k>511 ) if( k>511 )
@ -853,7 +869,7 @@ int main(int argc, char *argv[])
} }
for (j=0; j<411; j++) { for (j=0; j<411; j++) {
smspec[j]=smspec[j]/noise_level - 1.0; smspec[j]=smspec[j]/noise_level - 1.0;
if( smspec[j] < min_snr) smspec[j]=0.1; if( smspec[j] < min_snr) smspec[j]=0.1*min_snr;
continue; continue;
} }
@ -867,13 +883,28 @@ int main(int argc, char *argv[])
} }
int npk=0; int npk=0;
for(j=1; j<410; j++) { unsigned char candidate;
if((smspec[j]>smspec[j-1]) && (smspec[j]>smspec[j+1]) && (npk<200)) { if( more_candidates ) {
for(j=0; j<411; j=j+2) {
candidate = (smspec[j]>min_snr) && (npk<200);
if ( candidate ) {
freq0[npk]=(j-205)*df; freq0[npk]=(j-205)*df;
snr0[npk]=10*log10(smspec[j])-snr_scaling_factor; snr0[npk]=10*log10(smspec[j])-snr_scaling_factor;
npk++; npk++;
} }
} }
} else {
for(j=1; j<410; j++) {
candidate = (smspec[j]>smspec[j-1]) &&
(smspec[j]>smspec[j+1]) &&
(npk<200);
if ( candidate ) {
freq0[npk]=(j-205)*df;
snr0[npk]=10*log10(smspec[j])-snr_scaling_factor;
npk++;
}
}
}
// Compute corrected fmin, fmax, accounting for dial frequency error // Compute corrected fmin, fmax, accounting for dial frequency error
fmin += dialfreq_error; // dialfreq_error is in units of Hz fmin += dialfreq_error; // dialfreq_error is in units of Hz
@ -907,6 +938,7 @@ int main(int argc, char *argv[])
} }
t0=clock(); t0=clock();
/* Make coarse estimates of shift (DT), freq, and drift /* Make coarse estimates of shift (DT), freq, and drift
* Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative * Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative
@ -933,7 +965,7 @@ int main(int argc, char *argv[])
for(j=0; j<npk; j++) { //For each candidate... for(j=0; j<npk; j++) { //For each candidate...
smax=-1e30; smax=-1e30;
if0=freq0[j]/df+256; if0=freq0[j]/df+256;
for (ifr=if0-1; ifr<=if0+1; ifr++) { //Freq search for (ifr=if0-2; ifr<=if0+2; ifr++) { //Freq search
for( k0=-10; k0<22; k0++) { //Time search for( k0=-10; k0<22; k0++) { //Time search
for (idrift=-maxdrift; idrift<=maxdrift; idrift++) { //Drift search for (idrift=-maxdrift; idrift<=maxdrift; idrift++) { //Drift search
ss=0.0; ss=0.0;
@ -954,9 +986,9 @@ int main(int argc, char *argv[])
ss=ss+(2*pr3[k]-1)*((p1+p3)-(p0+p2)); ss=ss+(2*pr3[k]-1)*((p1+p3)-(p0+p2));
pow=pow+p0+p1+p2+p3; pow=pow+p0+p1+p2+p3;
}
}
sync1=ss/pow; sync1=ss/pow;
}
}
if( sync1 > smax ) { //Save coarse parameters if( sync1 > smax ) { //Save coarse parameters
smax=sync1; smax=sync1;
shift0[j]=128*(k0+1); shift0[j]=128*(k0+1);
@ -968,7 +1000,7 @@ int main(int argc, char *argv[])
} }
} }
} }
tcandidates += (double)(clock()-t0)/CLOCKS_PER_SEC; tcandidates += (float)(clock()-t0)/CLOCKS_PER_SEC;
/* /*
Refine the estimates of freq, shift using sync as a metric. Refine the estimates of freq, shift using sync as a metric.
@ -986,7 +1018,6 @@ int main(int argc, char *argv[])
NB: best possibility for OpenMP may be here: several worker threads NB: best possibility for OpenMP may be here: several worker threads
could each work on one candidate at a time. could each work on one candidate at a time.
*/ */
for (j=0; j<npk; j++) { for (j=0; j<npk; j++) {
memset(symbols,0,sizeof(char)*nbits*2); memset(symbols,0,sizeof(char)*nbits*2);
memset(callsign,0,sizeof(char)*13); memset(callsign,0,sizeof(char)*13);
@ -997,32 +1028,66 @@ int main(int argc, char *argv[])
shift1=shift0[j]; shift1=shift0[j];
sync1=sync0[j]; sync1=sync0[j];
// Fine search for best sync lag (mode 0)
fstep=0.0; // coarse-grid lag and freq search, then if sync>minsync1 continue
lagmin=shift1-144; fstep=0.0; ifmin=0; ifmax=0;
lagmax=shift1+144; lagmin=shift1-128;
lagstep=8; lagmax=shift1+128;
if(quickmode) lagstep=16; lagstep=64;
t0 = clock(); t0 = clock();
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, fstep, &shift1, sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0); lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
tsync0 += (double)(clock()-t0)/CLOCKS_PER_SEC; tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
// Fine search for frequency peak (mode 1) fstep=0.25; ifmin=-2; ifmax=2;
fstep=0.1;
t0 = clock(); t0 = clock();
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, fstep, &shift1, sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1); lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
tsync1 += (double)(clock()-t0)/CLOCKS_PER_SEC;
// refine drift estimate
fstep=0.0; ifmin=0; ifmax=0;
float driftp,driftm,syncp,syncm;
driftp=drift1+0.5;
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &driftp, symfac, &syncp, 1);
driftm=drift1-0.5;
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &driftm, symfac, &syncm, 1);
if(syncp>sync1) {
drift1=driftp;
sync1=syncp;
} else if (syncm>sync1) {
drift1=driftm;
sync1=syncm;
}
tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
// fine-grid lag and freq search
if( sync1 > minsync1 ) { if( sync1 > minsync1 ) {
lagmin=shift1-32; lagmax=shift1+32; lagstep=16;
t0 = clock();
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
// fine search over frequency
fstep=0.05; ifmin=-2; ifmax=2;
t0 = clock();
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
worth_a_try = 1; worth_a_try = 1;
} else { } else {
worth_a_try = 0; worth_a_try = 0;
} }
int idt=0, ii=0, jiggered_shift; int idt=0, ii=0, jiggered_shift;
double y,sq,rms; float y,sq,rms;
not_decoded=1; not_decoded=1;
while ( worth_a_try && not_decoded && idt<=(128/iifac)) { while ( worth_a_try && not_decoded && idt<=(128/iifac)) {
@ -1033,14 +1098,14 @@ int main(int argc, char *argv[])
// Use mode 2 to get soft-decision symbols // Use mode 2 to get soft-decision symbols
t0 = clock(); t0 = clock();
sync_and_demodulate(idat, qdat, npoints, symbols, &f1, fstep, sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep,
&jiggered_shift, lagmin, lagmax, lagstep, &drift1, symfac, &jiggered_shift, lagmin, lagmax, lagstep, &drift1, symfac,
&sync1, 2); &sync1, 2);
tsync2 += (double)(clock()-t0)/CLOCKS_PER_SEC; tsync2 += (float)(clock()-t0)/CLOCKS_PER_SEC;
sq=0.0; sq=0.0;
for(i=0; i<162; i++) { for(i=0; i<162; i++) {
y=(double)symbols[i] - 128.0; y=(float)symbols[i] - 128.0;
sq += y*y; sq += y*y;
} }
rms=sqrt(sq/162.0); rms=sqrt(sq/162.0);
@ -1049,22 +1114,23 @@ int main(int argc, char *argv[])
deinterleave(symbols); deinterleave(symbols);
t0 = clock(); t0 = clock();
if ( stackdecoder ) {
not_decoded = jelinek(&metric, &cycles, decdata, symbols, nbits,
stacksize, stack, mettab,maxcycles);
} else {
not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits, not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits,
mettab,delta,maxcycles); mettab,delta,maxcycles);
tfano += (double)(clock()-t0)/CLOCKS_PER_SEC; }
tfano += (float)(clock()-t0)/CLOCKS_PER_SEC;
/* ### Used for timing tests:
if(not_decoded) fprintf(fdiag,
"%6s %4s %4.1f %3.0f %4.1f %10.7f %-18s %2d %5u %4d %6.1f %2d\n",
date,uttime,sync1*10,snr0[j], shift1*dt-2.0, dialfreq+(1500+f1)/1e6,
"@ ", (int)drift1, cycles/81, ii, rms, maxnp);
*/
} }
idt++; idt++;
if( quickmode ) break; if( quickmode ) break;
} }
if( worth_a_try && !not_decoded ) { if( worth_a_try && !not_decoded ) {
ndecodes_pass++;
for(i=0; i<11; i++) { for(i=0; i<11; i++) {
@ -1081,10 +1147,8 @@ int main(int argc, char *argv[])
// call_loc_pow string and also callsign (for de-duping). // call_loc_pow string and also callsign (for de-duping).
noprint=unpk_(message,hashtab,call_loc_pow,callsign); noprint=unpk_(message,hashtab,call_loc_pow,callsign);
if( subtraction && (ipass == 0) && !noprint ) { // subtract even on last pass
if( subtraction && (ipass < npasses ) && !noprint ) {
unsigned char channel_symbols[162];
if( get_wspr_channel_symbols(call_loc_pow, hashtab, channel_symbols) ) { if( get_wspr_channel_symbols(call_loc_pow, hashtab, channel_symbols) ) {
subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols); subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols);
} else { } else {
@ -1109,10 +1173,10 @@ int main(int argc, char *argv[])
if( wspr_type == 15 ) { if( wspr_type == 15 ) {
freq_print=dialfreq+(1500+112.5+f1/8.0)/1e6; freq_print=dialfreq+(1500+112.5+f1/8.0)/1e6;
dt_print=shift1*8*dt-2.0; dt_print=shift1*8*dt-1.0;
} else { } else {
freq_print=dialfreq+(1500+f1)/1e6; freq_print=dialfreq+(1500+f1)/1e6;
dt_print=shift1*dt-2.0; dt_print=shift1*dt-1.0;
} }
strcpy(decodes[uniques-1].date,date); strcpy(decodes[uniques-1].date,date);
@ -1125,15 +1189,6 @@ int main(int argc, char *argv[])
decodes[uniques-1].drift=drift1; decodes[uniques-1].drift=drift1;
decodes[uniques-1].cycles=cycles; decodes[uniques-1].cycles=cycles;
decodes[uniques-1].jitter=ii; decodes[uniques-1].jitter=ii;
/* For timing tests
fprintf(fdiag,
"%6s %4s %4.1f %3.0f %4.1f %10.7f %-18s %2d %5u %4d %6.1f\n",
date,uttime,sync1*10,snr0[j],
shift1*dt-2.0, dialfreq+(1500+f1)/1e6,
call_loc_pow, (int)drift1, cycles/81, ii, rms);
*/
} }
} }
} }
@ -1180,15 +1235,15 @@ int main(int argc, char *argv[])
} }
printf("<DecodeFinished>\n"); printf("<DecodeFinished>\n");
fftw_free(fftin); fftwf_free(fftin);
fftw_free(fftout); fftwf_free(fftout);
if ((fp_fftw_wisdom_file = fopen(wisdom_fname, "w"))) { if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "w"))) {
fftw_export_wisdom_to_file(fp_fftw_wisdom_file); fftwf_export_wisdom_to_file(fp_fftwf_wisdom_file);
fclose(fp_fftw_wisdom_file); fclose(fp_fftwf_wisdom_file);
} }
ttotal += (double)(clock()-t00)/CLOCKS_PER_SEC; ttotal += (float)(clock()-t00)/CLOCKS_PER_SEC;
fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n", fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n",
treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,ttotal); treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,ttotal);
@ -1201,7 +1256,7 @@ int main(int argc, char *argv[])
fprintf(ftimer,"sync_and_demod(0) %7.2f %7.2f\n",tsync0,tsync0/ttotal); fprintf(ftimer,"sync_and_demod(0) %7.2f %7.2f\n",tsync0,tsync0/ttotal);
fprintf(ftimer,"sync_and_demod(1) %7.2f %7.2f\n",tsync1,tsync1/ttotal); fprintf(ftimer,"sync_and_demod(1) %7.2f %7.2f\n",tsync1,tsync1/ttotal);
fprintf(ftimer,"sync_and_demod(2) %7.2f %7.2f\n",tsync2,tsync2/ttotal); fprintf(ftimer,"sync_and_demod(2) %7.2f %7.2f\n",tsync2,tsync2/ttotal);
fprintf(ftimer,"Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal); fprintf(ftimer,"Stack/Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal);
fprintf(ftimer,"-----------------------------------\n"); fprintf(ftimer,"-----------------------------------\n");
fprintf(ftimer,"Total %7.2f %7.2f\n",ttotal,1.0); fprintf(ftimer,"Total %7.2f %7.2f\n",ttotal,1.0);
@ -1209,9 +1264,9 @@ int main(int argc, char *argv[])
fclose(fwsprd); fclose(fwsprd);
// fclose(fdiag); // fclose(fdiag);
fclose(ftimer); fclose(ftimer);
fftw_destroy_plan(PLAN1); fftwf_destroy_plan(PLAN1);
fftw_destroy_plan(PLAN2); fftwf_destroy_plan(PLAN2);
fftw_destroy_plan(PLAN3); fftwf_destroy_plan(PLAN3);
if( usehashtable ) { if( usehashtable ) {
fhash=fopen(hash_fname,"w"); fhash=fopen(hash_fname,"w");
@ -1223,6 +1278,10 @@ int main(int argc, char *argv[])
fclose(fhash); fclose(fhash);
} }
if( stackdecoder ) {
free(stack);
}
if(writenoise == 999) return -1; //Silence compiler warning if(writenoise == 999) return -1; //Silence compiler warning
return 0; return 0;
} }

File diff suppressed because it is too large Load Diff