diff --git a/lib/ftrsd/ftrsd_paper/ftrsd.lyx b/lib/ftrsd/ftrsd_paper/ftrsd.lyx index 97d7ec16b..2db64d8f1 100644 --- a/lib/ftrsd/ftrsd_paper/ftrsd.lyx +++ b/lib/ftrsd/ftrsd_paper/ftrsd.lyx @@ -246,7 +246,7 @@ The minimum Hamming distance of the JT65 code is \end_inset , which means that any particular codeword differs from all other codewords - in at least 52 or the 63 symbol positions. + in at least 52 of the 63 symbol positions. \end_layout @@ -849,7 +849,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK \end_inset of the symbol's fractional power -\begin_inset Formula $p_{1,\,j}$ +\begin_inset Formula $p_{1,\, j}$ \end_inset in a sorted list of @@ -919,7 +919,7 @@ t educated guesses to select symbols for erasure. , the soft distance between the received word and the codeword: \begin_inset Formula \begin{equation} -d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance} +d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\, j}).\label{eq:soft_distance} \end{equation} \end_inset @@ -937,7 +937,7 @@ Here \end_inset if the received symbol and codeword symbol are different, and -\begin_inset Formula $p_{1,\,j}$ +\begin_inset Formula $p_{1,\, j}$ \end_inset is the fractional power associated with received symbol @@ -981,7 +981,7 @@ In practice we find that \begin_layout Standard \begin_inset Formula \begin{equation} -u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric} +u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).\label{eq:u-metric} \end{equation} \end_inset @@ -1014,7 +1014,7 @@ The correct JT65 codeword produces a value for bins containing noise only. Thus, if the spectral array -\begin_inset Formula $S(i,\,j)$ +\begin_inset Formula $S(i,\, j)$ \end_inset has been normalized so that the average value of the noise-only bins is @@ -1263,7 +1263,7 @@ For each received symbol, define the erasure probability as 1.3 times the a priori \emph default symbol-error probability determined from soft-symbol information -\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$ +\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$ \end_inset . @@ -1595,7 +1595,7 @@ If \begin_inset Formula $u$ \end_inset - is the largest found so far, presevre any previous value of + is the largest found so far, preserve any previous value of \begin_inset Formula $u_{1}$ \end_inset