Initial q65 distrib

This commit is contained in:
Nico Palermo/IV3NWV 2020-10-26 01:10:53 +01:00
parent ef2c63af29
commit 1f06fd65fc
23 changed files with 5672 additions and 0 deletions

33
lib/qra/q65/Makefile.Win Normal file
View File

@ -0,0 +1,33 @@
CC = gcc
CFLAGS = -O2 -Wall -I. -D_WIN32
# Default rules
%.o: %.c
${CC} ${CFLAGS} -c $<
%.o: %.f
${FC} ${FFLAGS} -c $<
%.o: %.F
${FC} ${FFLAGS} -c $<
%.o: %.f90
${FC} ${FFLAGS} -c $<
%.o: %.F90
${FC} ${FFLAGS} -c $<
all: libq65.a q65.exe
OBJS1 = normrnd.o npfwht.o pdmath.o qra15_65_64_irr_e23.o \
q65.o
libq65.a: $(OBJS1)
ar cr libq65.a $(OBJS1)
ranlib libq65.a
OBJS2 = q65test.o
q65.exe: $(OBJS2)
${CC} -o q65.exe $(OBJS2) libq65.a -lm
.PHONY : clean
clean:
$(RM) *.o libq65.a q65.exe

2
lib/qra/q65/build.sh Normal file
View File

@ -0,0 +1,2 @@
gcc -Wall -march=native -pthread -O3 *.c -lpthread -lm -o q65

View File

@ -0,0 +1,17 @@
# Eb/No Values to be used during the Q65 codec simulation
# Each line of this file indicates the Eb/No value to be simulated (in dB)
# and the number of errors that should be detected by the decoder
#
# Be careful that the simulation takes a long time to complete
# if the number of errors is large for the specified Eb/No
# (this is particularly true if AP decoding is used)
#
-30 100
0.5 1000
1.0 1000
1.5 1000
2.0 1000
2.5 1000
3.0 1000
3.5 1000
4.0 1000

302
lib/qra/q65/fadengauss.c Normal file
View File

@ -0,0 +1,302 @@
// Gaussian energy fading tables for QRA64
static const int glen_tab_gauss[64] = {
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 5, 5, 5, 6,
6, 6, 7, 7, 8, 8, 9, 10,
10, 11, 12, 13, 14, 15, 17, 18,
19, 21, 23, 25, 27, 29, 32, 34,
37, 41, 44, 48, 52, 57, 62, 65
};
static const float ggauss1[2] = {
0.0296f, 0.9101f
};
static const float ggauss2[2] = {
0.0350f, 0.8954f
};
static const float ggauss3[2] = {
0.0411f, 0.8787f
};
static const float ggauss4[2] = {
0.0483f, 0.8598f
};
static const float ggauss5[2] = {
0.0566f, 0.8387f
};
static const float ggauss6[2] = {
0.0660f, 0.8154f
};
static const float ggauss7[2] = {
0.0767f, 0.7898f
};
static const float ggauss8[2] = {
0.0886f, 0.7621f
};
static const float ggauss9[2] = {
0.1017f, 0.7325f
};
static const float ggauss10[2] = {
0.1159f, 0.7012f
};
static const float ggauss11[2] = {
0.1310f, 0.6687f
};
static const float ggauss12[2] = {
0.1465f, 0.6352f
};
static const float ggauss13[2] = {
0.1621f, 0.6013f
};
static const float ggauss14[2] = {
0.1771f, 0.5674f
};
static const float ggauss15[2] = {
0.1911f, 0.5339f
};
static const float ggauss16[2] = {
0.2034f, 0.5010f
};
static const float ggauss17[3] = {
0.0299f, 0.2135f, 0.4690f
};
static const float ggauss18[3] = {
0.0369f, 0.2212f, 0.4383f
};
static const float ggauss19[3] = {
0.0454f, 0.2263f, 0.4088f
};
static const float ggauss20[3] = {
0.0552f, 0.2286f, 0.3806f
};
static const float ggauss21[3] = {
0.0658f, 0.2284f, 0.3539f
};
static const float ggauss22[3] = {
0.0766f, 0.2258f, 0.3287f
};
static const float ggauss23[3] = {
0.0869f, 0.2212f, 0.3049f
};
static const float ggauss24[3] = {
0.0962f, 0.2148f, 0.2826f
};
static const float ggauss25[4] = {
0.0351f, 0.1041f, 0.2071f, 0.2616f
};
static const float ggauss26[4] = {
0.0429f, 0.1102f, 0.1984f, 0.2420f
};
static const float ggauss27[4] = {
0.0508f, 0.1145f, 0.1890f, 0.2237f
};
static const float ggauss28[4] = {
0.0582f, 0.1169f, 0.1791f, 0.2067f
};
static const float ggauss29[5] = {
0.0289f, 0.0648f, 0.1176f, 0.1689f, 0.1908f
};
static const float ggauss30[5] = {
0.0351f, 0.0703f, 0.1168f, 0.1588f, 0.1760f
};
static const float ggauss31[5] = {
0.0411f, 0.0745f, 0.1146f, 0.1488f, 0.1623f
};
static const float ggauss32[6] = {
0.0246f, 0.0466f, 0.0773f, 0.1115f, 0.1390f, 0.1497f
};
static const float ggauss33[6] = {
0.0297f, 0.0512f, 0.0788f, 0.1075f, 0.1295f, 0.1379f
};
static const float ggauss34[6] = {
0.0345f, 0.0549f, 0.0791f, 0.1029f, 0.1205f, 0.1270f
};
static const float ggauss35[7] = {
0.0240f, 0.0387f, 0.0575f, 0.0784f, 0.0979f, 0.1118f, 0.1169f
};
static const float ggauss36[7] = {
0.0281f, 0.0422f, 0.0590f, 0.0767f, 0.0926f, 0.1037f, 0.1076f
};
static const float ggauss37[8] = {
0.0212f, 0.0318f, 0.0449f, 0.0596f, 0.0744f, 0.0872f, 0.0960f, 0.0991f
};
static const float ggauss38[8] = {
0.0247f, 0.0348f, 0.0467f, 0.0593f, 0.0716f, 0.0819f, 0.0887f, 0.0911f
};
static const float ggauss39[9] = {
0.0199f, 0.0278f, 0.0372f, 0.0476f, 0.0584f, 0.0684f, 0.0766f, 0.0819f,
0.0838f
};
static const float ggauss40[10] = {
0.0166f, 0.0228f, 0.0303f, 0.0388f, 0.0478f, 0.0568f, 0.0649f, 0.0714f,
0.0756f, 0.0771f
};
static const float ggauss41[10] = {
0.0193f, 0.0254f, 0.0322f, 0.0397f, 0.0474f, 0.0548f, 0.0613f, 0.0664f,
0.0697f, 0.0709f
};
static const float ggauss42[11] = {
0.0168f, 0.0217f, 0.0273f, 0.0335f, 0.0399f, 0.0464f, 0.0524f, 0.0576f,
0.0617f, 0.0643f, 0.0651f
};
static const float ggauss43[12] = {
0.0151f, 0.0191f, 0.0237f, 0.0288f, 0.0342f, 0.0396f, 0.0449f, 0.0498f,
0.0540f, 0.0572f, 0.0592f, 0.0599f
};
static const float ggauss44[13] = {
0.0138f, 0.0171f, 0.0210f, 0.0252f, 0.0297f, 0.0343f, 0.0388f, 0.0432f,
0.0471f, 0.0504f, 0.0529f, 0.0545f, 0.0550f
};
static const float ggauss45[14] = {
0.0128f, 0.0157f, 0.0189f, 0.0224f, 0.0261f, 0.0300f, 0.0339f, 0.0377f,
0.0412f, 0.0444f, 0.0470f, 0.0489f, 0.0501f, 0.0505f
};
static const float ggauss46[15] = {
0.0121f, 0.0146f, 0.0173f, 0.0202f, 0.0234f, 0.0266f, 0.0299f, 0.0332f,
0.0363f, 0.0391f, 0.0416f, 0.0437f, 0.0452f, 0.0461f, 0.0464f
};
static const float ggauss47[17] = {
0.0097f, 0.0116f, 0.0138f, 0.0161f, 0.0186f, 0.0212f, 0.0239f, 0.0267f,
0.0294f, 0.0321f, 0.0346f, 0.0369f, 0.0389f, 0.0405f, 0.0417f, 0.0424f,
0.0427f
};
static const float ggauss48[18] = {
0.0096f, 0.0113f, 0.0131f, 0.0151f, 0.0172f, 0.0194f, 0.0217f, 0.0241f,
0.0264f, 0.0287f, 0.0308f, 0.0329f, 0.0347f, 0.0362f, 0.0375f, 0.0384f,
0.0390f, 0.0392f
};
static const float ggauss49[19] = {
0.0095f, 0.0110f, 0.0126f, 0.0143f, 0.0161f, 0.0180f, 0.0199f, 0.0219f,
0.0239f, 0.0258f, 0.0277f, 0.0294f, 0.0310f, 0.0325f, 0.0337f, 0.0347f,
0.0354f, 0.0358f, 0.0360f
};
static const float ggauss50[21] = {
0.0083f, 0.0095f, 0.0108f, 0.0122f, 0.0136f, 0.0152f, 0.0168f, 0.0184f,
0.0201f, 0.0217f, 0.0234f, 0.0250f, 0.0265f, 0.0279f, 0.0292f, 0.0303f,
0.0313f, 0.0320f, 0.0326f, 0.0329f, 0.0330f
};
static const float ggauss51[23] = {
0.0074f, 0.0084f, 0.0095f, 0.0106f, 0.0118f, 0.0131f, 0.0144f, 0.0157f,
0.0171f, 0.0185f, 0.0199f, 0.0213f, 0.0227f, 0.0240f, 0.0252f, 0.0263f,
0.0273f, 0.0282f, 0.0290f, 0.0296f, 0.0300f, 0.0303f, 0.0303f
};
static const float ggauss52[25] = {
0.0068f, 0.0076f, 0.0085f, 0.0094f, 0.0104f, 0.0115f, 0.0126f, 0.0137f,
0.0149f, 0.0160f, 0.0172f, 0.0184f, 0.0196f, 0.0207f, 0.0218f, 0.0228f,
0.0238f, 0.0247f, 0.0255f, 0.0262f, 0.0268f, 0.0273f, 0.0276f, 0.0278f,
0.0279f
};
static const float ggauss53[27] = {
0.0063f, 0.0070f, 0.0078f, 0.0086f, 0.0094f, 0.0103f, 0.0112f, 0.0121f,
0.0131f, 0.0141f, 0.0151f, 0.0161f, 0.0170f, 0.0180f, 0.0190f, 0.0199f,
0.0208f, 0.0216f, 0.0224f, 0.0231f, 0.0237f, 0.0243f, 0.0247f, 0.0251f,
0.0254f, 0.0255f, 0.0256f
};
static const float ggauss54[29] = {
0.0060f, 0.0066f, 0.0072f, 0.0079f, 0.0086f, 0.0093f, 0.0101f, 0.0109f,
0.0117f, 0.0125f, 0.0133f, 0.0142f, 0.0150f, 0.0159f, 0.0167f, 0.0175f,
0.0183f, 0.0190f, 0.0197f, 0.0204f, 0.0210f, 0.0216f, 0.0221f, 0.0225f,
0.0228f, 0.0231f, 0.0233f, 0.0234f, 0.0235f
};
static const float ggauss55[32] = {
0.0053f, 0.0058f, 0.0063f, 0.0068f, 0.0074f, 0.0080f, 0.0086f, 0.0093f,
0.0099f, 0.0106f, 0.0113f, 0.0120f, 0.0127f, 0.0134f, 0.0141f, 0.0148f,
0.0155f, 0.0162f, 0.0168f, 0.0174f, 0.0180f, 0.0186f, 0.0191f, 0.0196f,
0.0201f, 0.0204f, 0.0208f, 0.0211f, 0.0213f, 0.0214f, 0.0215f, 0.0216f
};
static const float ggauss56[34] = {
0.0052f, 0.0056f, 0.0060f, 0.0065f, 0.0070f, 0.0075f, 0.0080f, 0.0086f,
0.0091f, 0.0097f, 0.0103f, 0.0109f, 0.0115f, 0.0121f, 0.0127f, 0.0133f,
0.0138f, 0.0144f, 0.0150f, 0.0155f, 0.0161f, 0.0166f, 0.0170f, 0.0175f,
0.0179f, 0.0183f, 0.0186f, 0.0189f, 0.0192f, 0.0194f, 0.0196f, 0.0197f,
0.0198f, 0.0198f
};
static const float ggauss57[37] = {
0.0047f, 0.0051f, 0.0055f, 0.0058f, 0.0063f, 0.0067f, 0.0071f, 0.0076f,
0.0080f, 0.0085f, 0.0090f, 0.0095f, 0.0100f, 0.0105f, 0.0110f, 0.0115f,
0.0120f, 0.0125f, 0.0130f, 0.0134f, 0.0139f, 0.0144f, 0.0148f, 0.0152f,
0.0156f, 0.0160f, 0.0164f, 0.0167f, 0.0170f, 0.0173f, 0.0175f, 0.0177f,
0.0179f, 0.0180f, 0.0181f, 0.0181f, 0.0182f
};
static const float ggauss58[41] = {
0.0041f, 0.0044f, 0.0047f, 0.0050f, 0.0054f, 0.0057f, 0.0060f, 0.0064f,
0.0068f, 0.0072f, 0.0076f, 0.0080f, 0.0084f, 0.0088f, 0.0092f, 0.0096f,
0.0101f, 0.0105f, 0.0109f, 0.0113f, 0.0117f, 0.0121f, 0.0125f, 0.0129f,
0.0133f, 0.0137f, 0.0140f, 0.0144f, 0.0147f, 0.0150f, 0.0153f, 0.0155f,
0.0158f, 0.0160f, 0.0162f, 0.0163f, 0.0164f, 0.0165f, 0.0166f, 0.0167f,
0.0167f
};
static const float ggauss59[44] = {
0.0039f, 0.0042f, 0.0044f, 0.0047f, 0.0050f, 0.0053f, 0.0056f, 0.0059f,
0.0062f, 0.0065f, 0.0068f, 0.0072f, 0.0075f, 0.0079f, 0.0082f, 0.0086f,
0.0089f, 0.0093f, 0.0096f, 0.0100f, 0.0104f, 0.0107f, 0.0110f, 0.0114f,
0.0117f, 0.0120f, 0.0124f, 0.0127f, 0.0130f, 0.0132f, 0.0135f, 0.0138f,
0.0140f, 0.0142f, 0.0144f, 0.0146f, 0.0148f, 0.0149f, 0.0150f, 0.0151f,
0.0152f, 0.0153f, 0.0153f, 0.0153f
};
static const float ggauss60[48] = {
0.0036f, 0.0038f, 0.0040f, 0.0042f, 0.0044f, 0.0047f, 0.0049f, 0.0052f,
0.0055f, 0.0057f, 0.0060f, 0.0063f, 0.0066f, 0.0068f, 0.0071f, 0.0074f,
0.0077f, 0.0080f, 0.0083f, 0.0086f, 0.0089f, 0.0092f, 0.0095f, 0.0098f,
0.0101f, 0.0104f, 0.0107f, 0.0109f, 0.0112f, 0.0115f, 0.0117f, 0.0120f,
0.0122f, 0.0124f, 0.0126f, 0.0128f, 0.0130f, 0.0132f, 0.0134f, 0.0135f,
0.0136f, 0.0137f, 0.0138f, 0.0139f, 0.0140f, 0.0140f, 0.0140f, 0.0140f
};
static const float ggauss61[52] = {
0.0033f, 0.0035f, 0.0037f, 0.0039f, 0.0041f, 0.0043f, 0.0045f, 0.0047f,
0.0049f, 0.0051f, 0.0053f, 0.0056f, 0.0058f, 0.0060f, 0.0063f, 0.0065f,
0.0068f, 0.0070f, 0.0073f, 0.0075f, 0.0078f, 0.0080f, 0.0083f, 0.0085f,
0.0088f, 0.0090f, 0.0093f, 0.0095f, 0.0098f, 0.0100f, 0.0102f, 0.0105f,
0.0107f, 0.0109f, 0.0111f, 0.0113f, 0.0115f, 0.0116f, 0.0118f, 0.0120f,
0.0121f, 0.0122f, 0.0124f, 0.0125f, 0.0126f, 0.0126f, 0.0127f, 0.0128f,
0.0128f, 0.0129f, 0.0129f, 0.0129f
};
static const float ggauss62[57] = {
0.0030f, 0.0031f, 0.0033f, 0.0034f, 0.0036f, 0.0038f, 0.0039f, 0.0041f,
0.0043f, 0.0045f, 0.0047f, 0.0048f, 0.0050f, 0.0052f, 0.0054f, 0.0056f,
0.0058f, 0.0060f, 0.0063f, 0.0065f, 0.0067f, 0.0069f, 0.0071f, 0.0073f,
0.0075f, 0.0077f, 0.0080f, 0.0082f, 0.0084f, 0.0086f, 0.0088f, 0.0090f,
0.0092f, 0.0094f, 0.0096f, 0.0097f, 0.0099f, 0.0101f, 0.0103f, 0.0104f,
0.0106f, 0.0107f, 0.0108f, 0.0110f, 0.0111f, 0.0112f, 0.0113f, 0.0114f,
0.0115f, 0.0116f, 0.0116f, 0.0117f, 0.0117f, 0.0118f, 0.0118f, 0.0118f,
0.0118f
};
static const float ggauss63[62] = {
0.0027f, 0.0029f, 0.0030f, 0.0031f, 0.0032f, 0.0034f, 0.0035f, 0.0037f,
0.0038f, 0.0040f, 0.0041f, 0.0043f, 0.0045f, 0.0046f, 0.0048f, 0.0049f,
0.0051f, 0.0053f, 0.0055f, 0.0056f, 0.0058f, 0.0060f, 0.0062f, 0.0063f,
0.0065f, 0.0067f, 0.0069f, 0.0071f, 0.0072f, 0.0074f, 0.0076f, 0.0078f,
0.0079f, 0.0081f, 0.0083f, 0.0084f, 0.0086f, 0.0088f, 0.0089f, 0.0091f,
0.0092f, 0.0094f, 0.0095f, 0.0096f, 0.0098f, 0.0099f, 0.0100f, 0.0101f,
0.0102f, 0.0103f, 0.0104f, 0.0105f, 0.0105f, 0.0106f, 0.0107f, 0.0107f,
0.0108f, 0.0108f, 0.0108f, 0.0108f, 0.0109f, 0.0109f
};
static const float ggauss64[65] = {
0.0028f, 0.0029f, 0.0030f, 0.0031f, 0.0032f, 0.0034f, 0.0035f, 0.0036f,
0.0037f, 0.0039f, 0.0040f, 0.0041f, 0.0043f, 0.0044f, 0.0046f, 0.0047f,
0.0048f, 0.0050f, 0.0051f, 0.0053f, 0.0054f, 0.0056f, 0.0057f, 0.0059f,
0.0060f, 0.0062f, 0.0063f, 0.0065f, 0.0066f, 0.0068f, 0.0069f, 0.0071f,
0.0072f, 0.0074f, 0.0075f, 0.0077f, 0.0078f, 0.0079f, 0.0081f, 0.0082f,
0.0083f, 0.0084f, 0.0086f, 0.0087f, 0.0088f, 0.0089f, 0.0090f, 0.0091f,
0.0092f, 0.0093f, 0.0094f, 0.0094f, 0.0095f, 0.0096f, 0.0097f, 0.0097f,
0.0098f, 0.0098f, 0.0099f, 0.0099f, 0.0099f, 0.0099f, 0.0100f, 0.0100f,
0.0100f
};
static const float *gptr_tab_gauss[64] = {
ggauss1, ggauss2, ggauss3, ggauss4,
ggauss5, ggauss6, ggauss7, ggauss8,
ggauss9, ggauss10, ggauss11, ggauss12,
ggauss13, ggauss14, ggauss15, ggauss16,
ggauss17, ggauss18, ggauss19, ggauss20,
ggauss21, ggauss22, ggauss23, ggauss24,
ggauss25, ggauss26, ggauss27, ggauss28,
ggauss29, ggauss30, ggauss31, ggauss32,
ggauss33, ggauss34, ggauss35, ggauss36,
ggauss37, ggauss38, ggauss39, ggauss40,
ggauss41, ggauss42, ggauss43, ggauss44,
ggauss45, ggauss46, ggauss47, ggauss48,
ggauss49, ggauss50, ggauss51, ggauss52,
ggauss53, ggauss54, ggauss55, ggauss56,
ggauss57, ggauss58, ggauss59, ggauss60,
ggauss61, ggauss62, ggauss63, ggauss64
};

304
lib/qra/q65/fadenlorentz.c Normal file
View File

@ -0,0 +1,304 @@
// Lorentz energy fading tables for QRA64
static const int glen_tab_lorentz[64] = {
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4,
4, 4, 5, 5, 5, 5, 6, 6,
7, 7, 7, 8, 8, 9, 10, 10,
11, 12, 13, 14, 15, 16, 17, 19,
20, 22, 23, 25, 27, 30, 32, 35,
38, 41, 45, 49, 53, 57, 62, 65
};
static const float glorentz1[2] = {
0.0214f, 0.9107f
};
static const float glorentz2[2] = {
0.0244f, 0.9030f
};
static const float glorentz3[2] = {
0.0280f, 0.8950f
};
static const float glorentz4[2] = {
0.0314f, 0.8865f
};
static const float glorentz5[2] = {
0.0349f, 0.8773f
};
static const float glorentz6[2] = {
0.0388f, 0.8675f
};
static const float glorentz7[2] = {
0.0426f, 0.8571f
};
static const float glorentz8[2] = {
0.0463f, 0.8459f
};
static const float glorentz9[2] = {
0.0500f, 0.8339f
};
static const float glorentz10[2] = {
0.0538f, 0.8210f
};
static const float glorentz11[2] = {
0.0579f, 0.8074f
};
static const float glorentz12[2] = {
0.0622f, 0.7930f
};
static const float glorentz13[2] = {
0.0668f, 0.7777f
};
static const float glorentz14[2] = {
0.0715f, 0.7616f
};
static const float glorentz15[3] = {
0.0196f, 0.0765f, 0.7445f
};
static const float glorentz16[3] = {
0.0210f, 0.0816f, 0.7267f
};
static const float glorentz17[3] = {
0.0226f, 0.0870f, 0.7080f
};
static const float glorentz18[3] = {
0.0242f, 0.0925f, 0.6885f
};
static const float glorentz19[3] = {
0.0259f, 0.0981f, 0.6682f
};
static const float glorentz20[3] = {
0.0277f, 0.1039f, 0.6472f
};
static const float glorentz21[3] = {
0.0296f, 0.1097f, 0.6255f
};
static const float glorentz22[4] = {
0.0143f, 0.0316f, 0.1155f, 0.6031f
};
static const float glorentz23[4] = {
0.0153f, 0.0337f, 0.1213f, 0.5803f
};
static const float glorentz24[4] = {
0.0163f, 0.0358f, 0.1270f, 0.5570f
};
static const float glorentz25[4] = {
0.0174f, 0.0381f, 0.1325f, 0.5333f
};
static const float glorentz26[4] = {
0.0186f, 0.0405f, 0.1378f, 0.5095f
};
static const float glorentz27[5] = {
0.0113f, 0.0198f, 0.0429f, 0.1428f, 0.4855f
};
static const float glorentz28[5] = {
0.0120f, 0.0211f, 0.0455f, 0.1473f, 0.4615f
};
static const float glorentz29[5] = {
0.0129f, 0.0225f, 0.0481f, 0.1514f, 0.4376f
};
static const float glorentz30[5] = {
0.0137f, 0.0239f, 0.0508f, 0.1549f, 0.4140f
};
static const float glorentz31[6] = {
0.0095f, 0.0147f, 0.0254f, 0.0536f, 0.1578f, 0.3907f
};
static const float glorentz32[6] = {
0.0101f, 0.0156f, 0.0270f, 0.0564f, 0.1600f, 0.3680f
};
static const float glorentz33[7] = {
0.0076f, 0.0109f, 0.0167f, 0.0287f, 0.0592f, 0.1614f, 0.3458f
};
static const float glorentz34[7] = {
0.0081f, 0.0116f, 0.0178f, 0.0305f, 0.0621f, 0.1620f, 0.3243f
};
static const float glorentz35[7] = {
0.0087f, 0.0124f, 0.0190f, 0.0324f, 0.0649f, 0.1618f, 0.3035f
};
static const float glorentz36[8] = {
0.0069f, 0.0093f, 0.0133f, 0.0203f, 0.0343f, 0.0676f, 0.1607f, 0.2836f
};
static const float glorentz37[8] = {
0.0074f, 0.0100f, 0.0142f, 0.0216f, 0.0362f, 0.0702f, 0.1588f, 0.2645f
};
static const float glorentz38[9] = {
0.0061f, 0.0080f, 0.0107f, 0.0152f, 0.0230f, 0.0382f, 0.0726f, 0.1561f,
0.2464f
};
static const float glorentz39[10] = {
0.0052f, 0.0066f, 0.0086f, 0.0115f, 0.0162f, 0.0244f, 0.0402f, 0.0747f,
0.1526f, 0.2291f
};
static const float glorentz40[10] = {
0.0056f, 0.0071f, 0.0092f, 0.0123f, 0.0173f, 0.0259f, 0.0422f, 0.0766f,
0.1484f, 0.2128f
};
static const float glorentz41[11] = {
0.0049f, 0.0061f, 0.0076f, 0.0098f, 0.0132f, 0.0184f, 0.0274f, 0.0441f,
0.0780f, 0.1437f, 0.1975f
};
static const float glorentz42[12] = {
0.0044f, 0.0053f, 0.0065f, 0.0082f, 0.0106f, 0.0141f, 0.0196f, 0.0290f,
0.0460f, 0.0791f, 0.1384f, 0.1831f
};
static const float glorentz43[13] = {
0.0040f, 0.0048f, 0.0057f, 0.0070f, 0.0088f, 0.0113f, 0.0150f, 0.0209f,
0.0305f, 0.0477f, 0.0797f, 0.1327f, 0.1695f
};
static const float glorentz44[14] = {
0.0037f, 0.0043f, 0.0051f, 0.0062f, 0.0075f, 0.0094f, 0.0121f, 0.0160f,
0.0221f, 0.0321f, 0.0493f, 0.0799f, 0.1267f, 0.1568f
};
static const float glorentz45[15] = {
0.0035f, 0.0040f, 0.0047f, 0.0055f, 0.0066f, 0.0081f, 0.0101f, 0.0129f,
0.0171f, 0.0234f, 0.0335f, 0.0506f, 0.0795f, 0.1204f, 0.1450f
};
static const float glorentz46[16] = {
0.0033f, 0.0037f, 0.0043f, 0.0050f, 0.0059f, 0.0071f, 0.0087f, 0.0108f,
0.0138f, 0.0181f, 0.0246f, 0.0349f, 0.0517f, 0.0786f, 0.1141f, 0.1340f
};
static const float glorentz47[17] = {
0.0031f, 0.0035f, 0.0040f, 0.0046f, 0.0054f, 0.0064f, 0.0077f, 0.0093f,
0.0116f, 0.0147f, 0.0192f, 0.0259f, 0.0362f, 0.0525f, 0.0773f, 0.1076f,
0.1237f
};
static const float glorentz48[19] = {
0.0027f, 0.0030f, 0.0034f, 0.0038f, 0.0043f, 0.0050f, 0.0058f, 0.0069f,
0.0082f, 0.0100f, 0.0123f, 0.0156f, 0.0203f, 0.0271f, 0.0374f, 0.0530f,
0.0755f, 0.1013f, 0.1141f
};
static const float glorentz49[20] = {
0.0026f, 0.0029f, 0.0032f, 0.0036f, 0.0041f, 0.0047f, 0.0054f, 0.0063f,
0.0074f, 0.0088f, 0.0107f, 0.0131f, 0.0165f, 0.0213f, 0.0282f, 0.0383f,
0.0531f, 0.0734f, 0.0950f, 0.1053f
};
static const float glorentz50[22] = {
0.0023f, 0.0025f, 0.0028f, 0.0031f, 0.0035f, 0.0039f, 0.0044f, 0.0050f,
0.0058f, 0.0067f, 0.0079f, 0.0094f, 0.0114f, 0.0139f, 0.0175f, 0.0223f,
0.0292f, 0.0391f, 0.0529f, 0.0709f, 0.0889f, 0.0971f
};
static const float glorentz51[23] = {
0.0023f, 0.0025f, 0.0027f, 0.0030f, 0.0034f, 0.0037f, 0.0042f, 0.0048f,
0.0054f, 0.0062f, 0.0072f, 0.0085f, 0.0100f, 0.0121f, 0.0148f, 0.0184f,
0.0233f, 0.0301f, 0.0396f, 0.0524f, 0.0681f, 0.0829f, 0.0894f
};
static const float glorentz52[25] = {
0.0021f, 0.0023f, 0.0025f, 0.0027f, 0.0030f, 0.0033f, 0.0036f, 0.0040f,
0.0045f, 0.0051f, 0.0058f, 0.0067f, 0.0077f, 0.0090f, 0.0107f, 0.0128f,
0.0156f, 0.0192f, 0.0242f, 0.0308f, 0.0398f, 0.0515f, 0.0650f, 0.0772f,
0.0824f
};
static const float glorentz53[27] = {
0.0019f, 0.0021f, 0.0022f, 0.0024f, 0.0027f, 0.0029f, 0.0032f, 0.0035f,
0.0039f, 0.0044f, 0.0049f, 0.0055f, 0.0062f, 0.0072f, 0.0083f, 0.0096f,
0.0113f, 0.0135f, 0.0164f, 0.0201f, 0.0249f, 0.0314f, 0.0398f, 0.0502f,
0.0619f, 0.0718f, 0.0759f
};
static const float glorentz54[30] = {
0.0017f, 0.0018f, 0.0019f, 0.0021f, 0.0022f, 0.0024f, 0.0026f, 0.0029f,
0.0031f, 0.0034f, 0.0038f, 0.0042f, 0.0047f, 0.0052f, 0.0059f, 0.0067f,
0.0076f, 0.0088f, 0.0102f, 0.0120f, 0.0143f, 0.0171f, 0.0208f, 0.0256f,
0.0317f, 0.0395f, 0.0488f, 0.0586f, 0.0666f, 0.0698f
};
static const float glorentz55[32] = {
0.0016f, 0.0017f, 0.0018f, 0.0019f, 0.0021f, 0.0022f, 0.0024f, 0.0026f,
0.0028f, 0.0031f, 0.0034f, 0.0037f, 0.0041f, 0.0045f, 0.0050f, 0.0056f,
0.0063f, 0.0071f, 0.0081f, 0.0094f, 0.0108f, 0.0127f, 0.0149f, 0.0178f,
0.0214f, 0.0261f, 0.0318f, 0.0389f, 0.0470f, 0.0553f, 0.0618f, 0.0643f
};
static const float glorentz56[35] = {
0.0014f, 0.0015f, 0.0016f, 0.0017f, 0.0018f, 0.0020f, 0.0021f, 0.0023f,
0.0024f, 0.0026f, 0.0028f, 0.0031f, 0.0033f, 0.0036f, 0.0040f, 0.0044f,
0.0049f, 0.0054f, 0.0060f, 0.0067f, 0.0076f, 0.0087f, 0.0099f, 0.0114f,
0.0133f, 0.0156f, 0.0184f, 0.0220f, 0.0264f, 0.0318f, 0.0381f, 0.0451f,
0.0520f, 0.0572f, 0.0591f
};
static const float glorentz57[38] = {
0.0013f, 0.0014f, 0.0015f, 0.0016f, 0.0017f, 0.0018f, 0.0019f, 0.0020f,
0.0021f, 0.0023f, 0.0024f, 0.0026f, 0.0028f, 0.0031f, 0.0033f, 0.0036f,
0.0039f, 0.0043f, 0.0047f, 0.0052f, 0.0058f, 0.0064f, 0.0072f, 0.0081f,
0.0092f, 0.0104f, 0.0120f, 0.0139f, 0.0162f, 0.0190f, 0.0224f, 0.0265f,
0.0315f, 0.0371f, 0.0431f, 0.0487f, 0.0529f, 0.0544f
};
static const float glorentz58[41] = {
0.0012f, 0.0013f, 0.0014f, 0.0014f, 0.0015f, 0.0016f, 0.0017f, 0.0018f,
0.0019f, 0.0020f, 0.0022f, 0.0023f, 0.0025f, 0.0026f, 0.0028f, 0.0030f,
0.0033f, 0.0036f, 0.0039f, 0.0042f, 0.0046f, 0.0050f, 0.0056f, 0.0061f,
0.0068f, 0.0076f, 0.0086f, 0.0097f, 0.0110f, 0.0125f, 0.0144f, 0.0167f,
0.0194f, 0.0226f, 0.0265f, 0.0309f, 0.0359f, 0.0409f, 0.0455f, 0.0488f,
0.0500f
};
static const float glorentz59[45] = {
0.0011f, 0.0012f, 0.0012f, 0.0013f, 0.0013f, 0.0014f, 0.0015f, 0.0016f,
0.0016f, 0.0017f, 0.0018f, 0.0019f, 0.0021f, 0.0022f, 0.0023f, 0.0025f,
0.0026f, 0.0028f, 0.0030f, 0.0033f, 0.0035f, 0.0038f, 0.0041f, 0.0045f,
0.0049f, 0.0054f, 0.0059f, 0.0065f, 0.0072f, 0.0081f, 0.0090f, 0.0102f,
0.0115f, 0.0130f, 0.0149f, 0.0171f, 0.0197f, 0.0227f, 0.0263f, 0.0302f,
0.0345f, 0.0387f, 0.0425f, 0.0451f, 0.0460f
};
static const float glorentz60[49] = {
0.0010f, 0.0011f, 0.0011f, 0.0012f, 0.0012f, 0.0013f, 0.0013f, 0.0014f,
0.0014f, 0.0015f, 0.0016f, 0.0017f, 0.0018f, 0.0019f, 0.0020f, 0.0021f,
0.0022f, 0.0024f, 0.0025f, 0.0027f, 0.0028f, 0.0030f, 0.0033f, 0.0035f,
0.0038f, 0.0041f, 0.0044f, 0.0048f, 0.0052f, 0.0057f, 0.0063f, 0.0069f,
0.0077f, 0.0085f, 0.0095f, 0.0106f, 0.0119f, 0.0135f, 0.0153f, 0.0174f,
0.0199f, 0.0227f, 0.0259f, 0.0293f, 0.0330f, 0.0365f, 0.0395f, 0.0415f,
0.0423f
};
static const float glorentz61[53] = {
0.0009f, 0.0010f, 0.0010f, 0.0011f, 0.0011f, 0.0011f, 0.0012f, 0.0012f,
0.0013f, 0.0014f, 0.0014f, 0.0015f, 0.0016f, 0.0016f, 0.0017f, 0.0018f,
0.0019f, 0.0020f, 0.0021f, 0.0023f, 0.0024f, 0.0025f, 0.0027f, 0.0029f,
0.0031f, 0.0033f, 0.0035f, 0.0038f, 0.0041f, 0.0044f, 0.0047f, 0.0051f,
0.0056f, 0.0061f, 0.0067f, 0.0073f, 0.0081f, 0.0089f, 0.0099f, 0.0110f,
0.0124f, 0.0139f, 0.0156f, 0.0176f, 0.0199f, 0.0225f, 0.0253f, 0.0283f,
0.0314f, 0.0343f, 0.0367f, 0.0383f, 0.0389f
};
static const float glorentz62[57] = {
0.0009f, 0.0009f, 0.0009f, 0.0010f, 0.0010f, 0.0011f, 0.0011f, 0.0011f,
0.0012f, 0.0012f, 0.0013f, 0.0013f, 0.0014f, 0.0015f, 0.0015f, 0.0016f,
0.0017f, 0.0018f, 0.0019f, 0.0020f, 0.0021f, 0.0022f, 0.0023f, 0.0024f,
0.0026f, 0.0027f, 0.0029f, 0.0031f, 0.0033f, 0.0035f, 0.0038f, 0.0040f,
0.0043f, 0.0047f, 0.0050f, 0.0055f, 0.0059f, 0.0064f, 0.0070f, 0.0077f,
0.0085f, 0.0093f, 0.0103f, 0.0114f, 0.0127f, 0.0142f, 0.0158f, 0.0177f,
0.0198f, 0.0221f, 0.0246f, 0.0272f, 0.0297f, 0.0321f, 0.0340f, 0.0353f,
0.0357f
};
static const float glorentz63[62] = {
0.0008f, 0.0008f, 0.0009f, 0.0009f, 0.0009f, 0.0010f, 0.0010f, 0.0010f,
0.0011f, 0.0011f, 0.0011f, 0.0012f, 0.0012f, 0.0013f, 0.0013f, 0.0014f,
0.0015f, 0.0015f, 0.0016f, 0.0017f, 0.0017f, 0.0018f, 0.0019f, 0.0020f,
0.0021f, 0.0022f, 0.0023f, 0.0025f, 0.0026f, 0.0028f, 0.0029f, 0.0031f,
0.0033f, 0.0035f, 0.0038f, 0.0040f, 0.0043f, 0.0046f, 0.0050f, 0.0053f,
0.0058f, 0.0062f, 0.0068f, 0.0074f, 0.0081f, 0.0088f, 0.0097f, 0.0106f,
0.0117f, 0.0130f, 0.0144f, 0.0159f, 0.0176f, 0.0195f, 0.0216f, 0.0237f,
0.0259f, 0.0280f, 0.0299f, 0.0315f, 0.0325f, 0.0328f
};
static const float glorentz64[65] = {
0.0008f, 0.0008f, 0.0008f, 0.0009f, 0.0009f, 0.0009f, 0.0010f, 0.0010f,
0.0010f, 0.0011f, 0.0011f, 0.0012f, 0.0012f, 0.0012f, 0.0013f, 0.0013f,
0.0014f, 0.0014f, 0.0015f, 0.0016f, 0.0016f, 0.0017f, 0.0018f, 0.0019f,
0.0020f, 0.0021f, 0.0022f, 0.0023f, 0.0024f, 0.0025f, 0.0027f, 0.0028f,
0.0030f, 0.0031f, 0.0033f, 0.0035f, 0.0038f, 0.0040f, 0.0043f, 0.0046f,
0.0049f, 0.0052f, 0.0056f, 0.0061f, 0.0066f, 0.0071f, 0.0077f, 0.0084f,
0.0091f, 0.0100f, 0.0109f, 0.0120f, 0.0132f, 0.0145f, 0.0159f, 0.0175f,
0.0192f, 0.0209f, 0.0228f, 0.0246f, 0.0264f, 0.0279f, 0.0291f, 0.0299f,
0.0301f
};
static const float *gptr_tab_lorentz[64] = {
glorentz1, glorentz2, glorentz3, glorentz4,
glorentz5, glorentz6, glorentz7, glorentz8,
glorentz9, glorentz10, glorentz11, glorentz12,
glorentz13, glorentz14, glorentz15, glorentz16,
glorentz17, glorentz18, glorentz19, glorentz20,
glorentz21, glorentz22, glorentz23, glorentz24,
glorentz25, glorentz26, glorentz27, glorentz28,
glorentz29, glorentz30, glorentz31, glorentz32,
glorentz33, glorentz34, glorentz35, glorentz36,
glorentz37, glorentz38, glorentz39, glorentz40,
glorentz41, glorentz42, glorentz43, glorentz44,
glorentz45, glorentz46, glorentz47, glorentz48,
glorentz49, glorentz50, glorentz51, glorentz52,
glorentz53, glorentz54, glorentz55, glorentz56,
glorentz57, glorentz58, glorentz59, glorentz60,
glorentz61, glorentz62, glorentz63, glorentz64
};

82
lib/qra/q65/normrnd.c Normal file
View File

@ -0,0 +1,82 @@
// normrnd.c
// functions to generate gaussian distributed numbers
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
//
// Credits to Andrea Montefusco - IW0HDV for his help on adapting the sources
// to OSs other than MS Windows
//
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include "normrnd.h"
#if _WIN32 // note the underscore: without it, it's not msdn official!
// Windows (x64 and x86)
#include <windows.h> // required only for GetTickCount(...)
#define K_RAND_MAX UINT_MAX
#elif _SVID_SOURCE || _XOPEN_SOURCE || __unix__ || (defined (__APPLE__) && defined(__MACH__)) /* POSIX or Unix or Apple */
#include <stdlib.h>
#define rand_s(x) (*x)=(unsigned int)lrand48() // returns unsigned integers in the range 0..0x7FFFFFFF
#define K_RAND_MAX 0x7FFFFFFF // that's the max number
// generated by lrand48
#else
#error "No good quality PRNG found"
#endif
// use MS rand_s(...) function
void normrnd_s(float *dst, int nitems, float mean, float stdev)
{
unsigned int r;
float phi=0, u=0;
int set = 0;
while (nitems--)
if (set==1) {
*dst++ = (float)sin(phi)*u*stdev+mean;
set = 0;
}
else {
rand_s((unsigned int*)&r); phi = (M_2PI/(1.0f+K_RAND_MAX))*r;
rand_s((unsigned int*)&r); u = (float)sqrt(-2.0f* log( (1.0f/(1.0f+K_RAND_MAX))*(1.0f+r) ) );
*dst++ = (float)cos(phi)*u*stdev+mean;
set=1;
}
}
/* NOT USED
// use MS rand() function
void normrnd(float *dst, int nitems, float mean, float stdev)
{
float phi=0, u=0;
int set = 0;
while (nitems--)
if (set==1) {
*dst++ = (float)sin(phi)*u*stdev+mean;
set = 0;
}
else {
phi = (M_2PI/(1.0f+RAND_MAX))*rand();
u = (float)sqrt(-2.0f* log( (1.0f/(1.0f+RAND_MAX))*(1.0f+rand()) ) );
*dst++ = (float)cos(phi)*u*stdev+mean;
set=1;
}
}
*/

51
lib/qra/q65/normrnd.h Normal file
View File

@ -0,0 +1,51 @@
// normrnd.h
// Functions to generate gaussian distributed numbers
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _normrnd_h_
#define _normrnd_h_
#define _CRT_RAND_S
#include <stdlib.h>
#define _USE_MATH_DEFINES
#include <math.h>
#define M_2PI (2.0f*(float)M_PI)
#ifdef __cplusplus
extern "C" {
#endif
void normrnd_s(float *dst, int nitems, float mean, float stdev);
// generate a random array of numbers with a gaussian distribution of given mean and stdev
// use MS rand_s(...) function
/* not used
void normrnd(float *dst, int nitems, float mean, float stdev);
// generate a random array of numbers with a gaussian distribution of given mean and stdev
// use MS rand() function
*/
#ifdef __cplusplus
}
#endif
#endif // _normrnd_h_

216
lib/qra/q65/npfwht.c Normal file
View File

@ -0,0 +1,216 @@
// npfwht.c
// Basic implementation of the Fast Walsh-Hadamard Transforms
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (repeat and accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include "npfwht.h"
#define WHBFY(dst,src,base,offs,dist) { dst[base+offs]=src[base+offs]+src[base+offs+dist]; dst[base+offs+dist]=src[base+offs]-src[base+offs+dist]; }
typedef void (*pnp_fwht)(float*,float*);
static void np_fwht2(float *dst, float *src);
static void np_fwht1(float *dst, float *src);
static void np_fwht2(float *dst, float *src);
static void np_fwht4(float *dst, float *src);
static void np_fwht8(float *dst, float *src);
static void np_fwht16(float *dst, float *src);
static void np_fwht32(float *dst, float *src);
static void np_fwht64(float *dst, float *src);
static pnp_fwht np_fwht_tab[7] = {
np_fwht1,
np_fwht2,
np_fwht4,
np_fwht8,
np_fwht16,
np_fwht32,
np_fwht64
};
void np_fwht(int nlogdim, float *dst, float *src)
{
np_fwht_tab[nlogdim](dst,src);
}
static void np_fwht1(float *dst, float *src)
{
dst[0] = src[0];
}
static void np_fwht2(float *dst, float *src)
{
float t[2];
WHBFY(t,src,0,0,1);
dst[0]= t[0];
dst[1]= t[1];
}
static void np_fwht4(float *dst, float *src)
{
float t[4];
// group 1
WHBFY(t,src,0,0,2); WHBFY(t,src,0,1,2);
// group 2
WHBFY(dst,t,0,0,1); WHBFY(dst,t,2,0,1);
};
static void np_fwht8(float *dst, float *src)
{
float t[16];
float *t1=t, *t2=t+8;
// group 1
WHBFY(t1,src,0,0,4); WHBFY(t1,src,0,1,4); WHBFY(t1,src,0,2,4); WHBFY(t1,src,0,3,4);
// group 2
WHBFY(t2,t1,0,0,2); WHBFY(t2,t1,0,1,2); WHBFY(t2,t1,4,0,2); WHBFY(t2,t1,4,1,2);
// group 3
WHBFY(dst,t2,0,0,1); WHBFY(dst,t2,2,0,1); WHBFY(dst,t2,4,0,1); WHBFY(dst,t2,6,0,1);
};
static void np_fwht16(float *dst, float *src)
{
float t[32];
float *t1=t, *t2=t+16;
// group 1
WHBFY(t1,src,0,0,8); WHBFY(t1,src,0,1,8); WHBFY(t1,src,0,2,8); WHBFY(t1,src,0,3,8);
WHBFY(t1,src,0,4,8); WHBFY(t1,src,0,5,8); WHBFY(t1,src,0,6,8); WHBFY(t1,src,0,7,8);
// group 2
WHBFY(t2,t1,0,0,4); WHBFY(t2,t1,0,1,4); WHBFY(t2,t1,0,2,4); WHBFY(t2,t1,0,3,4);
WHBFY(t2,t1,8,0,4); WHBFY(t2,t1,8,1,4); WHBFY(t2,t1,8,2,4); WHBFY(t2,t1,8,3,4);
// group 3
WHBFY(t1,t2,0,0,2); WHBFY(t1,t2,0,1,2); WHBFY(t1,t2,4,0,2); WHBFY(t1,t2,4,1,2);
WHBFY(t1,t2,8,0,2); WHBFY(t1,t2,8,1,2); WHBFY(t1,t2,12,0,2); WHBFY(t1,t2,12,1,2);
// group 4
WHBFY(dst,t1,0,0,1); WHBFY(dst,t1,2,0,1); WHBFY(dst,t1,4,0,1); WHBFY(dst,t1,6,0,1);
WHBFY(dst,t1,8,0,1); WHBFY(dst,t1,10,0,1); WHBFY(dst,t1,12,0,1); WHBFY(dst,t1,14,0,1);
}
static void np_fwht32(float *dst, float *src)
{
float t[64];
float *t1=t, *t2=t+32;
// group 1
WHBFY(t1,src,0,0,16); WHBFY(t1,src,0,1,16); WHBFY(t1,src,0,2,16); WHBFY(t1,src,0,3,16);
WHBFY(t1,src,0,4,16); WHBFY(t1,src,0,5,16); WHBFY(t1,src,0,6,16); WHBFY(t1,src,0,7,16);
WHBFY(t1,src,0,8,16); WHBFY(t1,src,0,9,16); WHBFY(t1,src,0,10,16); WHBFY(t1,src,0,11,16);
WHBFY(t1,src,0,12,16); WHBFY(t1,src,0,13,16); WHBFY(t1,src,0,14,16); WHBFY(t1,src,0,15,16);
// group 2
WHBFY(t2,t1,0,0,8); WHBFY(t2,t1,0,1,8); WHBFY(t2,t1,0,2,8); WHBFY(t2,t1,0,3,8);
WHBFY(t2,t1,0,4,8); WHBFY(t2,t1,0,5,8); WHBFY(t2,t1,0,6,8); WHBFY(t2,t1,0,7,8);
WHBFY(t2,t1,16,0,8); WHBFY(t2,t1,16,1,8); WHBFY(t2,t1,16,2,8); WHBFY(t2,t1,16,3,8);
WHBFY(t2,t1,16,4,8); WHBFY(t2,t1,16,5,8); WHBFY(t2,t1,16,6,8); WHBFY(t2,t1,16,7,8);
// group 3
WHBFY(t1,t2,0,0,4); WHBFY(t1,t2,0,1,4); WHBFY(t1,t2,0,2,4); WHBFY(t1,t2,0,3,4);
WHBFY(t1,t2,8,0,4); WHBFY(t1,t2,8,1,4); WHBFY(t1,t2,8,2,4); WHBFY(t1,t2,8,3,4);
WHBFY(t1,t2,16,0,4); WHBFY(t1,t2,16,1,4); WHBFY(t1,t2,16,2,4); WHBFY(t1,t2,16,3,4);
WHBFY(t1,t2,24,0,4); WHBFY(t1,t2,24,1,4); WHBFY(t1,t2,24,2,4); WHBFY(t1,t2,24,3,4);
// group 4
WHBFY(t2,t1,0,0,2); WHBFY(t2,t1,0,1,2); WHBFY(t2,t1,4,0,2); WHBFY(t2,t1,4,1,2);
WHBFY(t2,t1,8,0,2); WHBFY(t2,t1,8,1,2); WHBFY(t2,t1,12,0,2); WHBFY(t2,t1,12,1,2);
WHBFY(t2,t1,16,0,2); WHBFY(t2,t1,16,1,2); WHBFY(t2,t1,20,0,2); WHBFY(t2,t1,20,1,2);
WHBFY(t2,t1,24,0,2); WHBFY(t2,t1,24,1,2); WHBFY(t2,t1,28,0,2); WHBFY(t2,t1,28,1,2);
// group 5
WHBFY(dst,t2,0,0,1); WHBFY(dst,t2,2,0,1); WHBFY(dst,t2,4,0,1); WHBFY(dst,t2,6,0,1);
WHBFY(dst,t2,8,0,1); WHBFY(dst,t2,10,0,1); WHBFY(dst,t2,12,0,1); WHBFY(dst,t2,14,0,1);
WHBFY(dst,t2,16,0,1); WHBFY(dst,t2,18,0,1); WHBFY(dst,t2,20,0,1); WHBFY(dst,t2,22,0,1);
WHBFY(dst,t2,24,0,1); WHBFY(dst,t2,26,0,1); WHBFY(dst,t2,28,0,1); WHBFY(dst,t2,30,0,1);
}
static void np_fwht64(float *dst, float *src)
{
float t[128];
float *t1=t, *t2=t+64;
// group 1
WHBFY(t1,src,0,0,32); WHBFY(t1,src,0,1,32); WHBFY(t1,src,0,2,32); WHBFY(t1,src,0,3,32);
WHBFY(t1,src,0,4,32); WHBFY(t1,src,0,5,32); WHBFY(t1,src,0,6,32); WHBFY(t1,src,0,7,32);
WHBFY(t1,src,0,8,32); WHBFY(t1,src,0,9,32); WHBFY(t1,src,0,10,32); WHBFY(t1,src,0,11,32);
WHBFY(t1,src,0,12,32); WHBFY(t1,src,0,13,32); WHBFY(t1,src,0,14,32); WHBFY(t1,src,0,15,32);
WHBFY(t1,src,0,16,32); WHBFY(t1,src,0,17,32); WHBFY(t1,src,0,18,32); WHBFY(t1,src,0,19,32);
WHBFY(t1,src,0,20,32); WHBFY(t1,src,0,21,32); WHBFY(t1,src,0,22,32); WHBFY(t1,src,0,23,32);
WHBFY(t1,src,0,24,32); WHBFY(t1,src,0,25,32); WHBFY(t1,src,0,26,32); WHBFY(t1,src,0,27,32);
WHBFY(t1,src,0,28,32); WHBFY(t1,src,0,29,32); WHBFY(t1,src,0,30,32); WHBFY(t1,src,0,31,32);
// group 2
WHBFY(t2,t1,0,0,16); WHBFY(t2,t1,0,1,16); WHBFY(t2,t1,0,2,16); WHBFY(t2,t1,0,3,16);
WHBFY(t2,t1,0,4,16); WHBFY(t2,t1,0,5,16); WHBFY(t2,t1,0,6,16); WHBFY(t2,t1,0,7,16);
WHBFY(t2,t1,0,8,16); WHBFY(t2,t1,0,9,16); WHBFY(t2,t1,0,10,16); WHBFY(t2,t1,0,11,16);
WHBFY(t2,t1,0,12,16); WHBFY(t2,t1,0,13,16); WHBFY(t2,t1,0,14,16); WHBFY(t2,t1,0,15,16);
WHBFY(t2,t1,32,0,16); WHBFY(t2,t1,32,1,16); WHBFY(t2,t1,32,2,16); WHBFY(t2,t1,32,3,16);
WHBFY(t2,t1,32,4,16); WHBFY(t2,t1,32,5,16); WHBFY(t2,t1,32,6,16); WHBFY(t2,t1,32,7,16);
WHBFY(t2,t1,32,8,16); WHBFY(t2,t1,32,9,16); WHBFY(t2,t1,32,10,16); WHBFY(t2,t1,32,11,16);
WHBFY(t2,t1,32,12,16); WHBFY(t2,t1,32,13,16); WHBFY(t2,t1,32,14,16); WHBFY(t2,t1,32,15,16);
// group 3
WHBFY(t1,t2,0,0,8); WHBFY(t1,t2,0,1,8); WHBFY(t1,t2,0,2,8); WHBFY(t1,t2,0,3,8);
WHBFY(t1,t2,0,4,8); WHBFY(t1,t2,0,5,8); WHBFY(t1,t2,0,6,8); WHBFY(t1,t2,0,7,8);
WHBFY(t1,t2,16,0,8); WHBFY(t1,t2,16,1,8); WHBFY(t1,t2,16,2,8); WHBFY(t1,t2,16,3,8);
WHBFY(t1,t2,16,4,8); WHBFY(t1,t2,16,5,8); WHBFY(t1,t2,16,6,8); WHBFY(t1,t2,16,7,8);
WHBFY(t1,t2,32,0,8); WHBFY(t1,t2,32,1,8); WHBFY(t1,t2,32,2,8); WHBFY(t1,t2,32,3,8);
WHBFY(t1,t2,32,4,8); WHBFY(t1,t2,32,5,8); WHBFY(t1,t2,32,6,8); WHBFY(t1,t2,32,7,8);
WHBFY(t1,t2,48,0,8); WHBFY(t1,t2,48,1,8); WHBFY(t1,t2,48,2,8); WHBFY(t1,t2,48,3,8);
WHBFY(t1,t2,48,4,8); WHBFY(t1,t2,48,5,8); WHBFY(t1,t2,48,6,8); WHBFY(t1,t2,48,7,8);
// group 4
WHBFY(t2,t1,0,0,4); WHBFY(t2,t1,0,1,4); WHBFY(t2,t1,0,2,4); WHBFY(t2,t1,0,3,4);
WHBFY(t2,t1,8,0,4); WHBFY(t2,t1,8,1,4); WHBFY(t2,t1,8,2,4); WHBFY(t2,t1,8,3,4);
WHBFY(t2,t1,16,0,4); WHBFY(t2,t1,16,1,4); WHBFY(t2,t1,16,2,4); WHBFY(t2,t1,16,3,4);
WHBFY(t2,t1,24,0,4); WHBFY(t2,t1,24,1,4); WHBFY(t2,t1,24,2,4); WHBFY(t2,t1,24,3,4);
WHBFY(t2,t1,32,0,4); WHBFY(t2,t1,32,1,4); WHBFY(t2,t1,32,2,4); WHBFY(t2,t1,32,3,4);
WHBFY(t2,t1,40,0,4); WHBFY(t2,t1,40,1,4); WHBFY(t2,t1,40,2,4); WHBFY(t2,t1,40,3,4);
WHBFY(t2,t1,48,0,4); WHBFY(t2,t1,48,1,4); WHBFY(t2,t1,48,2,4); WHBFY(t2,t1,48,3,4);
WHBFY(t2,t1,56,0,4); WHBFY(t2,t1,56,1,4); WHBFY(t2,t1,56,2,4); WHBFY(t2,t1,56,3,4);
// group 5
WHBFY(t1,t2,0,0,2); WHBFY(t1,t2,0,1,2); WHBFY(t1,t2,4,0,2); WHBFY(t1,t2,4,1,2);
WHBFY(t1,t2,8,0,2); WHBFY(t1,t2,8,1,2); WHBFY(t1,t2,12,0,2); WHBFY(t1,t2,12,1,2);
WHBFY(t1,t2,16,0,2); WHBFY(t1,t2,16,1,2); WHBFY(t1,t2,20,0,2); WHBFY(t1,t2,20,1,2);
WHBFY(t1,t2,24,0,2); WHBFY(t1,t2,24,1,2); WHBFY(t1,t2,28,0,2); WHBFY(t1,t2,28,1,2);
WHBFY(t1,t2,32,0,2); WHBFY(t1,t2,32,1,2); WHBFY(t1,t2,36,0,2); WHBFY(t1,t2,36,1,2);
WHBFY(t1,t2,40,0,2); WHBFY(t1,t2,40,1,2); WHBFY(t1,t2,44,0,2); WHBFY(t1,t2,44,1,2);
WHBFY(t1,t2,48,0,2); WHBFY(t1,t2,48,1,2); WHBFY(t1,t2,52,0,2); WHBFY(t1,t2,52,1,2);
WHBFY(t1,t2,56,0,2); WHBFY(t1,t2,56,1,2); WHBFY(t1,t2,60,0,2); WHBFY(t1,t2,60,1,2);
// group 6
WHBFY(dst,t1,0,0,1); WHBFY(dst,t1,2,0,1); WHBFY(dst,t1,4,0,1); WHBFY(dst,t1,6,0,1);
WHBFY(dst,t1,8,0,1); WHBFY(dst,t1,10,0,1); WHBFY(dst,t1,12,0,1); WHBFY(dst,t1,14,0,1);
WHBFY(dst,t1,16,0,1); WHBFY(dst,t1,18,0,1); WHBFY(dst,t1,20,0,1); WHBFY(dst,t1,22,0,1);
WHBFY(dst,t1,24,0,1); WHBFY(dst,t1,26,0,1); WHBFY(dst,t1,28,0,1); WHBFY(dst,t1,30,0,1);
WHBFY(dst,t1,32,0,1); WHBFY(dst,t1,34,0,1); WHBFY(dst,t1,36,0,1); WHBFY(dst,t1,38,0,1);
WHBFY(dst,t1,40,0,1); WHBFY(dst,t1,42,0,1); WHBFY(dst,t1,44,0,1); WHBFY(dst,t1,46,0,1);
WHBFY(dst,t1,48,0,1); WHBFY(dst,t1,50,0,1); WHBFY(dst,t1,52,0,1); WHBFY(dst,t1,54,0,1);
WHBFY(dst,t1,56,0,1); WHBFY(dst,t1,58,0,1); WHBFY(dst,t1,60,0,1); WHBFY(dst,t1,62,0,1);
}

45
lib/qra/q65/npfwht.h Normal file
View File

@ -0,0 +1,45 @@
// np_fwht.h
// Basic implementation of the Fast Walsh-Hadamard Transforms
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (repeat and accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _npfwht_h_
#define _npfwht_h_
#ifdef __cplusplus
extern "C" {
#endif
void np_fwht(int nlogdim, float *dst, float *src);
// Compute the Walsh-Hadamard transform of the given data up to a
// 64-dimensional transform
//
// Input parameters:
// nlogdim: log2 of the transform size. Must be in the range [0..6]
// src : pointer to the input data buffer.
// dst : pointer to the output data buffer.
//
// src and dst must point to preallocated data buffers of size 2^nlogdim*sizeof(float)
// src and dst buffers can overlap
#ifdef __cplusplus
}
#endif
#endif // _npfwht_

385
lib/qra/q65/pdmath.c Normal file
View File

@ -0,0 +1,385 @@
// pdmath.c
// Elementary math on probability distributions
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include "pdmath.h"
typedef const float *ppd_uniform;
typedef void (*ppd_imul)(float*,const float*);
typedef float (*ppd_norm)(float*);
// define vector size in function of its logarithm in base 2
static const int pd_log2dim[7] = {
1,2,4,8,16,32,64
};
// define uniform distributions of given size
static const float pd_uniform1[1] = {
1.
};
static const float pd_uniform2[2] = {
1./2., 1./2.
};
static const float pd_uniform4[4] = {
1./4., 1./4.,1./4., 1./4.
};
static const float pd_uniform8[8] = {
1./8., 1./8.,1./8., 1./8.,1./8., 1./8.,1./8., 1./8.
};
static const float pd_uniform16[16] = {
1./16., 1./16., 1./16., 1./16.,1./16., 1./16.,1./16., 1./16.,
1./16., 1./16., 1./16., 1./16.,1./16., 1./16.,1./16., 1./16.
};
static const float pd_uniform32[32] = {
1./32., 1./32., 1./32., 1./32.,1./32., 1./32.,1./32., 1./32.,
1./32., 1./32., 1./32., 1./32.,1./32., 1./32.,1./32., 1./32.,
1./32., 1./32., 1./32., 1./32.,1./32., 1./32.,1./32., 1./32.,
1./32., 1./32., 1./32., 1./32.,1./32., 1./32.,1./32., 1./32.
};
static const float pd_uniform64[64] = {
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.,
1./64., 1./64., 1./64., 1./64.,1./64., 1./64.,1./64., 1./64.
};
static const ppd_uniform pd_uniform_tab[7] = {
pd_uniform1,
pd_uniform2,
pd_uniform4,
pd_uniform8,
pd_uniform16,
pd_uniform32,
pd_uniform64
};
// returns a pointer to the uniform distribution of the given logsize
const float *pd_uniform(int nlogdim)
{
return pd_uniform_tab[nlogdim];
}
// in-place multiplication functions
// compute dst = dst*src for any element of the distrib
static void pd_imul1(float *dst, const float *src)
{
dst[0] *= src[0];
}
static void pd_imul2(float *dst, const float *src)
{
dst[0] *= src[0]; dst[1] *= src[1];
}
static void pd_imul4(float *dst, const float *src)
{
dst[0] *= src[0]; dst[1] *= src[1];
dst[2] *= src[2]; dst[3] *= src[3];
}
static void pd_imul8(float *dst, const float *src)
{
dst[0] *= src[0]; dst[1] *= src[1]; dst[2] *= src[2]; dst[3] *= src[3];
dst[4] *= src[4]; dst[5] *= src[5]; dst[6] *= src[6]; dst[7] *= src[7];
}
static void pd_imul16(float *dst, const float *src)
{
dst[0] *= src[0]; dst[1] *= src[1]; dst[2] *= src[2]; dst[3] *= src[3];
dst[4] *= src[4]; dst[5] *= src[5]; dst[6] *= src[6]; dst[7] *= src[7];
dst[8] *= src[8]; dst[9] *= src[9]; dst[10]*= src[10]; dst[11]*= src[11];
dst[12]*= src[12]; dst[13]*= src[13]; dst[14]*= src[14]; dst[15]*= src[15];
}
static void pd_imul32(float *dst, const float *src)
{
pd_imul16(dst,src);
pd_imul16(dst+16,src+16);
}
static void pd_imul64(float *dst, const float *src)
{
pd_imul16(dst, src);
pd_imul16(dst+16, src+16);
pd_imul16(dst+32, src+32);
pd_imul16(dst+48, src+48);
}
static const ppd_imul pd_imul_tab[7] = {
pd_imul1,
pd_imul2,
pd_imul4,
pd_imul8,
pd_imul16,
pd_imul32,
pd_imul64
};
// in place multiplication
// compute dst = dst*src for any element of the distrib give their log2 size
// arguments must be pointers to array of floats of the given size
void pd_imul(float *dst, const float *src, int nlogdim)
{
pd_imul_tab[nlogdim](dst,src);
}
static float pd_norm1(float *ppd)
{
float t = ppd[0];
ppd[0] = 1.f;
return t;
}
static float pd_norm2(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1];
if (t<=0) {
pd_init(ppd,pd_uniform(1),pd_log2dim[1]);
return t;
}
to = t;
t = 1.f/t;
ppd[0] *=t; ppd[1] *=t;
return to;
}
static float pd_norm4(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1]; t +=ppd[2]; t +=ppd[3];
if (t<=0) {
pd_init(ppd,pd_uniform(2),pd_log2dim[2]);
return t;
}
to = t;
t = 1.f/t;
ppd[0] *=t; ppd[1] *=t; ppd[2] *=t; ppd[3] *=t;
return to;
}
static float pd_norm8(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1]; t +=ppd[2]; t +=ppd[3];
t +=ppd[4]; t +=ppd[5]; t +=ppd[6]; t +=ppd[7];
if (t<=0) {
pd_init(ppd,pd_uniform(3),pd_log2dim[3]);
return t;
}
to = t;
t = 1.f/t;
ppd[0] *=t; ppd[1] *=t; ppd[2] *=t; ppd[3] *=t;
ppd[4] *=t; ppd[5] *=t; ppd[6] *=t; ppd[7] *=t;
return to;
}
static float pd_norm16(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1]; t +=ppd[2]; t +=ppd[3];
t +=ppd[4]; t +=ppd[5]; t +=ppd[6]; t +=ppd[7];
t +=ppd[8]; t +=ppd[9]; t +=ppd[10]; t +=ppd[11];
t +=ppd[12]; t +=ppd[13]; t +=ppd[14]; t +=ppd[15];
if (t<=0) {
pd_init(ppd,pd_uniform(4),pd_log2dim[4]);
return t;
}
to = t;
t = 1.f/t;
ppd[0] *=t; ppd[1] *=t; ppd[2] *=t; ppd[3] *=t;
ppd[4] *=t; ppd[5] *=t; ppd[6] *=t; ppd[7] *=t;
ppd[8] *=t; ppd[9] *=t; ppd[10] *=t; ppd[11] *=t;
ppd[12] *=t; ppd[13] *=t; ppd[14] *=t; ppd[15] *=t;
return to;
}
static float pd_norm32(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1]; t +=ppd[2]; t +=ppd[3];
t +=ppd[4]; t +=ppd[5]; t +=ppd[6]; t +=ppd[7];
t +=ppd[8]; t +=ppd[9]; t +=ppd[10]; t +=ppd[11];
t +=ppd[12]; t +=ppd[13]; t +=ppd[14]; t +=ppd[15];
t +=ppd[16]; t +=ppd[17]; t +=ppd[18]; t +=ppd[19];
t +=ppd[20]; t +=ppd[21]; t +=ppd[22]; t +=ppd[23];
t +=ppd[24]; t +=ppd[25]; t +=ppd[26]; t +=ppd[27];
t +=ppd[28]; t +=ppd[29]; t +=ppd[30]; t +=ppd[31];
if (t<=0) {
pd_init(ppd,pd_uniform(5),pd_log2dim[5]);
return t;
}
to = t;
t = 1.f/t;
ppd[0] *=t; ppd[1] *=t; ppd[2] *=t; ppd[3] *=t;
ppd[4] *=t; ppd[5] *=t; ppd[6] *=t; ppd[7] *=t;
ppd[8] *=t; ppd[9] *=t; ppd[10] *=t; ppd[11] *=t;
ppd[12] *=t; ppd[13] *=t; ppd[14] *=t; ppd[15] *=t;
ppd[16] *=t; ppd[17] *=t; ppd[18] *=t; ppd[19] *=t;
ppd[20] *=t; ppd[21] *=t; ppd[22] *=t; ppd[23] *=t;
ppd[24] *=t; ppd[25] *=t; ppd[26] *=t; ppd[27] *=t;
ppd[28] *=t; ppd[29] *=t; ppd[30] *=t; ppd[31] *=t;
return to;
}
static float pd_norm64(float *ppd)
{
float t,to;
t =ppd[0]; t +=ppd[1]; t +=ppd[2]; t +=ppd[3];
t +=ppd[4]; t +=ppd[5]; t +=ppd[6]; t +=ppd[7];
t +=ppd[8]; t +=ppd[9]; t +=ppd[10]; t +=ppd[11];
t +=ppd[12]; t +=ppd[13]; t +=ppd[14]; t +=ppd[15];
t +=ppd[16]; t +=ppd[17]; t +=ppd[18]; t +=ppd[19];
t +=ppd[20]; t +=ppd[21]; t +=ppd[22]; t +=ppd[23];
t +=ppd[24]; t +=ppd[25]; t +=ppd[26]; t +=ppd[27];
t +=ppd[28]; t +=ppd[29]; t +=ppd[30]; t +=ppd[31];
t +=ppd[32]; t +=ppd[33]; t +=ppd[34]; t +=ppd[35];
t +=ppd[36]; t +=ppd[37]; t +=ppd[38]; t +=ppd[39];
t +=ppd[40]; t +=ppd[41]; t +=ppd[42]; t +=ppd[43];
t +=ppd[44]; t +=ppd[45]; t +=ppd[46]; t +=ppd[47];
t +=ppd[48]; t +=ppd[49]; t +=ppd[50]; t +=ppd[51];
t +=ppd[52]; t +=ppd[53]; t +=ppd[54]; t +=ppd[55];
t +=ppd[56]; t +=ppd[57]; t +=ppd[58]; t +=ppd[59];
t +=ppd[60]; t +=ppd[61]; t +=ppd[62]; t +=ppd[63];
if (t<=0) {
pd_init(ppd,pd_uniform(6),pd_log2dim[6]);
return t;
}
to = t;
t = 1.0f/t;
ppd[0] *=t; ppd[1] *=t; ppd[2] *=t; ppd[3] *=t;
ppd[4] *=t; ppd[5] *=t; ppd[6] *=t; ppd[7] *=t;
ppd[8] *=t; ppd[9] *=t; ppd[10] *=t; ppd[11] *=t;
ppd[12] *=t; ppd[13] *=t; ppd[14] *=t; ppd[15] *=t;
ppd[16] *=t; ppd[17] *=t; ppd[18] *=t; ppd[19] *=t;
ppd[20] *=t; ppd[21] *=t; ppd[22] *=t; ppd[23] *=t;
ppd[24] *=t; ppd[25] *=t; ppd[26] *=t; ppd[27] *=t;
ppd[28] *=t; ppd[29] *=t; ppd[30] *=t; ppd[31] *=t;
ppd[32] *=t; ppd[33] *=t; ppd[34] *=t; ppd[35] *=t;
ppd[36] *=t; ppd[37] *=t; ppd[38] *=t; ppd[39] *=t;
ppd[40] *=t; ppd[41] *=t; ppd[42] *=t; ppd[43] *=t;
ppd[44] *=t; ppd[45] *=t; ppd[46] *=t; ppd[47] *=t;
ppd[48] *=t; ppd[49] *=t; ppd[50] *=t; ppd[51] *=t;
ppd[52] *=t; ppd[53] *=t; ppd[54] *=t; ppd[55] *=t;
ppd[56] *=t; ppd[57] *=t; ppd[58] *=t; ppd[59] *=t;
ppd[60] *=t; ppd[61] *=t; ppd[62] *=t; ppd[63] *=t;
return to;
}
static const ppd_norm pd_norm_tab[7] = {
pd_norm1,
pd_norm2,
pd_norm4,
pd_norm8,
pd_norm16,
pd_norm32,
pd_norm64
};
float pd_norm(float *pd, int nlogdim)
{
return pd_norm_tab[nlogdim](pd);
}
void pd_memset(float *dst, const float *src, int ndim, int nitems)
{
int size = PD_SIZE(ndim);
while(nitems--) {
memcpy(dst,src,size);
dst +=ndim;
}
}
void pd_fwdperm(float *dst, float *src, const int *perm, int ndim)
{
// TODO: non-loop implementation
while (ndim--)
dst[ndim] = src[perm[ndim]];
}
void pd_bwdperm(float *dst, float *src, const int *perm, int ndim)
{
// TODO: non-loop implementation
while (ndim--)
dst[perm[ndim]] = src[ndim];
}
float pd_max(float *src, int ndim)
{
// TODO: faster implementation
float cmax=0; // we assume that prob distributions are always positive
float cval;
while (ndim--) {
cval = src[ndim];
if (cval>=cmax) {
cmax = cval;
}
}
return cmax;
}
int pd_argmax(float *pmax, float *src, int ndim)
{
// TODO: faster implementation
float cmax=0; // we assume that prob distributions are always positive
float cval;
int idxmax=-1; // indicates that all pd elements are <0
while (ndim--) {
cval = src[ndim];
if (cval>=cmax) {
cmax = cval;
idxmax = ndim;
}
}
if (pmax)
*pmax = cmax;
return idxmax;
}

85
lib/qra/q65/pdmath.h Normal file
View File

@ -0,0 +1,85 @@
// pdmath.h
// Elementary math on probability distributions
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (repeat and accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _pdmath_h_
#define _pdmath_h_
#include <memory.h>
#ifdef __cplusplus
extern "C" {
#endif
#define PD_NDIM(nlogdim) ((1<<(nlogdim))
#define PD_SIZE(ndim) ((ndim)*sizeof(float))
#define PD_ROWADDR(fp,ndim,idx) (fp+((ndim)*(idx)))
const float *pd_uniform(int nlogdim);
// Returns a pointer to a (constant) uniform distribution of the given log2 size
#define pd_init(dst,src,ndim) memcpy(dst,src,PD_SIZE(ndim))
// Distribution copy
void pd_memset(float *dst, const float *src, int ndim, int nitems);
// Copy the distribution pointed by src to the array of distributions dst
// src is a pointer to the input distribution (a vector of size ndim)
// dst is a pointer to a linear array of distributions (a vector of size ndim*nitems)
void pd_imul(float *dst, const float *src, int nlogdim);
// In place multiplication
// Compute dst = dst*src for any element of the distrib give their log2 size
// src and dst arguments must be pointers to array of floats of the given size
float pd_norm(float *pd, int nlogdim);
// In place normalizazion
// Normalizes the input vector so that the sum of its components are one
// pd must be a pointer to an array of floats of the given size.
// If the norm of the input vector is non-positive the vector components
// are replaced with a uniform distribution
// Returns the norm of the distribution prior to the normalization
void pd_fwdperm(float *dst, float *src, const int *perm, int ndim);
// Forward permutation of a distribution
// Computes dst[k] = src[perm[k]] for every element in the distribution
// perm must be a pointer to an array of integers of length ndim
void pd_bwdperm(float *dst, float *src, const int *perm, int ndim);
// Backward permutation of a distribution
// Computes dst[perm[k]] = src[k] for every element in the distribution
// perm must be a pointer to an array of integers of length ndim
float pd_max(float *src, int ndim);
// Return the maximum of the elements of the given distribution
// Assumes that the input vector is a probability distribution and that each element in the
// distribution is non negative
int pd_argmax(float *pmax, float *src, int ndim);
// Return the index of the maximum element of the given distribution
// The maximum is stored in the variable pointed by pmax if pmax is not null
// Same note of pd_max applies.
// Return -1 if all the elements in the distribution are negative
#ifdef __cplusplus
}
#endif
#endif // _pdmath_h_

795
lib/qra/q65/q65.c Normal file
View File

@ -0,0 +1,795 @@
// q65.c
// q65 modes encoding/decoding functions
//
// (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "q65.h"
#include "pdmath.h"
static int _q65_crc6(int *x, int sz);
static void _q65_crc12(int *y, int *x, int sz);
int q65_init(q65_codec_ds *pCodec, const qracode *pqracode)
{
// Eb/No value for which we optimize the decoder metric (AWGN/Rayleigh cases)
const float EbNodBMetric = 2.8f;
const float EbNoMetric = (float)pow(10,EbNodBMetric/10);
float R; // code effective rate (after puncturing)
int nm; // bits per symbol
if (!pCodec)
return -1; // why do you called me?
if (!pqracode)
return -2; // invalid qra code
if (pqracode->M!=64)
return -3; // q65 supports only codes over GF(64)
pCodec->pQraCode = pqracode;
// allocate buffers used by encoding/decoding functions
pCodec->x = (int*)malloc(pqracode->K*sizeof(int));
pCodec->y = (int*)malloc(pqracode->N*sizeof(int));
pCodec->qra_v2cmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
pCodec->qra_c2vmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
pCodec->ix = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
pCodec->ex = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
if (pCodec->x== NULL ||
pCodec->y== NULL ||
pCodec->qra_v2cmsg== NULL ||
pCodec->qra_c2vmsg== NULL ||
pCodec->ix== NULL ||
pCodec->ex== NULL) {
q65_free(pCodec);
return -4; // out of memory
}
// compute and store the AWGN/Rayleigh Es/No ratio for which we optimize
// the decoder metric
nm = _q65_get_bits_per_symbol(pqracode);
R = _q65_get_code_rate(pqracode);
pCodec->decoderEsNoMetric = 1.0f*nm*R*EbNoMetric;
return 1;
}
void q65_free(q65_codec_ds *pCodec)
{
if (!pCodec)
return;
// free internal buffers
if (pCodec->x!=NULL)
free(pCodec->x);
if (pCodec->y!=NULL)
free(pCodec->y);
if (pCodec->qra_v2cmsg!=NULL)
free(pCodec->qra_v2cmsg);
if (pCodec->qra_c2vmsg!=NULL)
free(pCodec->qra_c2vmsg);
if (pCodec->ix!=NULL)
free(pCodec->ix);
if (pCodec->ex!=NULL)
free(pCodec->ex);
pCodec->pQraCode = NULL;
pCodec->x = NULL;
pCodec->y = NULL;
pCodec->qra_v2cmsg = NULL;
pCodec->qra_c2vmsg = NULL;
pCodec->qra_v2cmsg = NULL;
pCodec->ix = NULL;
pCodec->ex = NULL;
return;
}
int q65_encode(const q65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg)
{
const qracode *pQraCode;
int *px;
int *py;
int nK;
int nN;
if (!pCodec)
return -1; // which codec?
pQraCode = pCodec->pQraCode;
px = pCodec->x;
py = pCodec->y;
nK = _q65_get_message_length(pQraCode);
nN = _q65_get_codeword_length(pQraCode);
// copy the information symbols into the internal buffer
memcpy(px,pInputMsg,nK*sizeof(int));
// compute and append the appropriate CRC if required
switch (pQraCode->type) {
case QRATYPE_NORMAL:
break;
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
px[nK] = _q65_crc6(px,nK);
break;
case QRATYPE_CRCPUNCTURED2:
_q65_crc12(px+nK,px,nK);
break;
default:
return -2; // code type not supported
}
// encode with the given qra code
qra_encode(pQraCode,py,px);
// puncture the CRC symbols as required
// and copy the result to the destination buffer
switch (pQraCode->type) {
case QRATYPE_NORMAL:
case QRATYPE_CRC:
// no puncturing
memcpy(pOutputCodeword,py,nN*sizeof(int));
break;
case QRATYPE_CRCPUNCTURED:
// strip the single CRC symbol from the encoded codeword
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
memcpy(pOutputCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // copy the check symbols skipping the CRC symbol
break;
case QRATYPE_CRCPUNCTURED2:
// strip the 2 CRC symbols from the encoded codeword
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
memcpy(pOutputCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // copy the check symbols skipping the two CRC symbols
break;
default:
return -2; // code type unsupported
}
return 1; // ok
}
int q65_intrinsics(q65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies)
{
// compute observations intrinsics probabilities
// for the AWGN/Rayleigh channels
// NOTE:
// A true Rayleigh channel metric would require that the channel gains were known
// for each symbol in the codeword. Such gains cannot be estimated reliably when
// the Es/No ratio is small. Therefore we compute intrinsic probabilities assuming
// that, on average, these channel gains are unitary.
// In general it is even difficult to estimate the Es/No ratio for the AWGN channel
// Therefore we always compute the intrinsic probabilities assuming that the Es/No
// ratio is known and equal to the constant decoderEsNoMetric. This assumption will
// generate the true intrinsic probabilities only when the actual Eb/No ratio is
// equal to this constant. As in all the other cases the probabilities are evaluated
// with a wrong scaling constant we can expect that the decoder performance at different
// Es/No will be worse. Anyway, since the EsNoMetric constant has been chosen so that the
// decoder error rate is about 50%, we obtain almost optimal error rates down to
// any useful Es/No ratio.
const qracode *pQraCode;
int nN, nBits;
float EsNoMetric;
if (pCodec==NULL)
return -1; // which codec?
pQraCode = pCodec->pQraCode;
nN = _q65_get_codeword_length(pQraCode);
nBits = pQraCode->m;
EsNoMetric = pCodec->decoderEsNoMetric;
qra_mfskbesselmetric(pIntrinsics,pInputEnergies,nBits,nN,EsNoMetric);
return 1; // success
}
int q65_esnodb(const q65_codec_ds *pCodec, float *pEsNodB, const int *ydec, const float *pInputEnergies)
{
// compute average Es/No for the AWGN/Rayleigh channel cases
int k,j;
float sigplusnoise=0;
float noise=0;
int nN, nM;
const float *pIn = pInputEnergies;
const int *py = ydec;
float EsNodB;
nN = q65_get_codeword_length(pCodec);
nM = q65_get_alphabet_size(pCodec);
for (k=0;k<nN;k++) {
for (j=0;j<nM;j++)
if (j==py[0])
sigplusnoise += pIn[j];
else
noise +=pIn[j];
pIn += nM;
py++;
}
sigplusnoise = sigplusnoise/nN; // average Es+No
noise = noise/(nN*(nM-1)); // average No
if (noise==0.0f)
EsNodB = 50.0f; // output an arbitrary +50 dB value avoiding division overflows
else {
float sig;
if (sigplusnoise<noise)
sigplusnoise = 1.316f*noise; // limit the minimum Es/No ratio to -5 dB;
sig = sigplusnoise-noise;
EsNodB = 10.0f*log10f(sig/noise);
}
*pEsNodB = EsNodB;
return 1;
}
//
// Fast-fading channel metric ----------------------------------------------
//
// Tables of fading energies coefficients for Ts=6912/12000 (QRA64)
#include "fadengauss.c"
#include "fadenlorentz.c"
// As the fading is assumed to be symmetric around the nominal frequency
// only the leftmost and the central coefficient are stored in the tables.
// (files have been generated with the Matlab code efgengaussenergy.m and efgenlorentzenergy.m)
// Symbol time interval in seconds
#define TS_QRA64 0.576
#define TS_Q65 0.640
// The tables are computed assuming that the bin spacing is that of QRA64, that's to say
// 1/Ts = 12000/6912 Hz, but in q65 Ts is longer (0.640 s) and the table index
// corresponding to a given B90 must be scaled appropriately.
// See below.
int q65_intrinsics_fastfading(q65_codec_ds *pCodec,
float *pIntrinsics, // intrinsic symbol probabilities output
const float *pInputEnergies, // received energies input
const int submode, // submode idx (0=A ... 4=E)
const float B90, // spread bandwidth (90% fractional energy)
const int fadingModel) // 0=Gaussian 1=Lorentzian fade model
{
int n, k, j;
int nM, nN, nBinsPerTone, nBinsPerSymbol, nBinsPerCodeword;
int hidx, hlen, hhsz, hlast;
const float *hptr;
float fTemp, fNoiseVar, sumix, maxlogp;
float EsNoMetric;
float *weight;
const float *pCurSym, *pCurBin;
float *pCurIx;
if (pCodec==NULL)
return Q65_DECODE_INVPARAMS; // invalid pCodec pointer
if (submode<0 || submode>4)
return Q65_DECODE_INVPARAMS; // invalid submode
// As the symbol duration in q65 is longer than in QRA64 the fading tables continue
// to be valid if the B90 parameter is scaled by the actual symbol rate
// Compute index to most appropriate weighting function coefficients
hidx = (int)(logf(B90*TS_Q65/TS_QRA64)/logf(1.09f) - 0.499f);
// if (hidx<0 || hidx > 64)
// // index of weighting function out of range
// // B90 out of range
// return q65_DECODE_INVPARAMS;
// Unlike in QRA64 we accept any B90, anyway limiting it to
// the extreme cases (0.9 to 210 Hz approx.)
if (hidx<0)
hidx = 0;
else
if (hidx > 64)
hidx=64;
// select the appropriate weighting fading coefficients array
if (fadingModel==0) { // gaussian fading model
// point to gaussian energy weighting taps
hlen = glen_tab_gauss[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
hptr = gptr_tab_gauss[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
}
else if (fadingModel==1) {
// point to lorentzian energy weighting taps
hlen = glen_tab_lorentz[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
hptr = gptr_tab_lorentz[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
}
else
return Q65_DECODE_INVPARAMS; // invalid fading model
// compute (euristically) the optimal decoder metric accordingly the given spread amount
// We assume that the decoder 50% decoding threshold is:
// Es/No(dB) = Es/No(AWGN)(dB) + 8*log(B90)/log(240)(dB)
// that's to say, at the maximum Doppler spread bandwidth (240 Hz for QRA64)
// there's a ~8 dB Es/No degradation over the AWGN case
fTemp = 8.0f*logf(B90)/logf(240.0f); // assumed Es/No degradation for the given fading bandwidth
EsNoMetric = pCodec->decoderEsNoMetric*powf(10.0f,fTemp/10.0f);
nM = q65_get_alphabet_size(pCodec);
nN = q65_get_codeword_length(pCodec);
nBinsPerTone = 1<<submode;
nBinsPerSymbol = nM*(2+nBinsPerTone);
nBinsPerCodeword = nN*nBinsPerSymbol;
// In the fast fading case , the intrinsic probabilities can be computed only
// if both the noise spectral density and the average Es/No ratio are known.
// Assuming that the energy of a tone is spread, on average, over adjacent bins
// with the weights given in the precomputed fast-fading tables, it turns out
// that the probability that the transmitted tone was tone j when we observed
// the energies En(1)...En(N) is:
// prob(tone j| en1....enN) proportional to exp(sum(En(k,j)*w(k)/No))
// where w(k) = (g(k)*Es/No)/(1 + g(k)*Es/No),
// g(k) are constant coefficients given on the fading tables,
// and En(k,j) denotes the Energy at offset k from the central bin of tone j
// Therefore we:
// 1) compute No - the noise spectral density (or noise variance)
// 2) compute the coefficients w(k) given the coefficient g(k) for the given decodeer Es/No metric
// 3) compute the logarithm of prob(tone j| en1....enN) which is simply = sum(En(k,j)*w(k)/No
// 4) subtract from the logarithm of the probabilities their maximum,
// 5) exponentiate the logarithms
// 6) normalize the result to a probability distribution dividing each value
// by the sum of all of them
// Evaluate the average noise spectral density
fNoiseVar = 0;
for (k=0;k<nBinsPerCodeword;k++)
fNoiseVar += pInputEnergies[k];
fNoiseVar = fNoiseVar/nBinsPerCodeword;
// The noise spectral density so computed includes also the signal power.
// Therefore we scale it accordingly to the Es/No assumed by the decoder
fNoiseVar = fNoiseVar/(1.0f+EsNoMetric/nBinsPerSymbol);
// The value so computed is an overestimate of the true noise spectral density
// by the (unknown) factor (1+Es/No(true)/nBinsPerSymbol)/(1+EsNoMetric/nBinsPerSymbol)
// We will take this factor in account when computing the true Es/No ratio
// store in the pCodec structure for later use in the estimation of the Es/No ratio
pCodec->ffNoiseVar = fNoiseVar;
pCodec->ffEsNoMetric = EsNoMetric;
pCodec->nBinsPerTone = nBinsPerTone;
pCodec->nBinsPerSymbol = nBinsPerSymbol;
pCodec->nWeights = hlen;
weight = pCodec->ffWeight;
// compute the fast fading weights accordingly to the Es/No ratio
// for which we compute the exact intrinsics probabilities
for (k=0;k<hlen;k++) {
fTemp = hptr[k]*EsNoMetric;
weight[k] = fTemp/(1.0f+fTemp)/fNoiseVar;
}
// Compute now the instrinsics as indicated above
pCurSym = pInputEnergies + nM; // point to the central bin of the the first symbol tone
pCurIx = pIntrinsics; // point to the first intrinsic
hhsz = hlen-1; // number of symmetric taps
hlast = 2*hhsz; // index of the central tap
for (n=0;n<nN;n++) { // for each symbol in the message
// compute the logarithm of the tone probability
// as a weighted sum of the pertaining energies
pCurBin = pCurSym -hlen+1; // point to the first bin of the current symbol
maxlogp = 0.0f;
for (k=0;k<nM;k++) { // for each tone in the current symbol
// do a symmetric weighted sum
fTemp = 0.0f;
for (j=0;j<hhsz;j++)
fTemp += weight[j]*(pCurBin[j] + pCurBin[hlast-j]);
fTemp += weight[hhsz]*pCurBin[hhsz];
if (fTemp>maxlogp) // keep track of the max
maxlogp = fTemp;
pCurIx[k]=fTemp;
pCurBin += nBinsPerTone; // next tone
}
// exponentiate and accumulate the normalization constant
sumix = 0.0f;
for (k=0;k<nM;k++) {
fTemp = expf(pCurIx[k]-maxlogp);
pCurIx[k]=fTemp;
sumix +=fTemp;
}
// scale to a probability distribution
sumix = 1.0f/sumix;
for (k=0;k<nM;k++)
pCurIx[k] = pCurIx[k]*sumix;
pCurSym +=nBinsPerSymbol; // next symbol input energies
pCurIx +=nM; // next symbol intrinsics
}
return 1;
}
int q65_esnodb_fastfading(
const q65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies)
{
// Estimate the Es/No ratio of the decoded codeword
int n,j;
int nN, nM, nBinsPerSymbol, nBinsPerTone, nWeights, nTotWeights;
const float *pCurSym, *pCurTone, *pCurBin;
float EsPlusWNo,u, minu, ffNoiseVar, ffEsNoMetric;
if (pCodec==NULL)
return Q65_DECODE_INVPARAMS;
nN = q65_get_codeword_length(pCodec);
nM = q65_get_alphabet_size(pCodec);
nBinsPerTone = pCodec->nBinsPerTone;
nBinsPerSymbol = pCodec->nBinsPerSymbol;
nWeights = pCodec->nWeights;
ffNoiseVar = pCodec->ffNoiseVar;
ffEsNoMetric = pCodec->ffEsNoMetric;
nTotWeights = 2*nWeights-1;
// compute symbols energy (noise included) summing the
// energies pertaining to the decoded symbols in the codeword
EsPlusWNo = 0.0f;
pCurSym = pInputEnergies + nM; // point to first central bin of first symbol tone
for (n=0;n<nN;n++) {
pCurTone = pCurSym + ydec[n]*nBinsPerTone; // point to the central bin of the current decoded symbol
pCurBin = pCurTone - nWeights+1; // point to first bin
// sum over all the pertaining bins
for (j=0;j<nTotWeights;j++)
EsPlusWNo += pCurBin[j];
pCurSym +=nBinsPerSymbol;
}
EsPlusWNo = EsPlusWNo/nN; // Es + nTotWeigths*No
// The noise power ffNoiseVar computed in the q65_intrisics_fastading(...) function
// is not the true noise power as it includes part of the signal energy.
// The true noise variance is:
// No = ffNoiseVar*(1+EsNoMetric/nBinsPerSymbol)/(1+EsNo/nBinsPerSymbol)
// Therefore:
// Es/No = EsPlusWNo/No - W = EsPlusWNo/ffNoiseVar*(1+Es/No/nBinsPerSymbol)/(1+Es/NoMetric/nBinsPerSymbol) - W
// and:
// Es/No*(1-u/nBinsPerSymbol) = u-W or Es/No = (u-W)/(1-u/nBinsPerSymbol)
// where:
// u = EsPlusNo/ffNoiseVar/(1+EsNoMetric/nBinsPerSymbol)
u = EsPlusWNo/(ffNoiseVar*(1+ffEsNoMetric/nBinsPerSymbol));
minu = nTotWeights+0.316f;
if (u<minu)
u = minu; // Limit the minimum Es/No to -5 dB approx.
u = (u-nTotWeights)/(1.0f -u/nBinsPerSymbol); // linear scale Es/No
*pEsNodB = 10.0f*log10f(u);
return 1;
}
int q65_decode(q65_codec_ds *pCodec, int* pDecodedCodeword, int *pDecodedMsg, const float *pIntrinsics, const int *pAPMask, const int *pAPSymbols)
{
const qracode *pQraCode;
float *ix, *ex;
int *px;
int *py;
int nK, nN, nM,nBits;
int rc;
int crc6;
int crc12[2];
if (!pCodec)
return Q65_DECODE_INVPARAMS; // which codec?
pQraCode = pCodec->pQraCode;
ix = pCodec->ix;
ex = pCodec->ex;
nK = _q65_get_message_length(pQraCode);
nN = _q65_get_codeword_length(pQraCode);
nM = pQraCode->M;
nBits = pQraCode->m;
px = pCodec->x;
py = pCodec->y;
// Depuncture intrinsics observations as required by the code type
switch (pQraCode->type) {
case QRATYPE_CRCPUNCTURED:
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
memcpy(ix+(nK+1)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
break;
case QRATYPE_CRCPUNCTURED2:
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
pd_init(PD_ROWADDR(ix,nM,nK+1),pd_uniform(nBits),nM); // crc
memcpy(ix+(nK+2)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
break;
case QRATYPE_NORMAL:
case QRATYPE_CRC:
default:
// no puncturing
memcpy(ix,pIntrinsics,nN*nM*sizeof(float)); // as they are
}
// mask the intrinsics with the available a priori knowledge
if (pAPMask!=NULL)
_q65_mask(pQraCode,ix,pAPMask,pAPSymbols);
// Compute the extrinsic symbols probabilities with the message-passing algorithm
// Stop if the extrinsics information does not converges to unity
// within the given number of iterations
rc = qra_extrinsic( pQraCode,
ex,
ix,
100,
pCodec->qra_v2cmsg,
pCodec->qra_c2vmsg);
if (rc<0)
// failed to converge to a solution
return Q65_DECODE_FAILED;
// decode the information symbols (punctured information symbols included)
qra_mapdecode(pQraCode,px,ex,ix);
// verify CRC match
switch (pQraCode->type) {
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
crc6=_q65_crc6(px,nK); // compute crc-6
if (crc6!=px[nK])
return Q65_DECODE_CRCMISMATCH; // crc doesn't match
break;
case QRATYPE_CRCPUNCTURED2:
_q65_crc12(crc12, px,nK); // compute crc-12
if (crc12[0]!=px[nK] ||
crc12[1]!=px[nK+1])
return Q65_DECODE_CRCMISMATCH; // crc doesn't match
break;
case QRATYPE_NORMAL:
default:
// nothing to check
break;
}
// copy the decoded msg to the user buffer (excluding punctured symbols)
if (pDecodedMsg)
memcpy(pDecodedMsg,px,nK*sizeof(int));
if (pDecodedCodeword==NULL) // user is not interested in it
return rc; // return the number of iterations required to decode
// crc matches therefore we can reconstruct the transmitted codeword
// reencoding the information available in px...
qra_encode(pQraCode, py, px);
// ...and strip the punctured symbols from the codeword
switch (pQraCode->type) {
case QRATYPE_CRCPUNCTURED:
memcpy(pDecodedCodeword,py,nK*sizeof(int));
memcpy(pDecodedCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // puncture crc-6 symbol
break;
case QRATYPE_CRCPUNCTURED2:
memcpy(pDecodedCodeword,py,nK*sizeof(int));
memcpy(pDecodedCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // puncture crc-12 symbols
break;
case QRATYPE_CRC:
case QRATYPE_NORMAL:
default:
memcpy(pDecodedCodeword,py,nN*sizeof(int)); // no puncturing
}
return rc; // return the number of iterations required to decode
}
// helper functions -------------------------------------------------------------
int _q65_get_message_length(const qracode *pCode)
{
// return the actual information message length (in symbols)
// excluding any punctured symbol
int nMsgLength;
switch (pCode->type) {
case QRATYPE_NORMAL:
nMsgLength = pCode->K;
break;
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
// one information symbol of the underlying qra code is reserved for CRC
nMsgLength = pCode->K-1;
break;
case QRATYPE_CRCPUNCTURED2:
// two code information symbols are reserved for CRC
nMsgLength = pCode->K-2;
break;
default:
nMsgLength = -1;
}
return nMsgLength;
}
int _q65_get_codeword_length(const qracode *pCode)
{
// return the actual codeword length (in symbols)
// excluding any punctured symbol
int nCwLength;
switch (pCode->type) {
case QRATYPE_NORMAL:
case QRATYPE_CRC:
// no puncturing
nCwLength = pCode->N;
break;
case QRATYPE_CRCPUNCTURED:
// the CRC symbol is punctured
nCwLength = pCode->N-1;
break;
case QRATYPE_CRCPUNCTURED2:
// the two CRC symbols are punctured
nCwLength = pCode->N-2;
break;
default:
nCwLength = -1;
}
return nCwLength;
}
float _q65_get_code_rate(const qracode *pCode)
{
return 1.0f*_q65_get_message_length(pCode)/_q65_get_codeword_length(pCode);
}
int _q65_get_alphabet_size(const qracode *pCode)
{
return pCode->M;
}
int _q65_get_bits_per_symbol(const qracode *pCode)
{
return pCode->m;
}
static void _q65_mask(const qracode *pcode, float *ix, const int *mask, const int *x)
{
// mask intrinsic information ix with available a priori knowledge
int k,kk, smask;
const int nM=pcode->M;
const int nm=pcode->m;
int nK;
// Exclude from masking the symbols which have been punctured.
// nK is the length of the mask and x arrays, which do
// not include any punctured symbol
nK = _q65_get_message_length(pcode);
// for each symbol set to zero the probability
// of the values which are not allowed by
// the a priori information
for (k=0;k<nK;k++) {
smask = mask[k];
if (smask) {
for (kk=0;kk<nM;kk++)
if (((kk^x[k])&smask)!=0)
// This symbol value is not allowed
// by the AP information
// Set its probability to zero
*(PD_ROWADDR(ix,nM,k)+kk) = 0.f;
// normalize to a probability distribution
pd_norm(PD_ROWADDR(ix,nM,k),nm);
}
}
}
// CRC generation functions
// crc-6 generator polynomial
// g(x) = x^6 + x + 1
#define CRC6_GEN_POL 0x30 // MSB=a0 LSB=a5
// crc-12 generator polynomial
// g(x) = x^12 + x^11 + x^3 + x^2 + x + 1
#define CRC12_GEN_POL 0xF01 // MSB=a0 LSB=a11
// g(x) = x^6 + x^2 + x + 1 (as suggested by Joe. See i.e.: https://users.ece.cmu.edu/~koopman/crc/)
// #define CRC6_GEN_POL 0x38 // MSB=a0 LSB=a5. Simulation results are similar
static int _q65_crc6(int *x, int sz)
{
int k,j,t,sr = 0;
for (k=0;k<sz;k++) {
t = x[k];
for (j=0;j<6;j++) {
if ((t^sr)&0x01)
sr = (sr>>1) ^ CRC6_GEN_POL;
else
sr = (sr>>1);
t>>=1;
}
}
return sr;
}
static void _q65_crc12(int *y, int *x, int sz)
{
int k,j,t,sr = 0;
for (k=0;k<sz;k++) {
t = x[k];
for (j=0;j<6;j++) {
if ((t^sr)&0x01)
sr = (sr>>1) ^ CRC12_GEN_POL;
else
sr = (sr>>1);
t>>=1;
}
}
y[0] = sr&0x3F;
y[1] = (sr>>6);
}

103
lib/qra/q65/q65.h Normal file
View File

@ -0,0 +1,103 @@
// q65.h
// Q65 modes encoding/decoding functions
//
// (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _q65_h
#define _q65_h
#include "qracodes.h"
// Error codes returned by q65_decode(...)
#define Q65_DECODE_INVPARAMS -1
#define Q65_DECODE_FAILED -2
#define Q65_DECODE_CRCMISMATCH -3
// maximum number of weights for the fast-fading metric evaluation
#define Q65_FASTFADING_MAXWEIGTHS 65
typedef struct {
const qracode *pQraCode; // qra code to be used by the codec
float decoderEsNoMetric; // value for which we optimize the decoder metric
int *x; // codec input
int *y; // codec output
float *qra_v2cmsg; // decoder v->c messages
float *qra_c2vmsg; // decoder c->v messages
float *ix; // decoder intrinsic information
float *ex; // decoder extrinsic information
// variables used to compute the intrinsics in the fast-fading case
int nBinsPerTone;
int nBinsPerSymbol;
float ffNoiseVar;
float ffEsNoMetric;
int nWeights;
float ffWeight[Q65_FASTFADING_MAXWEIGTHS];
} q65_codec_ds;
int q65_init(q65_codec_ds *pCodec, const qracode *pQraCode);
void q65_free(q65_codec_ds *pCodec);
int q65_encode(const q65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg);
int q65_intrinsics(q65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies);
int q65_intrinsics_fastfading(q65_codec_ds *pCodec,
float *pIntrinsics, // intrinsic symbol probabilities output
const float *pInputEnergies, // received energies input
const int submode, // submode idx (0=A ... 4=E)
const float B90, // spread bandwidth (90% fractional energy)
const int fadingModel); // 0=Gaussian 1=Lorentzian fade model
int q65_decode(q65_codec_ds *pCodec,
int* pDecodedCodeword,
int *pDecodedMsg,
const float *pIntrinsics,
const int *pAPMask,
const int *pAPSymbols);
int q65_esnodb(const q65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies);
int q65_esnodb_fastfading(
const q65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies);
// helper functions
#define q65_get_message_length(pCodec) _q65_get_message_length((pCodec)->pQraCode)
#define q65_get_codeword_length(pCodec) _q65_get_codeword_length((pCodec)->pQraCode)
#define q65_get_code_rate(pCodec) _q65_get_code_rate((pCodec)->pQraCode)
#define q65_get_alphabet_size(pCodec) _q65_get_alphabet_size((pCodec)->pQraCode)
#define q65_get_bits_per_symbol(pCodec) _q65_get_bits_per_symbol((pCodec)->pQraCode)
// internally used but made public for the above defines
int _q65_get_message_length(const qracode *pCode);
int _q65_get_codeword_length(const qracode *pCode);
float _q65_get_code_rate(const qracode *pCode);
void _q65_mask(const qracode *pcode, float *ix, const int *mask, const int *x);
int _q65_get_alphabet_size(const qracode *pCode);
int _q65_get_bits_per_symbol(const qracode *pCode);
#endif // _qra65_h

20
lib/qra/q65/q65.sln Normal file
View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 10.00
# Visual Studio 2008
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "q65", "q65.vcproj", "{933A58F6-199B-4723-ACFE-3013E6DD9D0A}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{933A58F6-199B-4723-ACFE-3013E6DD9D0A}.Debug|Win32.ActiveCfg = Debug|Win32
{933A58F6-199B-4723-ACFE-3013E6DD9D0A}.Debug|Win32.Build.0 = Debug|Win32
{933A58F6-199B-4723-ACFE-3013E6DD9D0A}.Release|Win32.ActiveCfg = Release|Win32
{933A58F6-199B-4723-ACFE-3013E6DD9D0A}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

255
lib/qra/q65/q65.vcproj Normal file
View File

@ -0,0 +1,255 @@
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="9,00"
Name="q65"
ProjectGUID="{933A58F6-199B-4723-ACFE-3013E6DD9D0A}"
RootNamespace="qracodes"
TargetFrameworkVersion="196613"
>
<Platforms>
<Platform
Name="Win32"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="0"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
WarningLevel="3"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
GenerateDebugInformation="true"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="0"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="3"
EnableIntrinsicFunctions="true"
FavorSizeOrSpeed="1"
OmitFramePointers="true"
EnableFiberSafeOptimizations="true"
PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
ExceptionHandling="0"
RuntimeLibrary="0"
StructMemberAlignment="4"
BufferSecurityCheck="false"
EnableFunctionLevelLinking="true"
EnableEnhancedInstructionSet="2"
FloatingPointModel="2"
WarningLevel="3"
DebugInformationFormat="0"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="1"
GenerateManifest="false"
GenerateDebugInformation="false"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Source Files"
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath=".\ebnovalues.txt"
>
</File>
<File
RelativePath=".\fadengauss.c"
>
</File>
<File
RelativePath=".\fadenlorentz.c"
>
</File>
<File
RelativePath=".\normrnd.c"
>
</File>
<File
RelativePath=".\npfwht.c"
>
</File>
<File
RelativePath=".\pdmath.c"
>
</File>
<File
RelativePath=".\q65.c"
>
</File>
<File
RelativePath=".\q65test.c"
>
</File>
<File
RelativePath=".\qra15_65_64_irr_e23.c"
>
</File>
<File
RelativePath=".\qracodes.c"
>
</File>
</Filter>
<Filter
Name="Header Files"
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
<File
RelativePath=".\normrnd.h"
>
</File>
<File
RelativePath=".\npfwht.h"
>
</File>
<File
RelativePath=".\pdmath.h"
>
</File>
<File
RelativePath=".\q65.h"
>
</File>
<File
RelativePath=".\qra15_65_64_irr_e23.h"
>
</File>
<File
RelativePath=".\qracodes.h"
>
</File>
</Filter>
<Filter
Name="Resource Files"
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
>
</Filter>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

910
lib/qra/q65/q65test.c Normal file
View File

@ -0,0 +1,910 @@
// q65test.c
// Word Error Rate test example for the Q65 mode
// Multi-threaded simulator version
// (c) 2020 - Nico Palermo, IV3NWV
//
//
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// Dependencies:
// q65test.c - this file
// normrnd.c/.h - random gaussian number generator
// npfwht.c/.h - Fast Walsh-Hadamard Transforms
// pdmath.c/.h - Elementary math on probability distributions
// qra15_65_64_irr_e23.c/.h - Tables for the QRA(15,65) irregular RA code used by Q65
// qracodes.c/.h - QRA codes encoding/decoding functions
// fadengauss.c - fading coefficients tables for gaussian shaped fast fading channels
// fadenlorenz.c - fading coefficients tables for lorenzian shaped fast fading channels
//
// -------------------------------------------------------------------------------
//
// This is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
//
// ------------------------------------------------------------------------------
// OS dependent defines and includes --------------------------------------------
#if _WIN32 // note the underscore: without it, it's not msdn official!
// Windows (x64 and x86)
#define _CRT_SECURE_NO_WARNINGS // we don't need warnings for sprintf/fopen function usage
#include <windows.h> // required only for GetTickCount(...)
#include <process.h> // _beginthread
#endif
#if defined(__linux__)
// remove unwanted macros
#define __cdecl
// implements Windows API
#include <time.h>
unsigned int GetTickCount(void) {
struct timespec ts;
unsigned int theTick = 0U;
clock_gettime( CLOCK_REALTIME, &ts );
theTick = ts.tv_nsec / 1000000;
theTick += ts.tv_sec * 1000;
return theTick;
}
// Convert Windows millisecond sleep
//
// VOID WINAPI Sleep(_In_ DWORD dwMilliseconds);
//
// to Posix usleep (in microseconds)
//
// int usleep(useconds_t usec);
//
#include <unistd.h>
#define Sleep(x) usleep(x*1000)
#endif
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
#include <pthread.h>
#endif
#if __APPLE__
#endif
#include <stdlib.h>
#include <stdio.h>
#include "qracodes.h" // basic qra encoding/decoding functions
#include "normrnd.h" // gaussian numbers generator
#include "pdmath.h" // operations on probability distributions
#include "qra15_65_64_irr_e23.h" // QRA code used by Q65
#include "q65.h"
#define Q65_TS 0.640f // Q65 symbol time interval in seconds
#define Q65_REFBW 2500.0f // reference bandwidth in Hz for SNR estimates
// -----------------------------------------------------------------------------------
#define NTHREADS_MAX 160 // if you have some big enterprise hardware
// channel types
#define CHANNEL_AWGN 0
#define CHANNEL_RAYLEIGH 1
#define CHANNEL_FASTFADING 2
// amount of a-priori information provided to the decoder
#define AP_NONE 0
#define AP_MYCALL 1
#define AP_HISCALL 2
#define AP_BOTHCALL 3
#define AP_FULL 4
#define AP_LAST AP_FULL
const char ap_str[AP_LAST+1][16] = {
"None",
"32 bit",
"32 bit",
"62 bit",
"78 bit",
};
const char fnameout_sfx[AP_LAST+1][64] = {
"-ap00.txt",
"-ap32m.txt",
"-ap32h.txt",
"-ap62.txt",
"-ap78.txt"
};
const char fnameout_pfx[3][64] = {
"wer-awgn-",
"wer-rayl-",
"wer-ff-"
};
// AP masks are computed assuming that the source message has been packed in 13 symbols s[0]..[s12]
// in a little indian format, that's to say:
// s[0] = {src5 src4 src3 src2 src1 src0}
// s[1] = {src11 src10 src9 src8 src7 src6}
// ...
// s[12]= {src78 src77 src76 src75 src74 src73}
//
// where srcj is the j-th bit of the source message.
//
// It is also assumed that the source message is as indicated by the protocol specification of wsjt-x
// structured messages. src78 should be always set to a value known by the decoder (and masked as an AP bit)
// With this convention the field i3 of the structured message is mapped to bits src77 src76 src75,
// that's to say to the 3rd,4th and 5th bit of s[12].
// Therefore, if i3 is known in advance, since src78 is always known,
// the AP mask for s[12] is 0x3C (4 most significant bits of s[12] are known)
const int ap_masks_q65[AP_LAST+1][13] = {
// AP0 Mask
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
// Mask first(c28 r1) .... i3 src78 (AP32my MyCall ? ? StdMsg)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3C},
// Mask second(c28 r1) .... i3 src78 (AP32his ? HisCall ? StdMsg)
{ 0x00, 0x00, 0x00, 0x00, 0x20, 0x3F, 0x3F, 0x3F, 0x3F, 0x0F, 0x00, 0x00, 0x3C},
// Mask (c28 r1 c28 r1) ... i3 src78 (AP62 MyCall HisCall ? StdMsg)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x0F, 0x00, 0x00, 0x3C},
// Mask All (c28 r1 c28 r1 R g15 StdMsg src78) (AP78)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F},
};
int verbose = 0;
void printword(char *msg, int *x, int size)
{
int k;
printf("\n%s ",msg);
for (k=0;k<size;k++)
printf("%02hx ",x[k]);
printf("\n");
}
typedef struct {
int channel_type;
float EbNodB;
volatile int nt;
volatile int nerrs;
volatile int nerrsu;
volatile int ncrcwrong;
volatile int stop;
volatile int done;
int ap_index; // index to the a priori knowledge mask
const qracode *pcode; // pointer to the code descriptor
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
pthread_t thread;
#endif
} wer_test_ds;
typedef void( __cdecl *pwer_test_thread)(wer_test_ds*);
void wer_test_thread_awgnrayl(wer_test_ds *pdata)
{
// Thread for the AWGN/Rayleigh channel types
int nt = 0; // transmitted codewords
int nerrs = 0; // total number of errors
int ncrcwrong = 0; // number of decodes with wrong crc
q65_codec_ds codec;
int rc, k;
int nK, nN, nM, nm, nSamples;
int *x, *y, *xdec, *ydec;
const int *apMask;
float R;
float *rsquared, *pIntrinsics;
float EsNodBestimated;
// for channel simulation
const float No = 1.0f; // noise spectral density
const float sigma = sqrtf(No/2.0f); // std dev of I/Q noise components
const float sigmach = sqrtf(1/2.0f); // std dev of I/Q channel gains (Rayleigh channel)
float EbNo, EsNo, Es, A;
float *rp, *rq, *chp, *chq;
int channel_type = pdata->channel_type;
rc = q65_init(&codec,pdata->pcode);
if (rc<0) {
printf("error in qra65_init\n");
goto term_thread;
}
nK = q65_get_message_length(&codec);
nN = q65_get_codeword_length(&codec);
nM = q65_get_alphabet_size(&codec);
nm = q65_get_bits_per_symbol(&codec);
R = q65_get_code_rate(&codec);
nSamples = nN*nM;
x = (int*)malloc(nK*sizeof(int));
xdec = (int*)malloc(nK*sizeof(int));
y = (int*)malloc(nN*sizeof(int));
ydec = (int*)malloc(nN*sizeof(int));
rsquared = (float*)malloc(nSamples*sizeof(float));
pIntrinsics = (float*)malloc(nSamples*sizeof(float));
// sets the AP mask to be used for this simulation
if (pdata->ap_index==AP_NONE)
apMask = NULL; // we simply avoid masking if ap-index specifies no AP
else
apMask = ap_masks_q65[pdata->ap_index];
// Channel simulation variables --------------------
rp = (float*)malloc(nSamples*sizeof(float));
rq = (float*)malloc(nSamples*sizeof(float));
chp = (float*)malloc(nN*sizeof(float));
chq = (float*)malloc(nN*sizeof(float));
EbNo = (float)powf(10,pdata->EbNodB/10);
EsNo = 1.0f*nm*R*EbNo;
Es = EsNo*No;
A = (float)sqrt(Es);
// Generate a (meaningless) test message
for (k=0;k<nK;k++)
x[k] = k%nM;
// printword("x", x,nK);
// Encode
q65_encode(&codec,y,x);
// printword("y", y,nN);
// Simulate the channel and decode
// as long as we are stopped by our caller
while (pdata->stop==0) {
// Channel simulation --------------------------------------------
// Generate AWGN noise
normrnd_s(rp,nSamples,0,sigma);
normrnd_s(rq,nSamples,0,sigma);
if (channel_type == CHANNEL_AWGN)
// add symbol amplitudes
for (k=0;k<nN;k++)
rp[k*nM+y[k]]+=A;
else if (channel_type == CHANNEL_RAYLEIGH) {
// generate Rayleigh distributed taps
normrnd_s(chp,nN,0,sigmach);
normrnd_s(chq,nN,0,sigmach);
// add Rayleigh distributed symbol amplitudes
for (k=0;k<nN;k++) {
rp[k*nM+y[k]]+=A*chp[k];
rq[k*nM+y[k]]+=A*chq[k];
}
}
else {
printf("Wrong channel_type %d\n",channel_type);
goto term_thread;
}
// Compute the received energies
for (k=0;k<nSamples;k++)
rsquared[k] = rp[k]*rp[k] + rq[k]*rq[k];
// Channel simulation end --------------------------------------------
// DECODING ----------------------------------------------------------
// Compute intrinsics probabilities from the observed energies
rc = q65_intrinsics(&codec,pIntrinsics,rsquared);
if (rc<0) {
printf("Error in qra65_intrinsics: rc=%d\n",rc);
goto term_thread;
}
// Decode with the given AP information
// This call can be repeated for any desierd apMask
// until we manage to decode the message
rc = q65_decode(&codec,ydec,xdec, pIntrinsics, apMask,x);
switch (rc) {
case -1:
printf("Error in qra65_decode: rc=%d\n",rc);
goto term_thread;
case Q65_DECODE_FAILED:
// decoder failed to converge
nerrs++;
break;
case Q65_DECODE_CRCMISMATCH:
// decoder converged but we found a bad crc
nerrs++;
ncrcwrong++;
break;
}
// compute SNR from decoded codeword ydec and observed energies
if (rc>0 && verbose==1) {
float EbNodBestimated;
float SNRdBestimated;
q65_esnodb(&codec, &EsNodBestimated, ydec,rsquared);
EbNodBestimated = EsNodBestimated -10.0f*log10f(R*nm);
SNRdBestimated = EsNodBestimated -10.0f*log10f(Q65_TS*Q65_REFBW);
printf("\nEstimated Eb/No=%5.1fdB SNR2500=%5.1fdB",
EbNodBestimated,
SNRdBestimated);
}
nt = nt+1;
pdata->nt=nt;
pdata->nerrs=nerrs;
pdata->ncrcwrong = ncrcwrong;
}
term_thread:
free(x);
free(xdec);
free(y);
free(ydec);
free(rsquared);
free(pIntrinsics);
free(rp);
free(rq);
free(chp);
free(chq);
q65_free(&codec);
// signal the calling thread we are quitting
pdata->done=1;
#if _WIN32
_endthread();
#endif
}
void wer_test_thread_ff(wer_test_ds *pdata)
{
// We don't do a realistic simulation of the fading-channel here
// If required give a look to the simulator used in the QRA64 mode.
// For the purpose of testing the formal correctness of the Q65 decoder
// fast-fadind routines here we simulate the channel as a Rayleigh channel
// with no frequency spread but use the q65....-fastfading routines
// to check that they produce correct results also in this case.
const int submode = 2; // Assume that we are using the Q65C tone spacing
const float B90 = 4.0f; // Configure the Q65 fast-fading decoder for a the given freq. spread
const int fadingModel = 1; // Assume a lorenzian frequency spread
int nt = 0; // transmitted codewords
int nerrs = 0; // total number of errors
int ncrcwrong = 0; // number of decodes with wrong crc
q65_codec_ds codec;
int rc, k;
int nK, nN, nM, nm, nSamples;
int *x, *y, *xdec, *ydec;
const int *apMask;
float R;
float *rsquared, *pIntrinsics;
float EsNodBestimated;
int nBinsPerTone, nBinsPerSymbol;
// for channel simulation
const float No = 1.0f; // noise spectral density
const float sigma = sqrtf(No/2.0f); // std dev of I/Q noise components
const float sigmach = sqrtf(1/2.0f); // std dev of I/Q channel gains (Rayleigh channel)
float EbNo, EsNo, Es, A;
float *rp, *rq, *chp, *chq;
int channel_type = pdata->channel_type;
rc = q65_init(&codec,pdata->pcode);
if (rc<0) {
printf("error in q65_init\n");
goto term_thread;
}
nK = q65_get_message_length(&codec);
nN = q65_get_codeword_length(&codec);
nM = q65_get_alphabet_size(&codec);
nm = q65_get_bits_per_symbol(&codec);
R = q65_get_code_rate(&codec);
nBinsPerTone = 1<<submode;
nBinsPerSymbol = nM*(2+nBinsPerTone);
nSamples = nN*nBinsPerSymbol;
// sets the AP mask to be used for this simulation
if (pdata->ap_index==AP_NONE)
apMask = NULL; // we simply avoid masking if ap-index specifies no AP
else
apMask = ap_masks_q65[pdata->ap_index];
x = (int*)malloc(nK*sizeof(int));
xdec = (int*)malloc(nK*sizeof(int));
y = (int*)malloc(nN*sizeof(int));
ydec = (int*)malloc(nN*sizeof(int));
rsquared = (float*)malloc(nSamples*sizeof(float));
pIntrinsics = (float*)malloc(nN*nM*sizeof(float));
// Channel simulation variables --------------------
rp = (float*)malloc(nSamples*sizeof(float));
rq = (float*)malloc(nSamples*sizeof(float));
chp = (float*)malloc(nN*sizeof(float));
chq = (float*)malloc(nN*sizeof(float));
EbNo = (float)powf(10,pdata->EbNodB/10);
EsNo = 1.0f*nm*R*EbNo;
Es = EsNo*No;
A = (float)sqrt(Es);
// -------------------------------------------------
// generate a test message
for (k=0;k<nK;k++)
x[k] = k%nM;
// printword("x", x,nK);
// encode
q65_encode(&codec,y,x);
// printword("y", y,nN);
while (pdata->stop==0) {
// Channel simulation --------------------------------------------
// generate AWGN noise
normrnd_s(rp,nSamples,0,sigma);
normrnd_s(rq,nSamples,0,sigma);
// Generate Rayleigh distributed symbol amplitudes
normrnd_s(chp,nN,0,sigmach);
normrnd_s(chq,nN,0,sigmach);
// Don't simulate a really frequency spreaded signal.
// Just place the tones in the appropriate central bins
// ot the received signal
for (k=0;k<nN;k++) {
rp[k*nBinsPerSymbol+y[k]*nBinsPerTone+nM]+=A*chp[k];
rq[k*nBinsPerSymbol+y[k]*nBinsPerTone+nM]+=A*chq[k];
}
// compute the received energies
for (k=0;k<nSamples;k++)
rsquared[k] = rp[k]*rp[k] + rq[k]*rq[k];
// Channel simulation end --------------------------------------------
// compute intrinsics probabilities from the observed energies
// using the fast-fading version
rc = q65_intrinsics_fastfading(&codec,pIntrinsics,rsquared,submode,B90,fadingModel);
if (rc<0) {
printf("Error in q65_intrinsics: rc=%d\n",rc);
goto term_thread;
}
// decode with the given AP information (eventually with different apMasks and apSymbols)
rc = q65_decode(&codec,ydec,xdec, pIntrinsics, apMask,x);
switch (rc) {
case -1:
printf("Error in q65_decode: rc=%d\n",rc);
goto term_thread;
case Q65_DECODE_FAILED:
// decoder failed to converge
nerrs++;
break;
case Q65_DECODE_CRCMISMATCH:
// decoder converged but we found a bad crc
nerrs++;
ncrcwrong++;
break;
}
// compute SNR from decoded codeword ydec and observed energies rsquared
if (rc>0 && verbose==1) {
float EbNodBestimated;
float SNRdBestimated;
// use the fastfading version
q65_esnodb_fastfading(&codec, &EsNodBestimated, ydec,rsquared);
EbNodBestimated = EsNodBestimated -10.0f*log10f(R*nm);
SNRdBestimated = EsNodBestimated -10.0f*log10f(Q65_TS*Q65_REFBW);
printf("\nEstimated Eb/No=%5.1fdB SNR2500=%5.1fdB",
EbNodBestimated,
SNRdBestimated);
}
nt = nt+1;
pdata->nt=nt;
pdata->nerrs=nerrs;
pdata->ncrcwrong = ncrcwrong;
}
term_thread:
free(x);
free(xdec);
free(y);
free(ydec);
free(rsquared);
free(pIntrinsics);
free(rp);
free(rq);
free(chp);
free(chq);
q65_free(&codec);
// signal the calling thread we are quitting
pdata->done=1;
#if _WIN32
_endthread();
#endif
}
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
void *wer_test_pthread_awgnrayl(void *p)
{
wer_test_thread_awgnrayl((wer_test_ds *)p);
return 0;
}
void *wer_test_pthread_ff(void *p)
{
wer_test_thread_ff((wer_test_ds *)p);
return 0;
}
#endif
int wer_test_proc(const qracode *pcode, int nthreads, int chtype, int ap_index, float *EbNodB, int *nerrstgt, int nitems)
{
int k,j,nt,nerrs,nerrsu,ncrcwrong,nd;
int cini,cend;
char fnameout[128];
FILE *fout;
wer_test_ds wt[NTHREADS_MAX];
float pe,peu,avgt;
if (nthreads>NTHREADS_MAX) {
printf("Error: nthreads should be <=%d\n",NTHREADS_MAX);
return -1;
}
sprintf(fnameout,"%s%s%s",
fnameout_pfx[chtype],
pcode->name,
fnameout_sfx[ap_index]);
fout = fopen(fnameout,"w");
fprintf(fout,"#Code Name: %s\n",pcode->name);
fprintf(fout,"#ChannelType (0=AWGN,1=Rayleigh,2=Fast-Fading)\n#Eb/No (dB)\n#Transmitted Codewords\n#Errors\n#CRC Errors\n#Undetected\n#Avg dec. time (ms)\n#WER\n#UER\n");
printf("\nTesting the code %s\nSimulation data will be saved to %s\n",
pcode->name,
fnameout);
fflush (stdout);
// init fixed thread parameters and preallocate buffers
for (j=0;j<nthreads;j++) {
wt[j].channel_type=chtype;
wt[j].ap_index = ap_index;
wt[j].pcode = pcode;
}
for (k=0;k<nitems;k++) {
printf("\nTesting at Eb/No=%4.2f dB...",EbNodB[k]);
fflush (stdout);
for (j=0;j<nthreads;j++) {
wt[j].EbNodB=EbNodB[k];
wt[j].nt=0;
wt[j].nerrs=0;
wt[j].nerrsu=0;
wt[j].ncrcwrong=0;
wt[j].done = 0;
wt[j].stop = 0;
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
if (chtype==CHANNEL_FASTFADING) {
if (pthread_create (&wt[j].thread, 0, wer_test_pthread_ff, &wt[j])) {
perror ("Creating thread: ");
exit (255);
}
}
else {
if (pthread_create (&wt[j].thread, 0, wer_test_pthread_awgnrayl, &wt[j])) {
perror ("Creating thread: ");
exit (255);
}
}
#else
if (chtype==CHANNEL_FASTFADING)
_beginthread((void*)(void*)wer_test_thread_ff,0,&wt[j]);
else
_beginthread((void*)(void*)wer_test_thread_awgnrayl,0,&wt[j]);
#endif
}
nd = 0;
cini = GetTickCount();
while (1) {
// count errors
nerrs = 0;
for (j=0;j<nthreads;j++)
nerrs += wt[j].nerrs;
// stop the working threads
// if the number of errors at this Eb/No value
// reached the target value
if (nerrs>=nerrstgt[k]) {
for (j=0;j<nthreads;j++)
wt[j].stop = 1;
break;
}
else { // continue with the simulation
Sleep(2);
nd = (nd+1)%100;
if (nd==0) {
if (verbose==0) {
printf(".");
fflush (stdout);
}
}
}
}
cend = GetTickCount();
// wait for the working threads to exit
for (j=0;j<nthreads;j++)
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
{
void *rc;
if (pthread_join (wt[j].thread, &rc)) {
perror ("Waiting working threads to exit");
exit (255);
}
}
#else
while(wt[j].done==0)
Sleep(1);
#endif
printf("\n");
fflush (stdout);
// compute the total number of transmitted codewords
// the total number of errors and the total number of undetected errors
nt = 0;
nerrs =0;
nerrsu = 0;
ncrcwrong = 0;
for (j=0;j<nthreads;j++) {
nt += wt[j].nt;
nerrs += wt[j].nerrs;
nerrsu += wt[j].nerrsu;
ncrcwrong += wt[j].ncrcwrong;
}
pe = 1.0f*nerrs/nt; // word error rate
avgt = 1.0f*(cend-cini)/nt; // average time per decode (ms)
peu = 1.0f*ncrcwrong/4095/nt;
printf("Elapsed Time=%6.1fs (%5.2fms/word)\nTransmitted=%8d Errors=%6d CRCErrors=%3d Undet=%3d - WER=%8.2e UER=%8.2e \n",
0.001f*(cend-cini),
avgt, nt, nerrs, ncrcwrong, nerrsu, pe, peu);
fflush (stdout);
// save simulation data to output file
fprintf(fout,"%01d %6.2f %6d %6d %6d %6d %6.2f %8.2e %8.2e\n",
chtype,
EbNodB[k],
nt,
nerrs,
ncrcwrong,
nerrsu,
avgt,
pe,
peu);
fflush(fout);
}
fclose(fout);
return 0;
}
const qracode *codetotest[] = {
&qra15_65_64_irr_e23,
};
void syntax(void)
{
printf("\nQ65 Word Error Rate Simulator\n");
printf("2020, Nico Palermo - IV3NWV\n\n");
printf("Syntax: q65test [-q<code_index>] [-t<threads>] [-c<ch_type>] [-a<ap_index>] [-f<fnamein>[-h]\n");
printf("Options: \n");
printf(" -q<code_index>: code to simulate. 0=qra_15_65_64_irr_e23 (default)\n");
printf(" -t<threads> : number of threads to be used for the simulation [1..24]\n");
printf(" (default=8)\n");
printf(" -c<ch_type> : channel_type. 0=AWGN 1=Rayleigh 2=Fast-Fading\n");
printf(" (default=AWGN)\n");
printf(" -a<ap_index> : amount of a-priori information provided to decoder. \n");
printf(" 0= No a-priori (default)\n");
printf(" 1= 32 bit (Mycall)\n");
printf(" 2= 32 bit (Hiscall)\n");
printf(" 3= 62 bit (Bothcalls\n");
printf(" 4= 78 bit (full AP)\n");
printf(" -v : verbose (output SNRs of decoded messages\n");
printf(" -f<fnamein> : name of the file containing the Eb/No values to be simulated\n");
printf(" (default=ebnovalues.txt)\n");
printf(" This file should contain lines in this format:\n");
printf(" # Eb/No(dB) Target Errors\n");
printf(" 0.1 5000\n");
printf(" 0.6 5000\n");
printf(" 1.1 1000\n");
printf(" 1.6 1000\n");
printf(" ...\n");
printf(" (lines beginning with a # are treated as comments\n\n");
}
#define SIM_POINTS_MAX 20
int main(int argc, char* argv[])
{
float EbNodB[SIM_POINTS_MAX];
int nerrstgt[SIM_POINTS_MAX];
FILE *fin;
char fnamein[128]= "ebnovalues.txt";
char buf[128];
int nitems = 0;
int code_idx = 0;
int nthreads = 8;
int ch_type = CHANNEL_AWGN;
int ap_index = AP_NONE;
// parse command line
while(--argc) {
argv++;
if (strncmp(*argv,"-h",2)==0) {
syntax();
return 0;
}
else
if (strncmp(*argv,"-q",2)==0) {
code_idx = (int)atoi((*argv)+2);
if (code_idx>7) {
printf("Invalid code index\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-t",2)==0) {
nthreads = (int)atoi((*argv)+2);
// printf("nthreads = %d\n",nthreads);
if (nthreads>NTHREADS_MAX) {
printf("Invalid number of threads\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-c",2)==0) {
ch_type = (int)atoi((*argv)+2);
if (ch_type>CHANNEL_FASTFADING) {
printf("Invalid channel type\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-a",2)==0) {
ap_index = (int)atoi((*argv)+2);
if (ap_index>AP_LAST) {
printf("Invalid a-priori information index\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-f",2)==0) {
strncpy(fnamein,(*argv)+2,127);
}
else
if (strncmp(*argv,"-h",2)==0) {
syntax();
return -1;
}
else
if (strncmp(*argv,"-v",2)==0)
verbose = TRUE;
else {
printf("Invalid option\n");
syntax();
return -1;
}
}
// parse points to be simulated from the input file
fin = fopen(fnamein,"r");
if (!fin) {
printf("Can't open file: %s\n",fnamein);
syntax();
return -1;
}
while (fgets(buf,128,fin)!=0)
if (*buf=='#' || *buf=='\n' )
continue;
else
if (nitems==SIM_POINTS_MAX)
break;
else
if (sscanf(buf,"%f %u",&EbNodB[nitems],&nerrstgt[nitems])!=2) {
printf("Invalid input file format\n");
syntax();
return -1;
}
else
nitems++;
fclose(fin);
if (nitems==0) {
printf("No Eb/No point specified in file %s\n",fnamein);
syntax();
return -1;
}
printf("\nQ65 Word Error Rate Simulator\n");
printf("(c) 2016-2020, Nico Palermo - IV3NWV\n\n");
printf("Nthreads = %d\n",nthreads);
switch(ch_type) {
case CHANNEL_AWGN:
printf("Channel = AWGN\n");
break;
case CHANNEL_RAYLEIGH:
printf("Channel = Rayleigh\n");
break;
case CHANNEL_FASTFADING:
printf("Channel = Fast Fading\n");
break;
}
printf("Codename = %s\n",codetotest[code_idx]->name);
printf("A-priori = %s\n",ap_str[ap_index]);
printf("Eb/No input file = %s\n\n",fnamein);
wer_test_proc(codetotest[code_idx], nthreads, ch_type, ap_index, EbNodB, nerrstgt, nitems);
printf("\n\n\n");
return 0;
}

View File

@ -0,0 +1,557 @@
// qra15_65_64_irr_e23.c
// Encoding/Decoding tables for Q-ary RA code (15,65) over GF(64)
// Code Name: qra15_65_64_irr_e23
// (15,65) RA Code over GF(64)
// (c) 2020 - Nico Palermo - IV3NWV - Microtelecom Srl, Italy
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include "qra15_65_64_irr_e23.h"
// File generated by npiwnarsavehc.m
#define qra_K 15 // number of information symbols
#define qra_N 65 // codeword length in symbols
#define qra_m 6 // bits/symbol
#define qra_M 64 // Symbol alphabet cardinality
#define qra_a 1 // grouping factor
#define qra_NC 50 // number of check symbols (N-K)
// Defines used by the message passing decoder --------
#define qra_V 65 // number of variables in the code graph (N)
#define qra_C 116 // number of factors in the code graph (N +(N-K)+1)
#define qra_NMSG 216 // number of msgs in the code graph
#define qra_MAXVDEG 5 // maximum variable degree
#define qra_MAXCDEG 3 // maximum factor degree
#define qra_R 0.23077f // code rate (K/N)
#define CODE_NAME "qra15_65_64_irr_e23" // code name
// table of the systematic symbols indexes in the accumulator chain
static const int qra_acc_input_idx[qra_NC+1] = {
13, 1, 3, 4, 8, 12, 9, 14, 10, 5,
0, 7, 1, 11, 8, 9, 12, 6, 3, 10,
7, 5, 2, 13, 12, 4, 8, 0, 1, 11,
2, 9, 14, 5, 6, 13, 7, 12, 11, 2,
9, 0, 10, 4, 7, 14, 8, 11, 3, 6,
10
};
// table of the systematic symbols weight logarithms over GF(M)
static const int qra_acc_input_wlog[qra_NC+1] = {
0, 14, 0, 0, 13, 37, 0, 27, 56, 62,
29, 0, 52, 34, 62, 4, 3, 22, 25, 0,
22, 0, 20, 10, 0, 43, 53, 60, 0, 0,
0, 62, 0, 5, 0, 61, 36, 31, 61, 59,
10, 0, 29, 39, 25, 18, 0, 14, 11, 50,
17
};
// table of the logarithms of the elements of GF(M) (log(0) never used)
static const int qra_log[qra_M] = {
-1, 0, 1, 6, 2, 12, 7, 26, 3, 32,
13, 35, 8, 48, 27, 18, 4, 24, 33, 16,
14, 52, 36, 54, 9, 45, 49, 38, 28, 41,
19, 56, 5, 62, 25, 11, 34, 31, 17, 47,
15, 23, 53, 51, 37, 44, 55, 40, 10, 61,
46, 30, 50, 22, 39, 43, 29, 60, 42, 21,
20, 59, 57, 58
};
// table of GF(M) elements given their logarithm
static const int qra_exp[qra_M-1] = {
1, 2, 4, 8, 16, 32, 3, 6, 12, 24,
48, 35, 5, 10, 20, 40, 19, 38, 15, 30,
60, 59, 53, 41, 17, 34, 7, 14, 28, 56,
51, 37, 9, 18, 36, 11, 22, 44, 27, 54,
47, 29, 58, 55, 45, 25, 50, 39, 13, 26,
52, 43, 21, 42, 23, 46, 31, 62, 63, 61,
57, 49, 33
};
// table of the messages weight logarithms over GF(M)
static const int qra_msgw[qra_NMSG] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 14, 0, 0, 13,
37, 0, 27, 56, 62, 29, 0, 52, 34, 62,
4, 3, 22, 25, 0, 22, 0, 20, 10, 0,
43, 53, 60, 0, 0, 0, 62, 0, 5, 0,
61, 36, 31, 61, 59, 10, 0, 29, 39, 25,
18, 0, 14, 11, 50, 17, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0
};
// table of the degrees of the variable nodes
static const int qra_vdeg[qra_V] = {
4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 4, 4, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3
};
// table of the degrees of the factor nodes
static const int qra_cdeg[qra_C] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 2
};
// table (uncompressed) of the v->c message indexes (-1=unused entry)
static const int qra_v2cmidx[qra_V*qra_MAXVDEG] = {
0, 75, 92, 106, -1,
1, 66, 77, 93, -1,
2, 87, 95, 104, -1,
3, 67, 83, 113, -1,
4, 68, 90, 108, -1,
5, 74, 86, 98, -1,
6, 82, 99, 114, -1,
7, 76, 85, 101, 109,
8, 69, 79, 91, 111,
9, 71, 80, 96, 105,
10, 73, 84, 107, 115,
11, 78, 94, 103, 112,
12, 70, 81, 89, 102,
13, 65, 88, 100, -1,
14, 72, 97, 110, -1,
15, 116, 117, -1, -1,
16, 118, 119, -1, -1,
17, 120, 121, -1, -1,
18, 122, 123, -1, -1,
19, 124, 125, -1, -1,
20, 126, 127, -1, -1,
21, 128, 129, -1, -1,
22, 130, 131, -1, -1,
23, 132, 133, -1, -1,
24, 134, 135, -1, -1,
25, 136, 137, -1, -1,
26, 138, 139, -1, -1,
27, 140, 141, -1, -1,
28, 142, 143, -1, -1,
29, 144, 145, -1, -1,
30, 146, 147, -1, -1,
31, 148, 149, -1, -1,
32, 150, 151, -1, -1,
33, 152, 153, -1, -1,
34, 154, 155, -1, -1,
35, 156, 157, -1, -1,
36, 158, 159, -1, -1,
37, 160, 161, -1, -1,
38, 162, 163, -1, -1,
39, 164, 165, -1, -1,
40, 166, 167, -1, -1,
41, 168, 169, -1, -1,
42, 170, 171, -1, -1,
43, 172, 173, -1, -1,
44, 174, 175, -1, -1,
45, 176, 177, -1, -1,
46, 178, 179, -1, -1,
47, 180, 181, -1, -1,
48, 182, 183, -1, -1,
49, 184, 185, -1, -1,
50, 186, 187, -1, -1,
51, 188, 189, -1, -1,
52, 190, 191, -1, -1,
53, 192, 193, -1, -1,
54, 194, 195, -1, -1,
55, 196, 197, -1, -1,
56, 198, 199, -1, -1,
57, 200, 201, -1, -1,
58, 202, 203, -1, -1,
59, 204, 205, -1, -1,
60, 206, 207, -1, -1,
61, 208, 209, -1, -1,
62, 210, 211, -1, -1,
63, 212, 213, -1, -1,
64, 214, 215, -1, -1
};
// table (uncompressed) of the c->v message indexes (-1=unused entry)
static const int qra_c2vmidx[qra_C*qra_MAXCDEG] = {
0, -1, -1, 1, -1, -1, 2, -1, -1, 3, -1, -1,
4, -1, -1, 5, -1, -1, 6, -1, -1, 7, -1, -1,
8, -1, -1, 9, -1, -1, 10, -1, -1, 11, -1, -1,
12, -1, -1, 13, -1, -1, 14, -1, -1, 15, -1, -1,
16, -1, -1, 17, -1, -1, 18, -1, -1, 19, -1, -1,
20, -1, -1, 21, -1, -1, 22, -1, -1, 23, -1, -1,
24, -1, -1, 25, -1, -1, 26, -1, -1, 27, -1, -1,
28, -1, -1, 29, -1, -1, 30, -1, -1, 31, -1, -1,
32, -1, -1, 33, -1, -1, 34, -1, -1, 35, -1, -1,
36, -1, -1, 37, -1, -1, 38, -1, -1, 39, -1, -1,
40, -1, -1, 41, -1, -1, 42, -1, -1, 43, -1, -1,
44, -1, -1, 45, -1, -1, 46, -1, -1, 47, -1, -1,
48, -1, -1, 49, -1, -1, 50, -1, -1, 51, -1, -1,
52, -1, -1, 53, -1, -1, 54, -1, -1, 55, -1, -1,
56, -1, -1, 57, -1, -1, 58, -1, -1, 59, -1, -1,
60, -1, -1, 61, -1, -1, 62, -1, -1, 63, -1, -1,
64, -1, -1, 65, 116, -1, 66, 117, 118, 67, 119, 120,
68, 121, 122, 69, 123, 124, 70, 125, 126, 71, 127, 128,
72, 129, 130, 73, 131, 132, 74, 133, 134, 75, 135, 136,
76, 137, 138, 77, 139, 140, 78, 141, 142, 79, 143, 144,
80, 145, 146, 81, 147, 148, 82, 149, 150, 83, 151, 152,
84, 153, 154, 85, 155, 156, 86, 157, 158, 87, 159, 160,
88, 161, 162, 89, 163, 164, 90, 165, 166, 91, 167, 168,
92, 169, 170, 93, 171, 172, 94, 173, 174, 95, 175, 176,
96, 177, 178, 97, 179, 180, 98, 181, 182, 99, 183, 184,
100, 185, 186, 101, 187, 188, 102, 189, 190, 103, 191, 192,
104, 193, 194, 105, 195, 196, 106, 197, 198, 107, 199, 200,
108, 201, 202, 109, 203, 204, 110, 205, 206, 111, 207, 208,
112, 209, 210, 113, 211, 212, 114, 213, 214, 115, 215, -1
};
// permutation matrix to compute Prob(x*alfa^logw)
static const int qra_pmat[qra_M*qra_M] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
0, 33, 1, 32, 2, 35, 3, 34, 4, 37, 5, 36, 6, 39, 7, 38,
8, 41, 9, 40, 10, 43, 11, 42, 12, 45, 13, 44, 14, 47, 15, 46,
16, 49, 17, 48, 18, 51, 19, 50, 20, 53, 21, 52, 22, 55, 23, 54,
24, 57, 25, 56, 26, 59, 27, 58, 28, 61, 29, 60, 30, 63, 31, 62,
0, 49, 33, 16, 1, 48, 32, 17, 2, 51, 35, 18, 3, 50, 34, 19,
4, 53, 37, 20, 5, 52, 36, 21, 6, 55, 39, 22, 7, 54, 38, 23,
8, 57, 41, 24, 9, 56, 40, 25, 10, 59, 43, 26, 11, 58, 42, 27,
12, 61, 45, 28, 13, 60, 44, 29, 14, 63, 47, 30, 15, 62, 46, 31,
0, 57, 49, 8, 33, 24, 16, 41, 1, 56, 48, 9, 32, 25, 17, 40,
2, 59, 51, 10, 35, 26, 18, 43, 3, 58, 50, 11, 34, 27, 19, 42,
4, 61, 53, 12, 37, 28, 20, 45, 5, 60, 52, 13, 36, 29, 21, 44,
6, 63, 55, 14, 39, 30, 22, 47, 7, 62, 54, 15, 38, 31, 23, 46,
0, 61, 57, 4, 49, 12, 8, 53, 33, 28, 24, 37, 16, 45, 41, 20,
1, 60, 56, 5, 48, 13, 9, 52, 32, 29, 25, 36, 17, 44, 40, 21,
2, 63, 59, 6, 51, 14, 10, 55, 35, 30, 26, 39, 18, 47, 43, 22,
3, 62, 58, 7, 50, 15, 11, 54, 34, 31, 27, 38, 19, 46, 42, 23,
0, 63, 61, 2, 57, 6, 4, 59, 49, 14, 12, 51, 8, 55, 53, 10,
33, 30, 28, 35, 24, 39, 37, 26, 16, 47, 45, 18, 41, 22, 20, 43,
1, 62, 60, 3, 56, 7, 5, 58, 48, 15, 13, 50, 9, 54, 52, 11,
32, 31, 29, 34, 25, 38, 36, 27, 17, 46, 44, 19, 40, 23, 21, 42,
0, 62, 63, 1, 61, 3, 2, 60, 57, 7, 6, 56, 4, 58, 59, 5,
49, 15, 14, 48, 12, 50, 51, 13, 8, 54, 55, 9, 53, 11, 10, 52,
33, 31, 30, 32, 28, 34, 35, 29, 24, 38, 39, 25, 37, 27, 26, 36,
16, 46, 47, 17, 45, 19, 18, 44, 41, 23, 22, 40, 20, 42, 43, 21,
0, 31, 62, 33, 63, 32, 1, 30, 61, 34, 3, 28, 2, 29, 60, 35,
57, 38, 7, 24, 6, 25, 56, 39, 4, 27, 58, 37, 59, 36, 5, 26,
49, 46, 15, 16, 14, 17, 48, 47, 12, 19, 50, 45, 51, 44, 13, 18,
8, 23, 54, 41, 55, 40, 9, 22, 53, 42, 11, 20, 10, 21, 52, 43,
0, 46, 31, 49, 62, 16, 33, 15, 63, 17, 32, 14, 1, 47, 30, 48,
61, 19, 34, 12, 3, 45, 28, 50, 2, 44, 29, 51, 60, 18, 35, 13,
57, 23, 38, 8, 7, 41, 24, 54, 6, 40, 25, 55, 56, 22, 39, 9,
4, 42, 27, 53, 58, 20, 37, 11, 59, 21, 36, 10, 5, 43, 26, 52,
0, 23, 46, 57, 31, 8, 49, 38, 62, 41, 16, 7, 33, 54, 15, 24,
63, 40, 17, 6, 32, 55, 14, 25, 1, 22, 47, 56, 30, 9, 48, 39,
61, 42, 19, 4, 34, 53, 12, 27, 3, 20, 45, 58, 28, 11, 50, 37,
2, 21, 44, 59, 29, 10, 51, 36, 60, 43, 18, 5, 35, 52, 13, 26,
0, 42, 23, 61, 46, 4, 57, 19, 31, 53, 8, 34, 49, 27, 38, 12,
62, 20, 41, 3, 16, 58, 7, 45, 33, 11, 54, 28, 15, 37, 24, 50,
63, 21, 40, 2, 17, 59, 6, 44, 32, 10, 55, 29, 14, 36, 25, 51,
1, 43, 22, 60, 47, 5, 56, 18, 30, 52, 9, 35, 48, 26, 39, 13,
0, 21, 42, 63, 23, 2, 61, 40, 46, 59, 4, 17, 57, 44, 19, 6,
31, 10, 53, 32, 8, 29, 34, 55, 49, 36, 27, 14, 38, 51, 12, 25,
62, 43, 20, 1, 41, 60, 3, 22, 16, 5, 58, 47, 7, 18, 45, 56,
33, 52, 11, 30, 54, 35, 28, 9, 15, 26, 37, 48, 24, 13, 50, 39,
0, 43, 21, 62, 42, 1, 63, 20, 23, 60, 2, 41, 61, 22, 40, 3,
46, 5, 59, 16, 4, 47, 17, 58, 57, 18, 44, 7, 19, 56, 6, 45,
31, 52, 10, 33, 53, 30, 32, 11, 8, 35, 29, 54, 34, 9, 55, 28,
49, 26, 36, 15, 27, 48, 14, 37, 38, 13, 51, 24, 12, 39, 25, 50,
0, 52, 43, 31, 21, 33, 62, 10, 42, 30, 1, 53, 63, 11, 20, 32,
23, 35, 60, 8, 2, 54, 41, 29, 61, 9, 22, 34, 40, 28, 3, 55,
46, 26, 5, 49, 59, 15, 16, 36, 4, 48, 47, 27, 17, 37, 58, 14,
57, 13, 18, 38, 44, 24, 7, 51, 19, 39, 56, 12, 6, 50, 45, 25,
0, 26, 52, 46, 43, 49, 31, 5, 21, 15, 33, 59, 62, 36, 10, 16,
42, 48, 30, 4, 1, 27, 53, 47, 63, 37, 11, 17, 20, 14, 32, 58,
23, 13, 35, 57, 60, 38, 8, 18, 2, 24, 54, 44, 41, 51, 29, 7,
61, 39, 9, 19, 22, 12, 34, 56, 40, 50, 28, 6, 3, 25, 55, 45,
0, 13, 26, 23, 52, 57, 46, 35, 43, 38, 49, 60, 31, 18, 5, 8,
21, 24, 15, 2, 33, 44, 59, 54, 62, 51, 36, 41, 10, 7, 16, 29,
42, 39, 48, 61, 30, 19, 4, 9, 1, 12, 27, 22, 53, 56, 47, 34,
63, 50, 37, 40, 11, 6, 17, 28, 20, 25, 14, 3, 32, 45, 58, 55,
0, 39, 13, 42, 26, 61, 23, 48, 52, 19, 57, 30, 46, 9, 35, 4,
43, 12, 38, 1, 49, 22, 60, 27, 31, 56, 18, 53, 5, 34, 8, 47,
21, 50, 24, 63, 15, 40, 2, 37, 33, 6, 44, 11, 59, 28, 54, 17,
62, 25, 51, 20, 36, 3, 41, 14, 10, 45, 7, 32, 16, 55, 29, 58,
0, 50, 39, 21, 13, 63, 42, 24, 26, 40, 61, 15, 23, 37, 48, 2,
52, 6, 19, 33, 57, 11, 30, 44, 46, 28, 9, 59, 35, 17, 4, 54,
43, 25, 12, 62, 38, 20, 1, 51, 49, 3, 22, 36, 60, 14, 27, 41,
31, 45, 56, 10, 18, 32, 53, 7, 5, 55, 34, 16, 8, 58, 47, 29,
0, 25, 50, 43, 39, 62, 21, 12, 13, 20, 63, 38, 42, 51, 24, 1,
26, 3, 40, 49, 61, 36, 15, 22, 23, 14, 37, 60, 48, 41, 2, 27,
52, 45, 6, 31, 19, 10, 33, 56, 57, 32, 11, 18, 30, 7, 44, 53,
46, 55, 28, 5, 9, 16, 59, 34, 35, 58, 17, 8, 4, 29, 54, 47,
0, 45, 25, 52, 50, 31, 43, 6, 39, 10, 62, 19, 21, 56, 12, 33,
13, 32, 20, 57, 63, 18, 38, 11, 42, 7, 51, 30, 24, 53, 1, 44,
26, 55, 3, 46, 40, 5, 49, 28, 61, 16, 36, 9, 15, 34, 22, 59,
23, 58, 14, 35, 37, 8, 60, 17, 48, 29, 41, 4, 2, 47, 27, 54,
0, 55, 45, 26, 25, 46, 52, 3, 50, 5, 31, 40, 43, 28, 6, 49,
39, 16, 10, 61, 62, 9, 19, 36, 21, 34, 56, 15, 12, 59, 33, 22,
13, 58, 32, 23, 20, 35, 57, 14, 63, 8, 18, 37, 38, 17, 11, 60,
42, 29, 7, 48, 51, 4, 30, 41, 24, 47, 53, 2, 1, 54, 44, 27,
0, 58, 55, 13, 45, 23, 26, 32, 25, 35, 46, 20, 52, 14, 3, 57,
50, 8, 5, 63, 31, 37, 40, 18, 43, 17, 28, 38, 6, 60, 49, 11,
39, 29, 16, 42, 10, 48, 61, 7, 62, 4, 9, 51, 19, 41, 36, 30,
21, 47, 34, 24, 56, 2, 15, 53, 12, 54, 59, 1, 33, 27, 22, 44,
0, 29, 58, 39, 55, 42, 13, 16, 45, 48, 23, 10, 26, 7, 32, 61,
25, 4, 35, 62, 46, 51, 20, 9, 52, 41, 14, 19, 3, 30, 57, 36,
50, 47, 8, 21, 5, 24, 63, 34, 31, 2, 37, 56, 40, 53, 18, 15,
43, 54, 17, 12, 28, 1, 38, 59, 6, 27, 60, 33, 49, 44, 11, 22,
0, 47, 29, 50, 58, 21, 39, 8, 55, 24, 42, 5, 13, 34, 16, 63,
45, 2, 48, 31, 23, 56, 10, 37, 26, 53, 7, 40, 32, 15, 61, 18,
25, 54, 4, 43, 35, 12, 62, 17, 46, 1, 51, 28, 20, 59, 9, 38,
52, 27, 41, 6, 14, 33, 19, 60, 3, 44, 30, 49, 57, 22, 36, 11,
0, 54, 47, 25, 29, 43, 50, 4, 58, 12, 21, 35, 39, 17, 8, 62,
55, 1, 24, 46, 42, 28, 5, 51, 13, 59, 34, 20, 16, 38, 63, 9,
45, 27, 2, 52, 48, 6, 31, 41, 23, 33, 56, 14, 10, 60, 37, 19,
26, 44, 53, 3, 7, 49, 40, 30, 32, 22, 15, 57, 61, 11, 18, 36,
0, 27, 54, 45, 47, 52, 25, 2, 29, 6, 43, 48, 50, 41, 4, 31,
58, 33, 12, 23, 21, 14, 35, 56, 39, 60, 17, 10, 8, 19, 62, 37,
55, 44, 1, 26, 24, 3, 46, 53, 42, 49, 28, 7, 5, 30, 51, 40,
13, 22, 59, 32, 34, 57, 20, 15, 16, 11, 38, 61, 63, 36, 9, 18,
0, 44, 27, 55, 54, 26, 45, 1, 47, 3, 52, 24, 25, 53, 2, 46,
29, 49, 6, 42, 43, 7, 48, 28, 50, 30, 41, 5, 4, 40, 31, 51,
58, 22, 33, 13, 12, 32, 23, 59, 21, 57, 14, 34, 35, 15, 56, 20,
39, 11, 60, 16, 17, 61, 10, 38, 8, 36, 19, 63, 62, 18, 37, 9,
0, 22, 44, 58, 27, 13, 55, 33, 54, 32, 26, 12, 45, 59, 1, 23,
47, 57, 3, 21, 52, 34, 24, 14, 25, 15, 53, 35, 2, 20, 46, 56,
29, 11, 49, 39, 6, 16, 42, 60, 43, 61, 7, 17, 48, 38, 28, 10,
50, 36, 30, 8, 41, 63, 5, 19, 4, 18, 40, 62, 31, 9, 51, 37,
0, 11, 22, 29, 44, 39, 58, 49, 27, 16, 13, 6, 55, 60, 33, 42,
54, 61, 32, 43, 26, 17, 12, 7, 45, 38, 59, 48, 1, 10, 23, 28,
47, 36, 57, 50, 3, 8, 21, 30, 52, 63, 34, 41, 24, 19, 14, 5,
25, 18, 15, 4, 53, 62, 35, 40, 2, 9, 20, 31, 46, 37, 56, 51,
0, 36, 11, 47, 22, 50, 29, 57, 44, 8, 39, 3, 58, 30, 49, 21,
27, 63, 16, 52, 13, 41, 6, 34, 55, 19, 60, 24, 33, 5, 42, 14,
54, 18, 61, 25, 32, 4, 43, 15, 26, 62, 17, 53, 12, 40, 7, 35,
45, 9, 38, 2, 59, 31, 48, 20, 1, 37, 10, 46, 23, 51, 28, 56,
0, 18, 36, 54, 11, 25, 47, 61, 22, 4, 50, 32, 29, 15, 57, 43,
44, 62, 8, 26, 39, 53, 3, 17, 58, 40, 30, 12, 49, 35, 21, 7,
27, 9, 63, 45, 16, 2, 52, 38, 13, 31, 41, 59, 6, 20, 34, 48,
55, 37, 19, 1, 60, 46, 24, 10, 33, 51, 5, 23, 42, 56, 14, 28,
0, 9, 18, 27, 36, 45, 54, 63, 11, 2, 25, 16, 47, 38, 61, 52,
22, 31, 4, 13, 50, 59, 32, 41, 29, 20, 15, 6, 57, 48, 43, 34,
44, 37, 62, 55, 8, 1, 26, 19, 39, 46, 53, 60, 3, 10, 17, 24,
58, 51, 40, 33, 30, 23, 12, 5, 49, 56, 35, 42, 21, 28, 7, 14,
0, 37, 9, 44, 18, 55, 27, 62, 36, 1, 45, 8, 54, 19, 63, 26,
11, 46, 2, 39, 25, 60, 16, 53, 47, 10, 38, 3, 61, 24, 52, 17,
22, 51, 31, 58, 4, 33, 13, 40, 50, 23, 59, 30, 32, 5, 41, 12,
29, 56, 20, 49, 15, 42, 6, 35, 57, 28, 48, 21, 43, 14, 34, 7,
0, 51, 37, 22, 9, 58, 44, 31, 18, 33, 55, 4, 27, 40, 62, 13,
36, 23, 1, 50, 45, 30, 8, 59, 54, 5, 19, 32, 63, 12, 26, 41,
11, 56, 46, 29, 2, 49, 39, 20, 25, 42, 60, 15, 16, 35, 53, 6,
47, 28, 10, 57, 38, 21, 3, 48, 61, 14, 24, 43, 52, 7, 17, 34,
0, 56, 51, 11, 37, 29, 22, 46, 9, 49, 58, 2, 44, 20, 31, 39,
18, 42, 33, 25, 55, 15, 4, 60, 27, 35, 40, 16, 62, 6, 13, 53,
36, 28, 23, 47, 1, 57, 50, 10, 45, 21, 30, 38, 8, 48, 59, 3,
54, 14, 5, 61, 19, 43, 32, 24, 63, 7, 12, 52, 26, 34, 41, 17,
0, 28, 56, 36, 51, 47, 11, 23, 37, 57, 29, 1, 22, 10, 46, 50,
9, 21, 49, 45, 58, 38, 2, 30, 44, 48, 20, 8, 31, 3, 39, 59,
18, 14, 42, 54, 33, 61, 25, 5, 55, 43, 15, 19, 4, 24, 60, 32,
27, 7, 35, 63, 40, 52, 16, 12, 62, 34, 6, 26, 13, 17, 53, 41,
0, 14, 28, 18, 56, 54, 36, 42, 51, 61, 47, 33, 11, 5, 23, 25,
37, 43, 57, 55, 29, 19, 1, 15, 22, 24, 10, 4, 46, 32, 50, 60,
9, 7, 21, 27, 49, 63, 45, 35, 58, 52, 38, 40, 2, 12, 30, 16,
44, 34, 48, 62, 20, 26, 8, 6, 31, 17, 3, 13, 39, 41, 59, 53,
0, 7, 14, 9, 28, 27, 18, 21, 56, 63, 54, 49, 36, 35, 42, 45,
51, 52, 61, 58, 47, 40, 33, 38, 11, 12, 5, 2, 23, 16, 25, 30,
37, 34, 43, 44, 57, 62, 55, 48, 29, 26, 19, 20, 1, 6, 15, 8,
22, 17, 24, 31, 10, 13, 4, 3, 46, 41, 32, 39, 50, 53, 60, 59,
0, 34, 7, 37, 14, 44, 9, 43, 28, 62, 27, 57, 18, 48, 21, 55,
56, 26, 63, 29, 54, 20, 49, 19, 36, 6, 35, 1, 42, 8, 45, 15,
51, 17, 52, 22, 61, 31, 58, 24, 47, 13, 40, 10, 33, 3, 38, 4,
11, 41, 12, 46, 5, 39, 2, 32, 23, 53, 16, 50, 25, 59, 30, 60,
0, 17, 34, 51, 7, 22, 37, 52, 14, 31, 44, 61, 9, 24, 43, 58,
28, 13, 62, 47, 27, 10, 57, 40, 18, 3, 48, 33, 21, 4, 55, 38,
56, 41, 26, 11, 63, 46, 29, 12, 54, 39, 20, 5, 49, 32, 19, 2,
36, 53, 6, 23, 35, 50, 1, 16, 42, 59, 8, 25, 45, 60, 15, 30,
0, 41, 17, 56, 34, 11, 51, 26, 7, 46, 22, 63, 37, 12, 52, 29,
14, 39, 31, 54, 44, 5, 61, 20, 9, 32, 24, 49, 43, 2, 58, 19,
28, 53, 13, 36, 62, 23, 47, 6, 27, 50, 10, 35, 57, 16, 40, 1,
18, 59, 3, 42, 48, 25, 33, 8, 21, 60, 4, 45, 55, 30, 38, 15,
0, 53, 41, 28, 17, 36, 56, 13, 34, 23, 11, 62, 51, 6, 26, 47,
7, 50, 46, 27, 22, 35, 63, 10, 37, 16, 12, 57, 52, 1, 29, 40,
14, 59, 39, 18, 31, 42, 54, 3, 44, 25, 5, 48, 61, 8, 20, 33,
9, 60, 32, 21, 24, 45, 49, 4, 43, 30, 2, 55, 58, 15, 19, 38,
0, 59, 53, 14, 41, 18, 28, 39, 17, 42, 36, 31, 56, 3, 13, 54,
34, 25, 23, 44, 11, 48, 62, 5, 51, 8, 6, 61, 26, 33, 47, 20,
7, 60, 50, 9, 46, 21, 27, 32, 22, 45, 35, 24, 63, 4, 10, 49,
37, 30, 16, 43, 12, 55, 57, 2, 52, 15, 1, 58, 29, 38, 40, 19,
0, 60, 59, 7, 53, 9, 14, 50, 41, 21, 18, 46, 28, 32, 39, 27,
17, 45, 42, 22, 36, 24, 31, 35, 56, 4, 3, 63, 13, 49, 54, 10,
34, 30, 25, 37, 23, 43, 44, 16, 11, 55, 48, 12, 62, 2, 5, 57,
51, 15, 8, 52, 6, 58, 61, 1, 26, 38, 33, 29, 47, 19, 20, 40,
0, 30, 60, 34, 59, 37, 7, 25, 53, 43, 9, 23, 14, 16, 50, 44,
41, 55, 21, 11, 18, 12, 46, 48, 28, 2, 32, 62, 39, 57, 27, 5,
17, 15, 45, 51, 42, 52, 22, 8, 36, 58, 24, 6, 31, 1, 35, 61,
56, 38, 4, 26, 3, 29, 63, 33, 13, 19, 49, 47, 54, 40, 10, 20,
0, 15, 30, 17, 60, 51, 34, 45, 59, 52, 37, 42, 7, 8, 25, 22,
53, 58, 43, 36, 9, 6, 23, 24, 14, 1, 16, 31, 50, 61, 44, 35,
41, 38, 55, 56, 21, 26, 11, 4, 18, 29, 12, 3, 46, 33, 48, 63,
28, 19, 2, 13, 32, 47, 62, 49, 39, 40, 57, 54, 27, 20, 5, 10,
0, 38, 15, 41, 30, 56, 17, 55, 60, 26, 51, 21, 34, 4, 45, 11,
59, 29, 52, 18, 37, 3, 42, 12, 7, 33, 8, 46, 25, 63, 22, 48,
53, 19, 58, 28, 43, 13, 36, 2, 9, 47, 6, 32, 23, 49, 24, 62,
14, 40, 1, 39, 16, 54, 31, 57, 50, 20, 61, 27, 44, 10, 35, 5,
0, 19, 38, 53, 15, 28, 41, 58, 30, 13, 56, 43, 17, 2, 55, 36,
60, 47, 26, 9, 51, 32, 21, 6, 34, 49, 4, 23, 45, 62, 11, 24,
59, 40, 29, 14, 52, 39, 18, 1, 37, 54, 3, 16, 42, 57, 12, 31,
7, 20, 33, 50, 8, 27, 46, 61, 25, 10, 63, 44, 22, 5, 48, 35,
0, 40, 19, 59, 38, 14, 53, 29, 15, 39, 28, 52, 41, 1, 58, 18,
30, 54, 13, 37, 56, 16, 43, 3, 17, 57, 2, 42, 55, 31, 36, 12,
60, 20, 47, 7, 26, 50, 9, 33, 51, 27, 32, 8, 21, 61, 6, 46,
34, 10, 49, 25, 4, 44, 23, 63, 45, 5, 62, 22, 11, 35, 24, 48,
0, 20, 40, 60, 19, 7, 59, 47, 38, 50, 14, 26, 53, 33, 29, 9,
15, 27, 39, 51, 28, 8, 52, 32, 41, 61, 1, 21, 58, 46, 18, 6,
30, 10, 54, 34, 13, 25, 37, 49, 56, 44, 16, 4, 43, 63, 3, 23,
17, 5, 57, 45, 2, 22, 42, 62, 55, 35, 31, 11, 36, 48, 12, 24,
0, 10, 20, 30, 40, 34, 60, 54, 19, 25, 7, 13, 59, 49, 47, 37,
38, 44, 50, 56, 14, 4, 26, 16, 53, 63, 33, 43, 29, 23, 9, 3,
15, 5, 27, 17, 39, 45, 51, 57, 28, 22, 8, 2, 52, 62, 32, 42,
41, 35, 61, 55, 1, 11, 21, 31, 58, 48, 46, 36, 18, 24, 6, 12,
0, 5, 10, 15, 20, 17, 30, 27, 40, 45, 34, 39, 60, 57, 54, 51,
19, 22, 25, 28, 7, 2, 13, 8, 59, 62, 49, 52, 47, 42, 37, 32,
38, 35, 44, 41, 50, 55, 56, 61, 14, 11, 4, 1, 26, 31, 16, 21,
53, 48, 63, 58, 33, 36, 43, 46, 29, 24, 23, 18, 9, 12, 3, 6,
0, 35, 5, 38, 10, 41, 15, 44, 20, 55, 17, 50, 30, 61, 27, 56,
40, 11, 45, 14, 34, 1, 39, 4, 60, 31, 57, 26, 54, 21, 51, 16,
19, 48, 22, 53, 25, 58, 28, 63, 7, 36, 2, 33, 13, 46, 8, 43,
59, 24, 62, 29, 49, 18, 52, 23, 47, 12, 42, 9, 37, 6, 32, 3,
0, 48, 35, 19, 5, 53, 38, 22, 10, 58, 41, 25, 15, 63, 44, 28,
20, 36, 55, 7, 17, 33, 50, 2, 30, 46, 61, 13, 27, 43, 56, 8,
40, 24, 11, 59, 45, 29, 14, 62, 34, 18, 1, 49, 39, 23, 4, 52,
60, 12, 31, 47, 57, 9, 26, 42, 54, 6, 21, 37, 51, 3, 16, 32,
0, 24, 48, 40, 35, 59, 19, 11, 5, 29, 53, 45, 38, 62, 22, 14,
10, 18, 58, 34, 41, 49, 25, 1, 15, 23, 63, 39, 44, 52, 28, 4,
20, 12, 36, 60, 55, 47, 7, 31, 17, 9, 33, 57, 50, 42, 2, 26,
30, 6, 46, 54, 61, 37, 13, 21, 27, 3, 43, 51, 56, 32, 8, 16,
0, 12, 24, 20, 48, 60, 40, 36, 35, 47, 59, 55, 19, 31, 11, 7,
5, 9, 29, 17, 53, 57, 45, 33, 38, 42, 62, 50, 22, 26, 14, 2,
10, 6, 18, 30, 58, 54, 34, 46, 41, 37, 49, 61, 25, 21, 1, 13,
15, 3, 23, 27, 63, 51, 39, 43, 44, 32, 52, 56, 28, 16, 4, 8,
0, 6, 12, 10, 24, 30, 20, 18, 48, 54, 60, 58, 40, 46, 36, 34,
35, 37, 47, 41, 59, 61, 55, 49, 19, 21, 31, 25, 11, 13, 7, 1,
5, 3, 9, 15, 29, 27, 17, 23, 53, 51, 57, 63, 45, 43, 33, 39,
38, 32, 42, 44, 62, 56, 50, 52, 22, 16, 26, 28, 14, 8, 2, 4,
0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17,
48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33,
35, 32, 37, 38, 47, 44, 41, 42, 59, 56, 61, 62, 55, 52, 49, 50,
19, 16, 21, 22, 31, 28, 25, 26, 11, 8, 13, 14, 7, 4, 1, 2,
0, 32, 3, 35, 6, 38, 5, 37, 12, 44, 15, 47, 10, 42, 9, 41,
24, 56, 27, 59, 30, 62, 29, 61, 20, 52, 23, 55, 18, 50, 17, 49,
48, 16, 51, 19, 54, 22, 53, 21, 60, 28, 63, 31, 58, 26, 57, 25,
40, 8, 43, 11, 46, 14, 45, 13, 36, 4, 39, 7, 34, 2, 33, 1,
0, 16, 32, 48, 3, 19, 35, 51, 6, 22, 38, 54, 5, 21, 37, 53,
12, 28, 44, 60, 15, 31, 47, 63, 10, 26, 42, 58, 9, 25, 41, 57,
24, 8, 56, 40, 27, 11, 59, 43, 30, 14, 62, 46, 29, 13, 61, 45,
20, 4, 52, 36, 23, 7, 55, 39, 18, 2, 50, 34, 17, 1, 49, 33,
0, 8, 16, 24, 32, 40, 48, 56, 3, 11, 19, 27, 35, 43, 51, 59,
6, 14, 22, 30, 38, 46, 54, 62, 5, 13, 21, 29, 37, 45, 53, 61,
12, 4, 28, 20, 44, 36, 60, 52, 15, 7, 31, 23, 47, 39, 63, 55,
10, 2, 26, 18, 42, 34, 58, 50, 9, 1, 25, 17, 41, 33, 57, 49,
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60,
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63,
6, 2, 14, 10, 22, 18, 30, 26, 38, 34, 46, 42, 54, 50, 62, 58,
5, 1, 13, 9, 21, 17, 29, 25, 37, 33, 45, 41, 53, 49, 61, 57,
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62,
3, 1, 7, 5, 11, 9, 15, 13, 19, 17, 23, 21, 27, 25, 31, 29,
35, 33, 39, 37, 43, 41, 47, 45, 51, 49, 55, 53, 59, 57, 63, 61
};
// SO array
static const int SO[qra_N-qra_K+1] = {
14, 2, 4, 5, 9, 13, 10, 15, 11, 6, 1, 8, 2, 12, 9, 10,
13, 7, 4, 11, 8, 6, 3, 14, 13, 5, 9, 1, 2, 12, 3, 10,
15, 6, 7, 14, 8, 13, 12, 3, 10, 1, 11, 5, 8, 15, 9, 12,
4, 7, 11
};
// LOGWO array
static const int LOGWO[qra_N-qra_K+1] = {
0, 14, 0, 0, 13, 37, 0, 27, 56, 62, 29, 0, 52, 34, 62, 4,
3, 22, 25, 0, 22, 0, 20, 10, 0, 43, 53, 60, 0, 0, 0, 62,
0, 5, 0, 61, 36, 31, 61, 59, 10, 0, 29, 39, 25, 18, 0, 14,
11, 50, 17
};
// repfact array
static const int repfact[qra_K] = {
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3
};
const qracode qra15_65_64_irr_e23 = {
qra_K,
qra_N,
qra_m,
qra_M,
qra_a,
qra_NC,
qra_V,
qra_C,
qra_NMSG,
qra_MAXVDEG,
qra_MAXCDEG,
QRATYPE_CRCPUNCTURED2,
qra_R,
CODE_NAME,
qra_acc_input_idx,
qra_acc_input_wlog,
qra_log,
qra_exp,
qra_msgw,
qra_vdeg,
qra_cdeg,
qra_v2cmidx,
qra_c2vmidx,
qra_pmat
};
#undef qra_K
#undef qra_N
#undef qra_m
#undef qra_M
#undef qra_a
#undef qra_NC
#undef qra_V
#undef qra_C
#undef qra_NMSG
#undef qra_MAXVDEG
#undef qra_MAXCDEG
#undef qra_R
#undef CODE_NAME

View File

@ -0,0 +1,41 @@
// qra15_65_64_irr_e23.h
// Code tables and defines for Q-ary RA code (15,65) over GF(64)
// Code Name: qra15_65_64_irr_e23
// (15,65) RA Code over GF(64)
// (c) 2020 - Nico Palermo - IV3NWV - Microtelecom Srl, Italy
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _qra15_65_64_irr_e23_h
#define _qra15_65_64_irr_e23_h
// File generated by npiwnarsavehc.m
#include "qracodes.h"
#ifdef __cplusplus
extern "C" {
#endif
extern const qracode qra15_65_64_irr_e23;
#ifdef __cplusplus
}
#endif
#endif // _qra15_65_64_irr_e23_h

795
lib/qra/q65/qra65.c Normal file
View File

@ -0,0 +1,795 @@
// qra65.c
// QRA65 modes encoding/decoding functions
//
// (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "qra65.h"
#include "pdmath.h"
static int _qra65_crc6(int *x, int sz);
static void _qra65_crc12(int *y, int *x, int sz);
int qra65_init(qra65_codec_ds *pCodec, const qracode *pqracode)
{
// Eb/No value for which we optimize the decoder metric (AWGN/Rayleigh cases)
const float EbNodBMetric = 2.8f;
const float EbNoMetric = (float)pow(10,EbNodBMetric/10);
float R; // code effective rate (after puncturing)
int nm; // bits per symbol
if (!pCodec)
return -1; // why do you called me?
if (!pqracode)
return -2; // invalid qra code
if (pqracode->M!=64)
return -3; // QRA65 supports only codes over GF(64)
pCodec->pQraCode = pqracode;
// allocate buffers used by encoding/decoding functions
pCodec->x = (int*)malloc(pqracode->K*sizeof(int));
pCodec->y = (int*)malloc(pqracode->N*sizeof(int));
pCodec->qra_v2cmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
pCodec->qra_c2vmsg = (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
pCodec->ix = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
pCodec->ex = (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
if (pCodec->x== NULL ||
pCodec->y== NULL ||
pCodec->qra_v2cmsg== NULL ||
pCodec->qra_c2vmsg== NULL ||
pCodec->ix== NULL ||
pCodec->ex== NULL) {
qra65_free(pCodec);
return -4; // out of memory
}
// compute and store the AWGN/Rayleigh Es/No ratio for which we optimize
// the decoder metric
nm = _qra65_get_bits_per_symbol(pqracode);
R = _qra65_get_code_rate(pqracode);
pCodec->decoderEsNoMetric = 1.0f*nm*R*EbNoMetric;
return 1;
}
void qra65_free(qra65_codec_ds *pCodec)
{
if (!pCodec)
return;
// free internal buffers
if (pCodec->x!=NULL)
free(pCodec->x);
if (pCodec->y!=NULL)
free(pCodec->y);
if (pCodec->qra_v2cmsg!=NULL)
free(pCodec->qra_v2cmsg);
if (pCodec->qra_c2vmsg!=NULL)
free(pCodec->qra_c2vmsg);
if (pCodec->ix!=NULL)
free(pCodec->ix);
if (pCodec->ex!=NULL)
free(pCodec->ex);
pCodec->pQraCode = NULL;
pCodec->x = NULL;
pCodec->y = NULL;
pCodec->qra_v2cmsg = NULL;
pCodec->qra_c2vmsg = NULL;
pCodec->qra_v2cmsg = NULL;
pCodec->ix = NULL;
pCodec->ex = NULL;
return;
}
int qra65_encode(const qra65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg)
{
const qracode *pQraCode;
int *px;
int *py;
int nK;
int nN;
if (!pCodec)
return -1; // which codec?
pQraCode = pCodec->pQraCode;
px = pCodec->x;
py = pCodec->y;
nK = _qra65_get_message_length(pQraCode);
nN = _qra65_get_codeword_length(pQraCode);
// copy the information symbols into the internal buffer
memcpy(px,pInputMsg,nK*sizeof(int));
// compute and append the appropriate CRC if required
switch (pQraCode->type) {
case QRATYPE_NORMAL:
break;
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
px[nK] = _qra65_crc6(px,nK);
break;
case QRATYPE_CRCPUNCTURED2:
_qra65_crc12(px+nK,px,nK);
break;
default:
return -2; // code type not supported
}
// encode with the given qra code
qra_encode(pQraCode,py,px);
// puncture the CRC symbols as required
// and copy the result to the destination buffer
switch (pQraCode->type) {
case QRATYPE_NORMAL:
case QRATYPE_CRC:
// no puncturing
memcpy(pOutputCodeword,py,nN*sizeof(int));
break;
case QRATYPE_CRCPUNCTURED:
// strip the single CRC symbol from the encoded codeword
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
memcpy(pOutputCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // copy the check symbols skipping the CRC symbol
break;
case QRATYPE_CRCPUNCTURED2:
// strip the 2 CRC symbols from the encoded codeword
memcpy(pOutputCodeword,py,nK*sizeof(int)); // copy the systematic symbols
memcpy(pOutputCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // copy the check symbols skipping the two CRC symbols
break;
default:
return -2; // code type unsupported
}
return 1; // ok
}
int qra65_intrinsics(qra65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies)
{
// compute observations intrinsics probabilities
// for the AWGN/Rayleigh channels
// NOTE:
// A true Rayleigh channel metric would require that the channel gains were known
// for each symbol in the codeword. Such gains cannot be estimated reliably when
// the Es/No ratio is small. Therefore we compute intrinsic probabilities assuming
// that, on average, these channel gains are unitary.
// In general it is even difficult to estimate the Es/No ratio for the AWGN channel
// Therefore we always compute the intrinsic probabilities assuming that the Es/No
// ratio is known and equal to the constant decoderEsNoMetric. This assumption will
// generate the true intrinsic probabilities only when the actual Eb/No ratio is
// equal to this constant. As in all the other cases the probabilities are evaluated
// with a wrong scaling constant we can expect that the decoder performance at different
// Es/No will be worse. Anyway, since the EsNoMetric constant has been chosen so that the
// decoder error rate is about 50%, we obtain almost optimal error rates down to
// any useful Es/No ratio.
const qracode *pQraCode;
int nN, nBits;
float EsNoMetric;
if (pCodec==NULL)
return -1; // which codec?
pQraCode = pCodec->pQraCode;
nN = _qra65_get_codeword_length(pQraCode);
nBits = pQraCode->m;
EsNoMetric = pCodec->decoderEsNoMetric;
qra_mfskbesselmetric(pIntrinsics,pInputEnergies,nBits,nN,EsNoMetric);
return 1; // success
}
int qra65_esnodb(const qra65_codec_ds *pCodec, float *pEsNodB, const int *ydec, const float *pInputEnergies)
{
// compute average Es/No for the AWGN/Rayleigh channel cases
int k,j;
float sigplusnoise=0;
float noise=0;
int nN, nM;
const float *pIn = pInputEnergies;
const int *py = ydec;
float EsNodB;
nN = qra65_get_codeword_length(pCodec);
nM = qra65_get_alphabet_size(pCodec);
for (k=0;k<nN;k++) {
for (j=0;j<nM;j++)
if (j==py[0])
sigplusnoise += pIn[j];
else
noise +=pIn[j];
pIn += nM;
py++;
}
sigplusnoise = sigplusnoise/nN; // average Es+No
noise = noise/(nN*(nM-1)); // average No
if (noise==0.0f)
EsNodB = 50.0f; // output an arbitrary +50 dB value avoiding division overflows
else {
float sig;
if (sigplusnoise<noise)
sigplusnoise = 1.316f*noise; // limit the minimum Es/No ratio to -5 dB;
sig = sigplusnoise-noise;
EsNodB = 10.0f*log10f(sig/noise);
}
*pEsNodB = EsNodB;
return 1;
}
//
// Fast-fading channel metric ----------------------------------------------
//
// Tables of fading energies coefficients for Ts=6912/12000 (QRA64)
#include "fadengauss.c"
#include "fadenlorentz.c"
// As the fading is assumed to be symmetric around the nominal frequency
// only the leftmost and the central coefficient are stored in the tables.
// (files have been generated with the Matlab code efgengaussenergy.m and efgenlorentzenergy.m)
// Symbol time interval in seconds
#define TS_QRA64 0.576
#define TS_QRA65 0.640
// The tables are computed assuming that the bin spacing is that of QRA64, that's to say
// 1/Ts = 12000/6912 Hz, but in QRA65 Ts is longer (0.640 s) and the table index
// corresponding to a given B90 must be scaled appropriately.
// See below.
int qra65_intrinsics_fastfading(qra65_codec_ds *pCodec,
float *pIntrinsics, // intrinsic symbol probabilities output
const float *pInputEnergies, // received energies input
const int submode, // submode idx (0=A ... 4=E)
const float B90, // spread bandwidth (90% fractional energy)
const int fadingModel) // 0=Gaussian 1=Lorentzian fade model
{
int n, k, j;
int nM, nN, nBinsPerTone, nBinsPerSymbol, nBinsPerCodeword;
int hidx, hlen, hhsz, hlast;
const float *hptr;
float fTemp, fNoiseVar, sumix, maxlogp;
float EsNoMetric;
float *weight;
const float *pCurSym, *pCurBin;
float *pCurIx;
if (pCodec==NULL)
return QRA65_DECODE_INVPARAMS; // invalid pCodec pointer
if (submode<0 || submode>4)
return QRA65_DECODE_INVPARAMS; // invalid submode
// As the symbol duration in QRA65 is longer than in QRA64 the fading tables continue
// to be valid if the B90 parameter is scaled by the actual symbol rate
// Compute index to most appropriate weighting function coefficients
hidx = (int)(logf(B90*TS_QRA65/TS_QRA64)/logf(1.09f) - 0.499f);
// if (hidx<0 || hidx > 64)
// // index of weighting function out of range
// // B90 out of range
// return QRA65_DECODE_INVPARAMS;
// Unlike in QRA64 we accept any B90, anyway limiting it to
// the extreme cases (0.9 to 210 Hz approx.)
if (hidx<0)
hidx = 0;
else
if (hidx > 64)
hidx=64;
// select the appropriate weighting fading coefficients array
if (fadingModel==0) { // gaussian fading model
// point to gaussian energy weighting taps
hlen = glen_tab_gauss[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
hptr = gptr_tab_gauss[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
}
else if (fadingModel==1) {
// point to lorentzian energy weighting taps
hlen = glen_tab_lorentz[hidx]; // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
hptr = gptr_tab_lorentz[hidx]; // pointer to the first (L+1)/2 coefficients of w fun
}
else
return QRA65_DECODE_INVPARAMS; // invalid fading model
// compute (euristically) the optimal decoder metric accordingly the given spread amount
// We assume that the decoder 50% decoding threshold is:
// Es/No(dB) = Es/No(AWGN)(dB) + 8*log(B90)/log(240)(dB)
// that's to say, at the maximum Doppler spread bandwidth (240 Hz for QRA64)
// there's a ~8 dB Es/No degradation over the AWGN case
fTemp = 8.0f*logf(B90)/logf(240.0f); // assumed Es/No degradation for the given fading bandwidth
EsNoMetric = pCodec->decoderEsNoMetric*powf(10.0f,fTemp/10.0f);
nM = qra65_get_alphabet_size(pCodec);
nN = qra65_get_codeword_length(pCodec);
nBinsPerTone = 1<<submode;
nBinsPerSymbol = nM*(2+nBinsPerTone);
nBinsPerCodeword = nN*nBinsPerSymbol;
// In the fast fading case , the intrinsic probabilities can be computed only
// if both the noise spectral density and the average Es/No ratio are known.
// Assuming that the energy of a tone is spread, on average, over adjacent bins
// with the weights given in the precomputed fast-fading tables, it turns out
// that the probability that the transmitted tone was tone j when we observed
// the energies En(1)...En(N) is:
// prob(tone j| en1....enN) proportional to exp(sum(En(k,j)*w(k)/No))
// where w(k) = (g(k)*Es/No)/(1 + g(k)*Es/No),
// g(k) are constant coefficients given on the fading tables,
// and En(k,j) denotes the Energy at offset k from the central bin of tone j
// Therefore we:
// 1) compute No - the noise spectral density (or noise variance)
// 2) compute the coefficients w(k) given the coefficient g(k) for the given decodeer Es/No metric
// 3) compute the logarithm of prob(tone j| en1....enN) which is simply = sum(En(k,j)*w(k)/No
// 4) subtract from the logarithm of the probabilities their maximum,
// 5) exponentiate the logarithms
// 6) normalize the result to a probability distribution dividing each value
// by the sum of all of them
// Evaluate the average noise spectral density
fNoiseVar = 0;
for (k=0;k<nBinsPerCodeword;k++)
fNoiseVar += pInputEnergies[k];
fNoiseVar = fNoiseVar/nBinsPerCodeword;
// The noise spectral density so computed includes also the signal power.
// Therefore we scale it accordingly to the Es/No assumed by the decoder
fNoiseVar = fNoiseVar/(1.0f+EsNoMetric/nBinsPerSymbol);
// The value so computed is an overestimate of the true noise spectral density
// by the (unknown) factor (1+Es/No(true)/nBinsPerSymbol)/(1+EsNoMetric/nBinsPerSymbol)
// We will take this factor in account when computing the true Es/No ratio
// store in the pCodec structure for later use in the estimation of the Es/No ratio
pCodec->ffNoiseVar = fNoiseVar;
pCodec->ffEsNoMetric = EsNoMetric;
pCodec->nBinsPerTone = nBinsPerTone;
pCodec->nBinsPerSymbol = nBinsPerSymbol;
pCodec->nWeights = hlen;
weight = pCodec->ffWeight;
// compute the fast fading weights accordingly to the Es/No ratio
// for which we compute the exact intrinsics probabilities
for (k=0;k<hlen;k++) {
fTemp = hptr[k]*EsNoMetric;
weight[k] = fTemp/(1.0f+fTemp)/fNoiseVar;
}
// Compute now the instrinsics as indicated above
pCurSym = pInputEnergies + nM; // point to the central bin of the the first symbol tone
pCurIx = pIntrinsics; // point to the first intrinsic
hhsz = hlen-1; // number of symmetric taps
hlast = 2*hhsz; // index of the central tap
for (n=0;n<nN;n++) { // for each symbol in the message
// compute the logarithm of the tone probability
// as a weighted sum of the pertaining energies
pCurBin = pCurSym -hlen+1; // point to the first bin of the current symbol
maxlogp = 0.0f;
for (k=0;k<nM;k++) { // for each tone in the current symbol
// do a symmetric weighted sum
fTemp = 0.0f;
for (j=0;j<hhsz;j++)
fTemp += weight[j]*(pCurBin[j] + pCurBin[hlast-j]);
fTemp += weight[hhsz]*pCurBin[hhsz];
if (fTemp>maxlogp) // keep track of the max
maxlogp = fTemp;
pCurIx[k]=fTemp;
pCurBin += nBinsPerTone; // next tone
}
// exponentiate and accumulate the normalization constant
sumix = 0.0f;
for (k=0;k<nM;k++) {
fTemp = expf(pCurIx[k]-maxlogp);
pCurIx[k]=fTemp;
sumix +=fTemp;
}
// scale to a probability distribution
sumix = 1.0f/sumix;
for (k=0;k<nM;k++)
pCurIx[k] = pCurIx[k]*sumix;
pCurSym +=nBinsPerSymbol; // next symbol input energies
pCurIx +=nM; // next symbol intrinsics
}
return 1;
}
int qra65_esnodb_fastfading(
const qra65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies)
{
// Estimate the Es/No ratio of the decoded codeword
int n,j;
int nN, nM, nBinsPerSymbol, nBinsPerTone, nWeights, nTotWeights;
const float *pCurSym, *pCurTone, *pCurBin;
float EsPlusWNo,u, minu, ffNoiseVar, ffEsNoMetric;
if (pCodec==NULL)
return QRA65_DECODE_INVPARAMS;
nN = qra65_get_codeword_length(pCodec);
nM = qra65_get_alphabet_size(pCodec);
nBinsPerTone = pCodec->nBinsPerTone;
nBinsPerSymbol = pCodec->nBinsPerSymbol;
nWeights = pCodec->nWeights;
ffNoiseVar = pCodec->ffNoiseVar;
ffEsNoMetric = pCodec->ffEsNoMetric;
nTotWeights = 2*nWeights-1;
// compute symbols energy (noise included) summing the
// energies pertaining to the decoded symbols in the codeword
EsPlusWNo = 0.0f;
pCurSym = pInputEnergies + nM; // point to first central bin of first symbol tone
for (n=0;n<nN;n++) {
pCurTone = pCurSym + ydec[n]*nBinsPerTone; // point to the central bin of the current decoded symbol
pCurBin = pCurTone - nWeights+1; // point to first bin
// sum over all the pertaining bins
for (j=0;j<nTotWeights;j++)
EsPlusWNo += pCurBin[j];
pCurSym +=nBinsPerSymbol;
}
EsPlusWNo = EsPlusWNo/nN; // Es + nTotWeigths*No
// The noise power ffNoiseVar computed in the qra65_intrisics_fastading(...) function
// is not the true noise power as it includes part of the signal energy.
// The true noise variance is:
// No = ffNoiseVar*(1+EsNoMetric/nBinsPerSymbol)/(1+EsNo/nBinsPerSymbol)
// Therefore:
// Es/No = EsPlusWNo/No - W = EsPlusWNo/ffNoiseVar*(1+Es/No/nBinsPerSymbol)/(1+Es/NoMetric/nBinsPerSymbol) - W
// and:
// Es/No*(1-u/nBinsPerSymbol) = u-W or Es/No = (u-W)/(1-u/nBinsPerSymbol)
// where:
// u = EsPlusNo/ffNoiseVar/(1+EsNoMetric/nBinsPerSymbol)
u = EsPlusWNo/(ffNoiseVar*(1+ffEsNoMetric/nBinsPerSymbol));
minu = nTotWeights+0.316f;
if (u<minu)
u = minu; // Limit the minimum Es/No to -5 dB approx.
u = (u-nTotWeights)/(1.0f -u/nBinsPerSymbol); // linear scale Es/No
*pEsNodB = 10.0f*log10f(u);
return 1;
}
int qra65_decode(qra65_codec_ds *pCodec, int* pDecodedCodeword, int *pDecodedMsg, const float *pIntrinsics, const int *pAPMask, const int *pAPSymbols)
{
const qracode *pQraCode;
float *ix, *ex;
int *px;
int *py;
int nK, nN, nM,nBits;
int rc;
int crc6;
int crc12[2];
if (!pCodec)
return QRA65_DECODE_INVPARAMS; // which codec?
pQraCode = pCodec->pQraCode;
ix = pCodec->ix;
ex = pCodec->ex;
nK = _qra65_get_message_length(pQraCode);
nN = _qra65_get_codeword_length(pQraCode);
nM = pQraCode->M;
nBits = pQraCode->m;
px = pCodec->x;
py = pCodec->y;
// Depuncture intrinsics observations as required by the code type
switch (pQraCode->type) {
case QRATYPE_CRCPUNCTURED:
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
memcpy(ix+(nK+1)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
break;
case QRATYPE_CRCPUNCTURED2:
memcpy(ix,pIntrinsics,nK*nM*sizeof(float)); // information symbols
pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM); // crc
pd_init(PD_ROWADDR(ix,nM,nK+1),pd_uniform(nBits),nM); // crc
memcpy(ix+(nK+2)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float)); // parity checks
break;
case QRATYPE_NORMAL:
case QRATYPE_CRC:
default:
// no puncturing
memcpy(ix,pIntrinsics,nN*nM*sizeof(float)); // as they are
}
// mask the intrinsics with the available a priori knowledge
if (pAPMask!=NULL)
_qra65_mask(pQraCode,ix,pAPMask,pAPSymbols);
// Compute the extrinsic symbols probabilities with the message-passing algorithm
// Stop if the extrinsics information does not converges to unity
// within the given number of iterations
rc = qra_extrinsic( pQraCode,
ex,
ix,
100,
pCodec->qra_v2cmsg,
pCodec->qra_c2vmsg);
if (rc<0)
// failed to converge to a solution
return QRA65_DECODE_FAILED;
// decode the information symbols (punctured information symbols included)
qra_mapdecode(pQraCode,px,ex,ix);
// verify CRC match
switch (pQraCode->type) {
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
crc6=_qra65_crc6(px,nK); // compute crc-6
if (crc6!=px[nK])
return QRA65_DECODE_CRCMISMATCH; // crc doesn't match
break;
case QRATYPE_CRCPUNCTURED2:
_qra65_crc12(crc12, px,nK); // compute crc-12
if (crc12[0]!=px[nK] ||
crc12[1]!=px[nK+1])
return QRA65_DECODE_CRCMISMATCH; // crc doesn't match
break;
case QRATYPE_NORMAL:
default:
// nothing to check
break;
}
// copy the decoded msg to the user buffer (excluding punctured symbols)
if (pDecodedMsg)
memcpy(pDecodedMsg,px,nK*sizeof(int));
if (pDecodedCodeword==NULL) // user is not interested in it
return rc; // return the number of iterations required to decode
// crc matches therefore we can reconstruct the transmitted codeword
// reencoding the information available in px...
qra_encode(pQraCode, py, px);
// ...and strip the punctured symbols from the codeword
switch (pQraCode->type) {
case QRATYPE_CRCPUNCTURED:
memcpy(pDecodedCodeword,py,nK*sizeof(int));
memcpy(pDecodedCodeword+nK,py+nK+1,(nN-nK)*sizeof(int)); // puncture crc-6 symbol
break;
case QRATYPE_CRCPUNCTURED2:
memcpy(pDecodedCodeword,py,nK*sizeof(int));
memcpy(pDecodedCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // puncture crc-12 symbols
break;
case QRATYPE_CRC:
case QRATYPE_NORMAL:
default:
memcpy(pDecodedCodeword,py,nN*sizeof(int)); // no puncturing
}
return rc; // return the number of iterations required to decode
}
// helper functions -------------------------------------------------------------
int _qra65_get_message_length(const qracode *pCode)
{
// return the actual information message length (in symbols)
// excluding any punctured symbol
int nMsgLength;
switch (pCode->type) {
case QRATYPE_NORMAL:
nMsgLength = pCode->K;
break;
case QRATYPE_CRC:
case QRATYPE_CRCPUNCTURED:
// one information symbol of the underlying qra code is reserved for CRC
nMsgLength = pCode->K-1;
break;
case QRATYPE_CRCPUNCTURED2:
// two code information symbols are reserved for CRC
nMsgLength = pCode->K-2;
break;
default:
nMsgLength = -1;
}
return nMsgLength;
}
int _qra65_get_codeword_length(const qracode *pCode)
{
// return the actual codeword length (in symbols)
// excluding any punctured symbol
int nCwLength;
switch (pCode->type) {
case QRATYPE_NORMAL:
case QRATYPE_CRC:
// no puncturing
nCwLength = pCode->N;
break;
case QRATYPE_CRCPUNCTURED:
// the CRC symbol is punctured
nCwLength = pCode->N-1;
break;
case QRATYPE_CRCPUNCTURED2:
// the two CRC symbols are punctured
nCwLength = pCode->N-2;
break;
default:
nCwLength = -1;
}
return nCwLength;
}
float _qra65_get_code_rate(const qracode *pCode)
{
return 1.0f*_qra65_get_message_length(pCode)/_qra65_get_codeword_length(pCode);
}
int _qra65_get_alphabet_size(const qracode *pCode)
{
return pCode->M;
}
int _qra65_get_bits_per_symbol(const qracode *pCode)
{
return pCode->m;
}
static void _qra65_mask(const qracode *pcode, float *ix, const int *mask, const int *x)
{
// mask intrinsic information ix with available a priori knowledge
int k,kk, smask;
const int nM=pcode->M;
const int nm=pcode->m;
int nK;
// Exclude from masking the symbols which have been punctured.
// nK is the length of the mask and x arrays, which do
// not include any punctured symbol
nK = _qra65_get_message_length(pcode);
// for each symbol set to zero the probability
// of the values which are not allowed by
// the a priori information
for (k=0;k<nK;k++) {
smask = mask[k];
if (smask) {
for (kk=0;kk<nM;kk++)
if (((kk^x[k])&smask)!=0)
// This symbol value is not allowed
// by the AP information
// Set its probability to zero
*(PD_ROWADDR(ix,nM,k)+kk) = 0.f;
// normalize to a probability distribution
pd_norm(PD_ROWADDR(ix,nM,k),nm);
}
}
}
// CRC generation functions
// crc-6 generator polynomial
// g(x) = x^6 + x + 1
#define CRC6_GEN_POL 0x30 // MSB=a0 LSB=a5
// crc-12 generator polynomial
// g(x) = x^12 + x^11 + x^3 + x^2 + x + 1
#define CRC12_GEN_POL 0xF01 // MSB=a0 LSB=a11
// g(x) = x^6 + x^2 + x + 1 (as suggested by Joe. See i.e.: https://users.ece.cmu.edu/~koopman/crc/)
// #define CRC6_GEN_POL 0x38 // MSB=a0 LSB=a5. Simulation results are similar
static int _qra65_crc6(int *x, int sz)
{
int k,j,t,sr = 0;
for (k=0;k<sz;k++) {
t = x[k];
for (j=0;j<6;j++) {
if ((t^sr)&0x01)
sr = (sr>>1) ^ CRC6_GEN_POL;
else
sr = (sr>>1);
t>>=1;
}
}
return sr;
}
static void _qra65_crc12(int *y, int *x, int sz)
{
int k,j,t,sr = 0;
for (k=0;k<sz;k++) {
t = x[k];
for (j=0;j<6;j++) {
if ((t^sr)&0x01)
sr = (sr>>1) ^ CRC12_GEN_POL;
else
sr = (sr>>1);
t>>=1;
}
}
y[0] = sr&0x3F;
y[1] = (sr>>6);
}

101
lib/qra/q65/qra65.h Normal file
View File

@ -0,0 +1,101 @@
// qra65.h
// QRA65 modes encoding/decoding functions
//
// (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _qra65_h
#define _qra65_h
#include "qracodes.h"
// Error codes returned by qra65_decode(...)
#define QRA65_DECODE_INVPARAMS -1
#define QRA65_DECODE_FAILED -2
#define QRA65_DECODE_CRCMISMATCH -3
// maximum number of weights for the fast-fading metric evaluation
#define QRA65_FASTFADING_MAXWEIGTHS 65
typedef struct {
const qracode *pQraCode; // qra code to be used by the codec
float decoderEsNoMetric; // value for which we optimize the decoder metric
int *x; // codec input
int *y; // codec output
float *qra_v2cmsg; // decoder v->c messages
float *qra_c2vmsg; // decoder c->v messages
float *ix; // decoder intrinsic information
float *ex; // decoder extrinsic information
// variables used to compute the intrinsics in the fast-fading case
int nBinsPerTone;
int nBinsPerSymbol;
float ffNoiseVar;
float ffEsNoMetric;
int nWeights;
float ffWeight[QRA65_FASTFADING_MAXWEIGTHS];
} qra65_codec_ds;
int qra65_init(qra65_codec_ds *pCodec, const qracode *pQraCode);
void qra65_free(qra65_codec_ds *pCodec);
int qra65_encode(const qra65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg);
int qra65_intrinsics(qra65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies);
int qra65_intrinsics_fastfading(qra65_codec_ds *pCodec,
float *pIntrinsics, // intrinsic symbol probabilities output
const float *pInputEnergies, // received energies input
const int submode, // submode idx (0=A ... 4=E)
const float B90, // spread bandwidth (90% fractional energy)
const int fadingModel); // 0=Gaussian 1=Lorentzian fade model
int qra65_decode(qra65_codec_ds *pCodec,
int* pDecodedCodeword,
int *pDecodedMsg,
const float *pIntrinsics,
const int *pAPMask,
const int *pAPSymbols);
int qra65_esnodb(const qra65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies);
int qra65_esnodb_fastfading(
const qra65_codec_ds *pCodec,
float *pEsNodB,
const int *ydec,
const float *pInputEnergies);
#define qra65_get_message_length(pCodec) _qra65_get_message_length((pCodec)->pQraCode)
#define qra65_get_codeword_length(pCodec) _qra65_get_codeword_length((pCodec)->pQraCode)
#define qra65_get_code_rate(pCodec) _qra65_get_code_rate((pCodec)->pQraCode)
#define qra65_get_alphabet_size(pCodec) _qra65_get_alphabet_size((pCodec)->pQraCode)
#define qra65_get_bits_per_symbol(pCodec) _qra65_get_bits_per_symbol((pCodec)->pQraCode)
// internally used but made publicly available for the defines above
int _qra65_get_message_length(const qracode *pCode);
int _qra65_get_codeword_length(const qracode *pCode);
float _qra65_get_code_rate(const qracode *pCode);
void _qra65_mask(const qracode *pcode, float *ix, const int *mask, const int *x);
int _qra65_get_alphabet_size(const qracode *pCode);
int _qra65_get_bits_per_symbol(const qracode *pCode);
#endif // _qra65_h

474
lib/qra/q65/qracodes.c Normal file
View File

@ -0,0 +1,474 @@
// qracodes.c
// Q-ary RA codes encoding/decoding functions
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#include <stdio.h>
#include <math.h>
#include "npfwht.h"
#include "pdmath.h"
#include "qracodes.h"
int qra_encode(const qracode *pcode, int *y, const int *x)
{
int k,j,kk,jj;
int t, chk = 0;
const int K = pcode->K;
const int M = pcode->M;
const int NC= pcode->NC;
const int a = pcode->a;
const int *acc_input_idx = pcode->acc_input_idx;
const int *acc_input_wlog = pcode->acc_input_wlog;
const int *gflog = pcode->gflog;
const int *gfexp = pcode->gfexp;
// copy the systematic symbols to destination
memcpy(y,x,K*sizeof(int));
y = y+K; // point to check symbols
// compute the code check symbols as a weighted accumulation of a permutated
// sequence of the (repeated) systematic input symbols:
// chk(k+1) = x(idx(k))*alfa^(logw(k)) + chk(k)
// (all operations performed over GF(M))
if (a==1) { // grouping factor = 1
for (k=0;k<NC;k++) {
t = x[acc_input_idx[k]];
if (t) {
// multiply input by weight[k] and xor it with previous check
t = (gflog[t] + acc_input_wlog[k])%(M-1);
t = gfexp[t];
chk ^=t;
}
y[k] = chk;
}
#ifdef QRA_DEBUG
// verify that the encoder accumulator is terminated to 0
// (we designed the code this way so that Iex = 1 when Ia = 1)
t = x[acc_input_idx[k]];
if (t) {
t = (gflog[t] + acc_input_wlog[k])%(M-1);
t = gfexp[t];
// accumulation
chk ^=t;
}
return (chk==0);
#else
return 1;
#endif // QRA_DEBUG
}
else { // grouping factor > 1
for (k=0;k<NC;k++) {
kk = a*k;
for (j=0;j<a;j++) {
jj = kk+j;
// irregular grouping support
if (acc_input_idx[jj]<0)
continue;
t = x[acc_input_idx[jj]];
if (t) {
// multiply input by weight[k] and xor it with previous check
t = (gflog[t] + acc_input_wlog[jj])%(M-1);
t = gfexp[t];
chk ^=t;
}
}
y[k] = chk;
}
#ifdef QRA_DEBUG
// verify that the encoder accumulator is terminated to 0
// (we designed the code this way so that Iex = 1 when Ia = 1)
kk = a*k;
for (j=0;j<a;j++) {
jj = kk+j;
if (acc_input_idx[jj]<0)
continue;
t = x[acc_input_idx[jj]];
if (t) {
// multiply input by weight[k] and xor it with previous check
t = (gflog[t] + acc_input_wlog[jj])%(M-1);
t = gfexp[t];
chk ^=t;
}
}
return (chk==0);
#else
return 1;
#endif // QRA_DEBUG
}
}
static void qra_ioapprox(float *src, float C, int nitems)
{
// In place approximation of the modified bessel function I0(x*C)
// Computes src[k] = Io(src[k]*C) where Io() is the modified Bessel function of first kind and order 0
float v;
float vsq;
while (nitems--) {
v = src[nitems]*C;
// rational approximation of log(Io(v))
vsq = v*v;
v = vsq*(v+0.039f)/(vsq*.9931f+v*2.6936f+0.5185f);
if (v>80.f) // avoid floating point exp() overflows
v=80.f;
src[nitems] = (float)exp(v);
}
}
float qra_mfskbesselmetric(float *pix, const float *rsq, const int m, const int N, float EsNoMetric)
{
// Computes the codeword symbols intrinsic probabilities
// given the square of the received input amplitudes.
// The input vector rqs must be a linear array of size M*N, where M=2^m,
// containing the squared amplitudes (rp*rp+rq*rq) of the input samples
// First symbol amplitudes should be stored in the first M positions,
// second symbol amplitudes stored at positions [M ... 2*M-1], and so on.
// Output vector is the intrinsic symbol metric (the probability distribution)
// assuming that symbols are transmitted using a M-FSK modulation
// and incoherent demodulation.
// As the input Es/No is generally unknown (as it cannot be exstimated accurately
// when the codeword length is few tens symbols) but an exact metric requires it
// we simply fix it to a predefined EsNoMetric value so that the metric is what
// expected at that specific value.
// The metric computed in this way is optimal only at this predefined Es/No value,
// nevertheless it is usually better than a generic parameter-free metric which
// makes no assumptions on the input Es/No.
// returns the estimated noise standard deviation
int k;
float rsum = 0.f;
float sigmaest, cmetric;
const int M = 1<<m;
const int nsamples = M*N;
// compute total power and modulus of input signal
for (k=0;k<nsamples;k++) {
rsum = rsum+rsq[k];
pix[k] = (float)sqrt(rsq[k]);
}
rsum = rsum/nsamples; // average S+N
// IMPORTANT NOTE: in computing the noise stdev it is assumed that
// in the input amplitudes there's no strong interference!
// A more robust estimation can be done evaluating the histogram of the input amplitudes
sigmaest = (float)sqrt(rsum/(1.0f+EsNoMetric/M)/2); // estimated noise stdev
cmetric = (float)sqrt(2*EsNoMetric)/sigmaest;
for (k=0;k<N;k++) {
// compute bessel metric for each symbol in the codeword
qra_ioapprox(PD_ROWADDR(pix,M,k),cmetric,M);
// normalize to a probability distribution
pd_norm(PD_ROWADDR(pix,M,k),m);
}
return sigmaest;
}
#ifdef QRA_DEBUG
void pd_print(int imsg,float *ppd,int size)
{
int k;
printf("imsg=%d\n",imsg);
for (k=0;k<size;k++)
printf("%7.1e ",ppd[k]);
printf("\n");
}
#endif
#define ADDRMSG(fp, msgidx) PD_ROWADDR(fp,qra_M,msgidx)
#define C2VMSG(msgidx) PD_ROWADDR(qra_c2vmsg,qra_M,msgidx)
#define V2CMSG(msgidx) PD_ROWADDR(qra_v2cmsg,qra_M,msgidx)
#define MSGPERM(logw) PD_ROWADDR(qra_pmat,qra_M,logw)
#define QRACODE_MAX_M 256 // Maximum alphabet size handled by qra_extrinsic
int qra_extrinsic(const qracode *pcode,
float *pex,
const float *pix,
int maxiter,
float *qra_v2cmsg,
float *qra_c2vmsg)
{
const int qra_M = pcode->M;
const int qra_m = pcode->m;
const int qra_V = pcode->V;
const int qra_MAXVDEG = pcode->MAXVDEG;
const int *qra_vdeg = pcode->vdeg;
const int qra_C = pcode->C;
const int qra_MAXCDEG = pcode->MAXCDEG;
const int *qra_cdeg = pcode->cdeg;
const int *qra_v2cmidx = pcode->v2cmidx;
const int *qra_c2vmidx = pcode->c2vmidx;
const int *qra_pmat = pcode->gfpmat;
const int *qra_msgw = pcode->msgw;
// float msgout[qra_M]; // buffer to store temporary results
float msgout[QRACODE_MAX_M]; // we use a fixed size in order to avoid mallocs
float totex; // total extrinsic information
int nit; // current iteration
int nv; // current variable
int nc; // current check
int k,kk; // loop indexes
int ndeg; // current node degree
int msgbase; // current offset in the table of msg indexes
int imsg; // current message index
int wmsg; // current message weight
int rc = -1; // rc>=0 extrinsic converged to 1 at iteration rc (rc=0..maxiter-1)
// rc=-1 no convergence in the given number of iterations
// rc=-2 error in the code tables (code checks degrees must be >1)
// rc=-3 M is larger than QRACODE_MAX_M
if (qra_M>QRACODE_MAX_M)
return -3;
// message initialization -------------------------------------------------------
// init c->v variable intrinsic msgs
pd_init(C2VMSG(0),pix,qra_M*qra_V);
// init the v->c messages directed to code factors (k=1..ndeg) with the intrinsic info
for (nv=0;nv<qra_V;nv++) {
ndeg = qra_vdeg[nv]; // degree of current node
msgbase = nv*qra_MAXVDEG; // base to msg index row for the current node
// copy intrinsics on v->c
for (k=1;k<ndeg;k++) {
imsg = qra_v2cmidx[msgbase+k];
pd_init(V2CMSG(imsg),ADDRMSG(pix,nv),qra_M);
}
}
// message passing algorithm iterations ------------------------------
for (nit=0;nit<maxiter;nit++) {
// c->v step -----------------------------------------------------
// Computes messages from code checks to code variables.
// As the first qra_V checks are associated with intrinsic information
// (the code tables have been constructed in this way)
// we need to do this step only for code checks in the range [qra_V..qra_C)
// The convolutions of probability distributions over the alphabet of a finite field GF(qra_M)
// are performed with a fast convolution algorithm over the given field.
//
// I.e. given the code check x1+x2+x3 = 0 (with x1,x2,x3 in GF(2^m))
// and given Prob(x2) and Prob(x3), we have that:
// Prob(x1=X1) = Prob((x2+x3)=X1) = sum((Prob(x2=X2)*Prob(x3=(X1+X2))) for all the X2s in the field
// This translates to Prob(x1) = IWHT(WHT(Prob(x2))*WHT(Prob(x3)))
// where WHT and IWHT are the direct and inverse Walsh-Hadamard transforms of the argument.
// Note that the WHT and the IWHF differs only by a multiplicative coefficent and since in this step
// we don't need that the output distribution is normalized we use the relationship
// Prob(x1) =(proportional to) WH(WH(Prob(x2))*WH(Prob(x3)))
// In general given the check code x1+x2+x3+..+xm = 0
// the output distribution of a variable given the distributions of the other m-1 variables
// is the inverse WHT of the product of the WHTs of the distribution of the other m-1 variables
// The complexity of this algorithm scales with M*log2(M) instead of the M^2 complexity of
// the brute force approach (M=size of the alphabet)
for (nc=qra_V;nc<qra_C;nc++) {
ndeg = qra_cdeg[nc]; // degree of current node
if (ndeg==1) // this should never happen (code factors must have deg>1)
return -2; // bad code tables
msgbase = nc*qra_MAXCDEG; // base to msg index row for the current node
// transforms inputs in the Walsh-Hadamard "frequency" domain
// v->c -> fwht(v->c)
for (k=0;k<ndeg;k++) {
imsg = qra_c2vmidx[msgbase+k]; // msg index
np_fwht(qra_m,V2CMSG(imsg),V2CMSG(imsg)); // compute fwht
}
// compute products and transform them back in the WH "time" domain
for (k=0;k<ndeg;k++) {
// init output message to uniform distribution
pd_init(msgout,pd_uniform(qra_m),qra_M);
// c->v = prod(fwht(v->c))
// TODO: we assume that checks degrees are not larger than three but
// if they are larger the products can be computed more efficiently
for (kk=0;kk<ndeg;kk++)
if (kk!=k) {
imsg = qra_c2vmidx[msgbase+kk];
pd_imul(msgout,V2CMSG(imsg),qra_m);
}
// transform product back in the WH "time" domain
// Very important trick:
// we bias WHT[0] so that the sum of output pd components is always strictly positive
// this helps avoiding the effects of underflows in the v->c steps when multipling
// small fp numbers
msgout[0]+=1E-7f; // TODO: define the bias accordingly to the field size
np_fwht(qra_m,msgout,msgout);
// inverse weight and output
imsg = qra_c2vmidx[msgbase+k]; // current output msg index
wmsg = qra_msgw[imsg]; // current msg weight
if (wmsg==0)
pd_init(C2VMSG(imsg),msgout,qra_M);
else
// output p(alfa^(-w)*x)
pd_bwdperm(C2VMSG(imsg),msgout, MSGPERM(wmsg), qra_M);
} // for (k=0;k<ndeg;k++)
} // for (nc=qra_V;nc<qra_C;nc++)
// v->c step -----------------------------------------------------
for (nv=0;nv<qra_V;nv++) {
ndeg = qra_vdeg[nv]; // degree of current node
msgbase = nv*qra_MAXVDEG; // base to msg index row for the current node
for (k=0;k<ndeg;k++) {
// init output message to uniform distribution
pd_init(msgout,pd_uniform(qra_m),qra_M);
// v->c msg = prod(c->v)
// TODO: factor factors to reduce the number of computations for high degree nodes
for (kk=0;kk<ndeg;kk++)
if (kk!=k) {
imsg = qra_v2cmidx[msgbase+kk];
pd_imul(msgout,C2VMSG(imsg),qra_m);
}
#ifdef QRA_DEBUG
// normalize and check if product of messages v->c are null
// normalize output to a probability distribution
if (pd_norm(msgout,qra_m)<=0) {
// dump msgin;
printf("warning: v->c pd with invalid norm. nit=%d nv=%d k=%d\n",nit,nv,k);
for (kk=0;kk<ndeg;kk++) {
imsg = qra_v2cmidx[msgbase+kk];
pd_print(imsg,C2VMSG(imsg),qra_M);
}
printf("-----------------\n");
}
#else
// normalize the result to a probability distribution
pd_norm(msgout,qra_m);
#endif
// weight and output
imsg = qra_v2cmidx[msgbase+k]; // current output msg index
wmsg = qra_msgw[imsg]; // current msg weight
if (wmsg==0) {
pd_init(V2CMSG(imsg),msgout,qra_M);
}
else {
// output p(alfa^w*x)
pd_fwdperm(V2CMSG(imsg),msgout, MSGPERM(wmsg), qra_M);
}
} // for (k=0;k<ndeg;k++)
} // for (nv=0;nv<qra_V;nv++)
// check extrinsic information ------------------------------
// We assume that decoding is successful if each of the extrinsic
// symbol probability is close to ej, where ej = [0 0 0 1(j-th position) 0 0 0 ]
// Therefore, for each symbol k in the codeword we compute max(prob(Xk))
// and we stop the iterations if sum(max(prob(xk)) is close to the codeword length
// Note: this is a more restrictive criterium than that of computing the a
// posteriori probability of each symbol, making a hard decision and then check
// if the codeword syndrome is null.
// WARNING: this is tricky and probably works only for the particular class of RA codes
// we are coping with (we designed the code weights so that for any input symbol the
// sum of its weigths is always 0, thus terminating the accumulator trellis to zero
// for every combination of the systematic symbols).
// More generally we should instead compute the max a posteriori probabilities
// (as a product of the intrinsic and extrinsic information), make a symbol by symbol hard
// decision and then check that the syndrome of the result is indeed null.
totex = 0;
for (nv=0;nv<qra_V;nv++)
totex += pd_max(V2CMSG(nv),qra_M);
if (totex>(1.*(qra_V)-0.01)) {
// the total maximum extrinsic information of each symbol in the codeword
// is very close to one. This means that we have reached the (1,1) point in the
// code EXIT chart(s) and we have successfully decoded the input.
rc = nit;
break; // remove the break to evaluate the decoder speed performance as a function of the max iterations number)
}
} // for (nit=0;nit<maxiter;nit++)
// copy extrinsic information to output to do the actual max a posteriori prob decoding
pd_init(pex,V2CMSG(0),(qra_M*qra_V));
return rc;
}
void qra_mapdecode(const qracode *pcode, int *xdec, float *pex, const float *pix)
{
// Maximum a posteriori probability decoding.
// Given the intrinsic information (pix) and extrinsic information (pex) (computed with qra_extrinsic(...))
// compute pmap = pex*pix and decode each (information) symbol of the received codeword
// as the symbol which maximizes pmap
// Returns:
// xdec[k] = decoded (information) symbols k=[0..qra_K-1]
// Note: pex is destroyed and overwritten with mapp
const int qra_M = pcode->M;
const int qra_m = pcode->m;
const int qra_K = pcode->K;
int k;
for (k=0;k<qra_K;k++) {
// compute a posteriori prob
pd_imul(PD_ROWADDR(pex,qra_M,k),PD_ROWADDR(pix,qra_M,k),qra_m);
xdec[k]=pd_argmax(NULL, PD_ROWADDR(pex,qra_M,k), qra_M);
}
}

80
lib/qra/q65/qracodes.h Normal file
View File

@ -0,0 +1,80 @@
// qracodes.h
// Q-ary RA codes encoding/decoding functions
//
// (c) 2016 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// qracodes is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
#ifndef _qracodes_h_
#define _qracodes_h_
// type of codes
#define QRATYPE_NORMAL 0x00 // normal code
#define QRATYPE_CRC 0x01 // code with crc - last information symbol is a CRC-6
#define QRATYPE_CRCPUNCTURED 0x02 // the CRC-6 symbol is punctured (not sent along the channel)
#define QRATYPE_CRCPUNCTURED2 0x03 // code with CRC-12. The two crc symbols are punctured
typedef struct {
// code parameters
const int K; // number of information symbols
const int N; // codeword length in symbols
const int m; // bits/symbol
const int M; // Symbol alphabet cardinality (2^m)
const int a; // code grouping factor
const int NC; // number of check symbols (N-K)
const int V; // number of variables in the code graph (N)
const int C; // number of factors in the code graph (N +(N-K)+1)
const int NMSG; // number of msgs in the code graph
const int MAXVDEG; // maximum variable degree
const int MAXCDEG; // maximum factor degree
const int type; // see QRATYPE_xx defines
const float R; // code rate (K/N)
const char name[64]; // code name
// tables used by the encoder
const int *acc_input_idx;
const int *acc_input_wlog;
const int *gflog;
const int *gfexp;
// tables used by the decoder -------------------------
const int *msgw;
const int *vdeg;
const int *cdeg;
const int *v2cmidx;
const int *c2vmidx;
const int *gfpmat;
} qracode;
// Uncomment the header file of the code which needs to be tested
//#include "qra12_63_64_irr_b.h" // irregular code (12,63) over GF(64)
//#include "qra13_64_64_irr_e.h" // irregular code with good performance and best UER protection at AP56
//#include "qra13_64_64_reg_a.h" // regular code with good UER but perf. inferior to that of code qra12_63_64_irr_b
#ifdef __cplusplus
extern "C" {
#endif
int qra_encode(const qracode *pcode, int *y, const int *x);
float qra_mfskbesselmetric(float *pix, const float *rsq, const int m, const int N, float EsNoMetric);
int qra_extrinsic(const qracode *pcode, float *pex, const float *pix, int maxiter,float *qra_v2cmsg,float *qra_c2vmsg);
void qra_mapdecode(const qracode *pcode, int *xdec, float *pex, const float *pix);
#ifdef __cplusplus
}
#endif
#endif // _qracodes_h_

View File

@ -0,0 +1,19 @@
#Code Name: qra15_65_64_irr_e23
#ChannelType (0=AWGN,1=Rayleigh,2=Fast-Fading)
#Eb/No (dB)
#Transmitted Codewords
#Errors
#CRC Errors
#Undetected
#Avg dec. time (ms)
#WER
#UER
2 -30.00 106 106 0 0 4.87 1.00e+000 0.00e+000
2 0.50 1006 1006 0 0 4.91 1.00e+000 0.00e+000
2 1.00 1007 1006 0 0 4.98 9.99e-001 0.00e+000
2 1.50 1009 1007 0 0 4.97 9.98e-001 0.00e+000
2 2.00 1017 1007 1 0 4.84 9.90e-001 2.40e-007
2 2.50 1047 1006 1 0 4.79 9.61e-001 2.33e-007
2 3.00 1148 1006 3 0 4.61 8.76e-001 6.38e-007
2 3.50 1338 1006 6 0 4.43 7.52e-001 1.10e-006
2 4.00 1902 1006 7 0 3.94 5.29e-001 8.99e-007