mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-25 21:58:38 -05:00
Use u_i, sigma_i for Eqs 10 and 11, and other edits.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6360 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
cf5f3916c7
commit
20381b971a
@ -849,7 +849,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
of the symbol's fractional power
|
of the symbol's fractional power
|
||||||
\begin_inset Formula $p_{1,\, j}$
|
\begin_inset Formula $p_{1,\,j}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
in a sorted list of
|
in a sorted list of
|
||||||
@ -919,7 +919,7 @@ t educated guesses to select symbols for erasure.
|
|||||||
, the soft distance between the received word and the codeword:
|
, the soft distance between the received word and the codeword:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\, j}).\label{eq:soft_distance}
|
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -937,7 +937,7 @@ Here
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
if the received symbol and codeword symbol are different, and
|
if the received symbol and codeword symbol are different, and
|
||||||
\begin_inset Formula $p_{1,\, j}$
|
\begin_inset Formula $p_{1,\,j}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the fractional power associated with received symbol
|
is the fractional power associated with received symbol
|
||||||
@ -981,7 +981,7 @@ In practice we find that
|
|||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).\label{eq:u-metric}
|
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -1010,7 +1010,7 @@ Here the
|
|||||||
|
|
||||||
bins containing noise only.
|
bins containing noise only.
|
||||||
Thus, if the spectral array
|
Thus, if the spectral array
|
||||||
\begin_inset Formula $S(i,\, j)$
|
\begin_inset Formula $S(i,\,j)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
has been normalized so that the average value of the noise-only bins is
|
has been normalized so that the average value of the noise-only bins is
|
||||||
@ -1051,17 +1051,39 @@ where
|
|||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
In contrast, worst-case incorrect codewords will yield
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
In contrast, the expected value and standard deviation of the
|
||||||
\begin_inset Formula $u$
|
\begin_inset Formula $u$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-metrics with expectation value and standard deviation given by
|
-metric for a randomly selected incorrect codeword (selected from a population
|
||||||
|
of all
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
worst case
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
codewords,
|
||||||
|
\emph on
|
||||||
|
i.e.
|
||||||
|
\emph default
|
||||||
|
, those with
|
||||||
|
\begin_inset Formula $k-1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
symbols identical to corresponding ones in the correct word) are given
|
||||||
|
by
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\bar{u}_{2}=1+\left(\frac{k-1}{n}\right)y,\label{eq:u2-exp}
|
\bar{u}_{i}=1+\left(\frac{k-1}{n}\right)y,\label{eq:u2-exp}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -1072,39 +1094,72 @@ In contrast, worst-case incorrect codewords will yield
|
|||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sigma_{2}=\frac{1}{n}\left[n+2y(k-1)\right]^{1/2}.\label{eq:sigma2}
|
\sigma_{i}=\frac{1}{n}\left[n+2y(k-1)\right]^{1/2}.\label{eq:sigma2}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
If
|
||||||
|
\begin_inset Formula $u$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
\end_layout
|
is evaluated for a large number of candidate codewords, one of which is
|
||||||
|
correct, we should expect the largest value
|
||||||
\begin_layout Standard
|
|
||||||
If tests on a number of tested candidate codewords yield largest and second-larg
|
|
||||||
est metrics
|
|
||||||
\begin_inset Formula $u_{1}$
|
\begin_inset Formula $u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
to be drawn from a population with statistics described by
|
||||||
|
\begin_inset Formula $\bar{u}_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and
|
and
|
||||||
\begin_inset Formula $u_{2},$
|
\begin_inset Formula $\sigma_{1}.$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
respectively, we expect the ratio
|
If no tested codeword is correct,
|
||||||
\begin_inset Formula $r=u_{2}/u_{1}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to be significantly smaller in cases where the candidate associated with
|
|
||||||
|
|
||||||
\begin_inset Formula $u_{1}$
|
\begin_inset Formula $u_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is in fact the correct codeword.
|
is likely to come from the
|
||||||
On the other hand, if none of the tested candidates is correct,
|
\begin_inset Formula $(\bar{u}_{i},\,\sigma_{i})$
|
||||||
\begin_inset Formula $r$
|
\end_inset
|
||||||
|
|
||||||
|
population and to be several standard deviations above the mean.
|
||||||
|
In either case the second-largest value,
|
||||||
|
\begin_inset Formula $u_{2},$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
will likely come from the
|
||||||
|
\begin_inset Formula $(\bar{u}_{i},\,\sigma_{i})$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
population, again several standard deviations above the mean.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
If no tested codeword is correct or the signal-to-noise ratio
|
||||||
|
\begin_inset Formula $y$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is too small for decoding to be possible, the ratio
|
||||||
|
\begin_inset Formula $r=u_{2}/u_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
will likely be close to 1.
|
will likely be close to 1.
|
||||||
|
On the other hand, correctly identified codewords will produce
|
||||||
|
\begin_inset Formula $u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
significantly larger than
|
||||||
|
\begin_inset Formula $u_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and thus smaller values of
|
||||||
|
\begin_inset Formula $r$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
We therefore apply a ratio threshold test, say
|
We therefore apply a ratio threshold test, say
|
||||||
\begin_inset Formula $r<r_{1}$
|
\begin_inset Formula $r<r_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -1203,7 +1258,7 @@ For each received symbol, define the erasure probability as 1.3 times the
|
|||||||
a priori
|
a priori
|
||||||
\emph default
|
\emph default
|
||||||
symbol-error probability determined from soft-symbol information
|
symbol-error probability determined from soft-symbol information
|
||||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$
|
\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
Loading…
Reference in New Issue
Block a user