mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	Use u_i, sigma_i for Eqs 10 and 11, and other edits.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6360 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
		
							parent
							
								
									cf5f3916c7
								
							
						
					
					
						commit
						20381b971a
					
				@ -849,7 +849,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 of the symbol's fractional power 
 | 
			
		||||
\begin_inset Formula $p_{1,\, j}$
 | 
			
		||||
\begin_inset Formula $p_{1,\,j}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 in a sorted list of 
 | 
			
		||||
@ -919,7 +919,7 @@ t educated guesses to select symbols for erasure.
 | 
			
		||||
, the soft distance between the received word and the codeword: 
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\begin{equation}
 | 
			
		||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\, j}).\label{eq:soft_distance}
 | 
			
		||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -937,7 +937,7 @@ Here
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 if the received symbol and codeword symbol are different, and 
 | 
			
		||||
\begin_inset Formula $p_{1,\, j}$
 | 
			
		||||
\begin_inset Formula $p_{1,\,j}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 is the fractional power associated with received symbol 
 | 
			
		||||
@ -981,7 +981,7 @@ In practice we find that
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\begin{equation}
 | 
			
		||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).\label{eq:u-metric}
 | 
			
		||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1010,7 +1010,7 @@ Here the
 | 
			
		||||
 | 
			
		||||
 bins containing noise only.
 | 
			
		||||
 Thus, if the spectral array 
 | 
			
		||||
\begin_inset Formula $S(i,\, j)$
 | 
			
		||||
\begin_inset Formula $S(i,\,j)$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 has been normalized so that the average value of the noise-only bins is
 | 
			
		||||
@ -1051,17 +1051,39 @@ where
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
In contrast, worst-case incorrect codewords will yield 
 | 
			
		||||
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
In contrast, the expected value and standard deviation of the 
 | 
			
		||||
\begin_inset Formula $u$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
-metrics with expectation value and standard deviation given by
 | 
			
		||||
-metric for a randomly selected incorrect codeword (selected from a population
 | 
			
		||||
 of all 
 | 
			
		||||
\begin_inset Quotes eld
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
worst case
 | 
			
		||||
\begin_inset Quotes erd
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 codewords, 
 | 
			
		||||
\emph on
 | 
			
		||||
i.e.
 | 
			
		||||
\emph default
 | 
			
		||||
, those with 
 | 
			
		||||
\begin_inset Formula $k-1$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 symbols identical to corresponding ones in the correct word) are given
 | 
			
		||||
 by
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\bar{u}_{2}=1+\left(\frac{k-1}{n}\right)y,\label{eq:u2-exp}
 | 
			
		||||
\bar{u}_{i}=1+\left(\frac{k-1}{n}\right)y,\label{eq:u2-exp}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1072,39 +1094,72 @@ In contrast, worst-case incorrect codewords will yield
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\sigma_{2}=\frac{1}{n}\left[n+2y(k-1)\right]^{1/2}.\label{eq:sigma2}
 | 
			
		||||
\sigma_{i}=\frac{1}{n}\left[n+2y(k-1)\right]^{1/2}.\label{eq:sigma2}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
If 
 | 
			
		||||
\begin_inset Formula $u$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
If tests on a number of tested candidate codewords yield largest and second-larg
 | 
			
		||||
est metrics 
 | 
			
		||||
 is evaluated for a large number of candidate codewords, one of which is
 | 
			
		||||
 correct, we should expect the largest value 
 | 
			
		||||
\begin_inset Formula $u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 to be drawn from a population with statistics described by 
 | 
			
		||||
\begin_inset Formula $\bar{u}_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 and 
 | 
			
		||||
\begin_inset Formula $u_{2},$
 | 
			
		||||
\begin_inset Formula $\sigma_{1}.$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 respectively, we expect the ratio 
 | 
			
		||||
\begin_inset Formula $r=u_{2}/u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 to be significantly smaller in cases where the candidate associated with
 | 
			
		||||
 
 | 
			
		||||
 If no tested codeword is correct, 
 | 
			
		||||
\begin_inset Formula $u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 is in fact the correct codeword.
 | 
			
		||||
 On the other hand, if none of the tested candidates is correct, 
 | 
			
		||||
\begin_inset Formula $r$
 | 
			
		||||
 is likely to come from the 
 | 
			
		||||
\begin_inset Formula $(\bar{u}_{i},\,\sigma_{i})$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 population and to be several standard deviations above the mean.
 | 
			
		||||
 In either case the second-largest value, 
 | 
			
		||||
\begin_inset Formula $u_{2},$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 will likely come from the 
 | 
			
		||||
\begin_inset Formula $(\bar{u}_{i},\,\sigma_{i})$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 population, again several standard deviations above the mean.
 | 
			
		||||
 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
If no tested codeword is correct or the signal-to-noise ratio 
 | 
			
		||||
\begin_inset Formula $y$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 is too small for decoding to be possible, the ratio 
 | 
			
		||||
\begin_inset Formula $r=u_{2}/u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 will likely be close to 1.
 | 
			
		||||
 On the other hand, correctly identified codewords will produce 
 | 
			
		||||
\begin_inset Formula $u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 significantly larger than 
 | 
			
		||||
\begin_inset Formula $u_{2}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 and thus smaller values of 
 | 
			
		||||
\begin_inset Formula $r$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
.
 | 
			
		||||
 We therefore apply a ratio threshold test, say 
 | 
			
		||||
\begin_inset Formula $r<r_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1203,7 +1258,7 @@ For each received symbol, define the erasure probability as 1.3 times the
 | 
			
		||||
a priori
 | 
			
		||||
\emph default
 | 
			
		||||
 symbol-error probability determined from soft-symbol information 
 | 
			
		||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$
 | 
			
		||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
.
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user