Remove some test code.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@8245 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
Steven Franke 2017-11-18 23:11:35 +00:00
parent d69564242e
commit 2620401b4b
10 changed files with 7 additions and 701 deletions

View File

@ -336,7 +336,6 @@ set (wsjt_FSRCS
# put module sources first in the hope that they get rebuilt before use
lib/crc.f90
lib/fftw3mod.f90
lib/fsk4hf/gf64math.f90
lib/hashing.f90
lib/iso_c_utilities.f90
lib/jt4.f90
@ -412,7 +411,7 @@ set (wsjt_FSRCS
lib/fsk4hf/encode300.f90
lib/entail.f90
lib/ephem.f90
lib/fsk4hf/extract_ap.f90
lib/extract.f90
lib/extract4.f90
lib/extractmessage144.f90
lib/fsk4hf/extractmessage168.f90
@ -516,7 +515,6 @@ set (wsjt_FSRCS
lib/mskrtd.f90
lib/fsk4hf/msksoftsym.f90
lib/fsk4hf/msksoftsymw.f90
lib/fsk4hf/gf64_osd.f90
lib/ft8/osd174.f90
lib/fsk4hf/osd300.f90
lib/pctile.f90
@ -607,7 +605,7 @@ set (qra_CSRCS
set (wsjt_CSRCS
${ka9q_CSRCS}
lib/fsk4hf/ftrsdap.c
lib/ftrsd/ftrsd2.c
lib/sgran.c
lib/golay24_table.c
lib/gran.c
@ -1161,9 +1159,6 @@ target_link_libraries (wsjt_qtmm Qt5::Multimedia)
add_executable (jt4sim lib/jt4sim.f90 wsjtx.rc)
target_link_libraries (jt4sim wsjt_fort wsjt_cxx)
add_executable (jt65osdtest lib/fsk4hf/jt65osdtest.f90 wsjtx.rc)
target_link_libraries (jt65osdtest wsjt_fort wsjt_cxx)
add_executable (jt65sim lib/jt65sim.f90 wsjtx.rc)
target_link_libraries (jt65sim wsjt_fort wsjt_cxx)

View File

@ -21,9 +21,7 @@ subroutine decode65b(s2,nflip,nadd,mode65,ntrials,naggressive,ndepth, &
enddo
call extract(s3,nadd,mode65,ntrials,naggressive,ndepth,nflip,mycall, &
hiscall,hisgrid,nQSOProgress,ljt65apon,nexp_decode,ncount, &
nhist,decoded, &
ltext,nft,qual)
hiscall,hisgrid,nexp_decode,ncount,nhist,decoded,ltext,nft,qual)
! Suppress "birdie messages" and other garbage decodes:
if(decoded(1:7).eq.'000AAA ') ncount=-1

View File

@ -1,188 +0,0 @@
subroutine extract(s3,nadd,mode65,ntrials,naggressive,ndepth,nflip, &
mycall_12,hiscall_12,hisgrid,nQSOProgress,ljt65apon, &
nexp_decode,ncount, &
nhist,decoded,ltext,nft,qual)
! Input:
! s3 64-point spectra for each of 63 data symbols
! nadd number of spectra summed into s3
! nqd 0/1 to indicate decode attempt at QSO frequency
! Output:
! ncount number of symbols requiring correction (-1 for no KV decode)
! nhist maximum number of identical symbol values
! decoded decoded message (if ncount >=0)
! ltext true if decoded message is free text
! nft 0=no decode; 1=FT decode; 2=hinted decode
use prog_args !shm_key, exe_dir, data_dir
use packjt
use jt65_mod
use timer_module, only: timer
real s3(64,63)
character decoded*22, apmessage*22
character*12 mycall_12,hiscall_12
character*6 mycall,hiscall,hisgrid
integer apsymbols(12),ap(12)
integer dat4(12)
integer mrsym(63),mr2sym(63),mrprob(63),mr2prob(63)
integer correct(63),tmp(63)
logical ltext,ljt65apon
common/chansyms65/correct
save
if(mode65.eq.-99) stop !Silence compiler warning
mycall=mycall_12(1:6)
hiscall=hiscall_12(1:6)
apsymbols=-1
if(ljt65apon) then
apmessage=mycall//" "//hiscall//" RRR"
call packmsg(apmessage,apsymbols,itype,.false.)
if(itype.ne.1) then
write(*,*) "Error - problem with apsymbols"
apsymbols=-1
endif
if(nQSOProgress.eq.0) then ! Look for MyCall ??? ??? using APS4
apsymbols(5:12)=-1
elseif(nQSOProgress.ge.1.and.nQSOProgress.le.2) then ! Look for MyCall DxCall ???
apsymbols(10:12)=-1
elseif(nQSOProgress.ge.3) then
continue
endif
endif
qual=0.
nbirdie=20
npct=50
afac1=1.1
nft=0
nfail=0
decoded=' '
call pctile(s3,4032,npct,base)
s3=s3/base
s3a=s3 !###
! Get most reliable and second-most-reliable symbol values, and their
! probabilities
1 call demod64a(s3,nadd,afac1,mrsym,mrprob,mr2sym,mr2prob,ntest,nlow)
call chkhist(mrsym,nhist,ipk) !Test for birdies and QRM
if(nhist.ge.nbirdie) then
nfail=nfail+1
call pctile(s3,4032,npct,base)
s3(ipk,1:63)=base
if(nfail.gt.30) then
decoded=' '
ncount=-1
go to 900
endif
go to 1
endif
mrs=mrsym
mrs2=mr2sym
call graycode65(mrsym,63,-1) !Remove gray code
call interleave63(mrsym,-1) !Remove interleaving
call interleave63(mrprob,-1)
call graycode65(mr2sym,63,-1) !Remove gray code and interleaving
call interleave63(mr2sym,-1) !from second-most-reliable symbols
call interleave63(mr2prob,-1)
do ipass=1,2
ap=-1
if(ipass.eq.2 .and. count(apsymbols.ge.0).gt.0) then
ap=apsymbols
endif
ntry=0
call timer('ftrsd ',0)
param=0
call ftrsdap(mrsym,mrprob,mr2sym,mr2prob,ap,ntrials,correct,param,ntry)
call timer('ftrsd ',1)
ncandidates=param(0)
nhard=param(1)
nsoft=param(2)
nerased=param(3)
rtt=0.001*param(4)
ntotal=param(5)
qual=0.001*param(7)
nd0=81
r0=0.87
if(naggressive.eq.10) then
nd0=83
r0=0.90
endif
if(ntotal.le.nd0 .and. rtt.le.r0) then
nft=1
nap=count(ap.ge.0)
nft=1+ishft(nap,2)
endif
if(nft.gt.0) exit
enddo
if(nft.eq.0 .and. iand(ndepth,32).eq.32) then
qmin=2.0 - 0.1*naggressive
call timer('hint65 ',0)
call hint65(s3,mrs,mrs2,nadd,nflip,mycall,hiscall,hisgrid,qual,decoded)
if(qual.ge.qmin) then
nft=2
ncount=0
else
decoded=' '
ntry=0
endif
call timer('hint65 ',1)
go to 900
endif
ncount=-1
decoded=' '
ltext=.false.
if(nft.gt.0) then
! Turn the corrected symbol array into channel symbols for subtraction;
! pass it back to jt65a via common block "chansyms65".
do i=1,12
dat4(i)=correct(13-i)
enddo
do i=1,63
tmp(i)=correct(64-i)
enddo
correct(1:63)=tmp(1:63)
call interleave63(correct,63,1)
call graycode65(correct,63,1)
call unpackmsg(dat4,decoded,.false.,' ') !Unpack the user message
ncount=0
if(iand(dat4(10),8).ne.0) ltext=.true.
endif
900 continue
if(nft.eq.1 .and. nhard.lt.0) decoded=' '
return
end subroutine extract
subroutine getpp(workdat,p)
use jt65_mod
integer workdat(63)
integer a(63)
a(1:63)=workdat(63:1:-1)
call interleave63(a,1)
call graycode(a,63,1,a)
psum=0.
do j=1,63
i=a(j)+1
x=s3a(i,j)
s3a(i,j)=0.
psum=psum + x
s3a(i,j)=x
enddo
p=psum/63.0
return
end subroutine getpp

View File

@ -1,227 +0,0 @@
/*
ftrsdap.c
A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
This decoding scheme is built around Phil Karn's Berlekamp-Massey
errors and erasures decoder. The approach is inspired by a number of
publications, including the stochastic Chase decoder described
in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
"Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
Steve Franke K9AN and Joe Taylor K1JT
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <string.h>
#include "../ftrsd/rs2.h"
static void *rs;
void getpp_(int workdat[], float *pp);
void ftrsdap_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[],
int ap[], int* ntrials0, int correct[], int param[], int ntry[])
{
int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
int workdat[63];
int indexes[63];
int era_pos[51];
int i, j, numera, nerr, nn=63;
int ntrials = *ntrials0;
int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
int ntotal=0,ntotal_min=32768,ncandidates;
int nera_best=0;
float pp,pp1,pp2;
static unsigned int nseed;
// Power-percentage symbol metrics - composite gnnf/hf
int perr[8][8] = {
{ 4, 9, 11, 13, 14, 14, 15, 15},
{ 2, 20, 20, 30, 40, 50, 50, 50},
{ 7, 24, 27, 40, 50, 50, 50, 50},
{13, 25, 35, 46, 52, 70, 50, 50},
{17, 30, 42, 54, 55, 64, 71, 70},
{25, 39, 48, 57, 64, 66, 77, 77},
{32, 45, 54, 63, 66, 75, 78, 83},
{51, 58, 57, 66, 72, 77, 82, 86}};
// Initialize the KA9Q Reed-Solomon encoder/decoder
unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
// Reverse the received symbol vectors for BM decoder
for (i=0; i<63; i++) {
rxdat[i]=mrsym[62-i];
rxprob[i]=mrprob[62-i];
rxdat2[i]=mr2sym[62-i];
rxprob2[i]=mr2prob[62-i];
}
// Set ap symbols and ap mask
for (i=0; i<12; i++) {
if(ap[i]>=0) {
rxdat[11-i]=ap[i];
rxprob2[11-i]=-1;
}
}
// Sort rxprob to find indexes of the least reliable symbols
int k, pass, tmp, nsym=63;
int probs[63];
for (i=0; i<63; i++) {
indexes[i]=i;
probs[i]=rxprob[i];
}
for (pass = 1; pass <= nsym-1; pass++) {
for (k = 0; k < nsym - pass; k++) {
if( probs[k] < probs[k+1] ) {
tmp = probs[k];
probs[k] = probs[k+1];
probs[k+1] = tmp;
tmp = indexes[k];
indexes[k] = indexes[k+1];
indexes[k+1] = tmp;
}
}
}
// See if we can decode using BM HDD, and calculate the syndrome vector.
memset(era_pos,0,51*sizeof(int));
numera=0;
memcpy(workdat,rxdat,sizeof(rxdat));
nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
if( nerr >= 0 ) {
// Hard-decision decoding succeeded. Save codeword and some parameters.
nhard=0;
for (i=0; i<63; i++) {
if( workdat[i] != rxdat[i] ) nhard=nhard+1;
}
memcpy(correct,workdat,63*sizeof(int));
param[0]=0;
param[1]=nhard;
param[2]=0;
param[3]=0;
param[4]=0;
param[5]=0;
param[7]=1000*1000;
ntry[0]=0;
return;
}
/*
Hard-decision decoding failed. Try the FT soft-decision method.
Generate random erasure-locator vectors and see if any of them
decode. This will generate a list of "candidate" codewords. The
soft distance between each candidate codeword and the received
word is estimated by finding the largest (pp1) and second-largest
(pp2) outputs from a synchronized filter-bank operating on the
symbol spectra, and using these to decide which candidate
codeword is "best".
*/
nseed=1; //Seed for random numbers
float ratio;
int thresh, nsum;
int thresh0[63];
ncandidates=0;
nsum=0;
int ii,jj;
for (i=0; i<nn; i++) {
nsum=nsum+rxprob[i];
j = indexes[62-i];
if( rxprob2[j]>=0 ) {
ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
ii = 7.999*ratio;
jj = (62-i)/8;
thresh0[i] = 1.3*perr[ii][jj];
} else {
thresh0[i] = 0.0;
}
//printf("%d %d %d\n",i,j,rxdat[i]);
}
if(nsum<=0) return;
pp1=0.0;
pp2=0.0;
for (k=1; k<=ntrials; k++) {
memset(era_pos,0,51*sizeof(int));
memcpy(workdat,rxdat,sizeof(rxdat));
/*
Mark a subset of the symbols as erasures.
Run through the ranked symbols, starting with the worst, i=0.
NB: j is the symbol-vector index of the symbol with rank i.
*/
numera=0;
for (i=0; i<nn; i++) {
j = indexes[62-i];
thresh=thresh0[i];
long int ir;
// Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
nseed = nseed * 1103515245 + 12345;
ir = (unsigned)(nseed/65536) % 32768;
ir = (100*ir)/32768;
if((ir < thresh ) && numera < 51) {
era_pos[numera]=j;
numera=numera+1;
}
}
nerr=decode_rs_int(rs,workdat,era_pos,numera,0);
if( nerr >= 0 ) {
// We have a candidate codeword. Find its hard and soft distance from
// the received word. Also find pp1 and pp2 from the full array
// s3(64,63) of synchronized symbol spectra.
ncandidates=ncandidates+1;
nhard=0;
nsoft=0;
for (i=0; i<63; i++) {
if(workdat[i] != rxdat[i]) {
nhard=nhard+1;
if(workdat[i] != rxdat2[i]) {
nsoft=nsoft+rxprob[i];
}
}
}
nsoft=63*nsoft/nsum;
ntotal=nsoft+nhard;
getpp_(workdat,&pp);
if(pp>pp1) {
pp2=pp1;
pp1=pp;
nsoft_min=nsoft;
nhard_min=nhard;
ntotal_min=ntotal;
memcpy(correct,workdat,63*sizeof(int));
nera_best=numera;
ntry[0]=k;
} else {
if(pp>pp2 && pp!=pp1) pp2=pp;
}
if(nhard_min <= 41 && ntotal_min <= 71) break;
}
if(k == ntrials) ntry[0]=k;
}
param[0]=ncandidates;
param[1]=nhard_min;
param[2]=nsoft_min;
param[3]=nera_best;
param[4]=1000.0*pp2/pp1;
param[5]=ntotal_min;
param[6]=ntry[0];
param[7]=1000.0*pp2;
param[8]=1000.0*pp1;
if(param[0]==0) param[2]=-1;
return;
}

View File

@ -1,142 +0,0 @@
subroutine gf64_osd(s3,cw)
use jt65_generator_matrix
real s3(64,63),xtmp(64),sympow_sorted(64,63),sympow(64,63)
integer ideinterleave_indices(63),indxs(64),isymval_sorted(64,63),isymval(64,63)
integer cw(63)
integer indx(63)
integer gmrb(12,63)
integer correct(63)
integer correctr(63)
integer correct_sorted(63)
integer candidate(63)
integer candidater(63)
integer itmp(63)
logical mask(63),first
data correct/ & ! K1ABC W9XYZ EN37
41, 0, 54, 46, 55, 29, 57, 35, 35, 48, 48, 61, &
21, 58, 25, 10, 50, 43, 28, 37, 10, 2, 61, 55, &
25, 5, 5, 57, 28, 11, 32, 45, 16, 55, 31, 46, &
44, 55, 34, 38, 50, 62, 52, 58, 17, 62, 35, 34, &
28, 21, 15, 47, 33, 20, 15, 28, 58, 4, 58, 61, &
59, 42, 2/
data first/.true./
save first,correctr
if(first) then
correctr=correct(63:1:-1)
! find indices of deinterleaved symbols
do i=1,63
ideinterleave_indices(i)=i
enddo
call interleave63(ideinterleave_indices,-1)
first=.false.
endif
! Sort the spectral powers in decreasing order, remove gray code
do i=1,63
xtmp=s3(:,i)
call indexx(xtmp,64,indxs)
sympow_sorted(:,i)=xtmp(indxs(64:1:-1))
indxs=indxs-1
call graycode65(indxs,64,-1)
isymval_sorted(:,i)=indxs(64:1:-1)
enddo
! Deinterleave symbol powers.
do i=1,63
isymval(:,i)=isymval_sorted(:,ideinterleave_indices(i))
sympow(:,i)=sympow_sorted(:,ideinterleave_indices(i))
enddo
! Now sort along the symbol index, using the largest spectral power at each index
xtmp(1:63)=sympow(1,1:63)
call indexx(xtmp(1:63),63,indx)
! Calculate some statistics
nhard=count(isymval(1,:).ne.correctr)
nerrtop4=count(isymval(1,indx(60:63)).ne.correctr(indx(60:63)))
nerrmid4=count(isymval(1,indx(56:59)).ne.correctr(indx(56:59)))
nerrbot4=count(isymval(1,indx(52:55)).ne.correctr(indx(52:55)))
do i=1,12
if(isymval(1,indx(64-i)).ne.correctr(indx(64-i))) then
write(*,'(i2,1x,64l1)') i,isymval(:,indx(64-i)).eq.correctr(indx(64-i))
endif
enddo
write(*,*) 'nerr, nerrtop4, nerrmid4, nerrbot4',nhard,nerrtop4,nerrmid4,nerrbot4
! The best 12 symbols will be used as the Most Reliable Basis
! Reorder the columns of the generator matrix in order of decreasing quality.
! do i=1,63
! indx=isymval(64,63+1-i)+1
! gmrb(:,i)=g(:,indx(63+1-i))
! enddo
! Put the generator matrix in standard form so that top 12 symbols are
! encoded systematically.
! call gf64_standardize_genmat(gmrb)
! Add various error patterns to the 12 basis symbols and reencode each one
! to get a list of codewords. For now, just find the zero'th order codeword.
! call gf64_encode(gmrb,isymval(64,indx(63:52:-1)),candidate)
! Undo the sorting to put the codeword symbols back into the "right" order.
! candidater=candidate(63:1:-1)
! candidate(indx)=candidater
! nerr=count(correctr.ne.candidate)
!write(*,*) 'Number of differences between candidate and correct codeword: ',nerr
! if( nerr .eq. 0 ) write(*,*) 'Successful decode'
return
end subroutine gf64_osd
subroutine gf64_standardize_genmat(gmrb)
use gf64math
integer gmrb(12,63),temp(63),gkk,gjk,gkkinv
do k=1,12
gkk=gmrb(k,k)
if(gkk.eq.0) then ! zero pivot - swap with the first row with nonzero value
do kk=k+1,12
if(gmrb(kk,k).ne.0) then
temp=gmrb(k,:)
gmrb(k,:)=gmrb(kk,:)
gmrb(kk,:)=temp
gkk=gmrb(k,k)
goto 20
endif
enddo
endif
20 gkkinv=gf64_inverse(gkk)
do ic=1,63
gmrb(k,ic)=gf64_product(gmrb(k,ic),gkkinv)
enddo
do j=1,12
if(j.ne.k) then
gjk=gmrb(j,k)
do ic=1,63
gmrb(j,ic)=gf64_sum(gmrb(j,ic),gf64_product(gmrb(k,ic),gjk))
enddo
endif
enddo
enddo
return
end subroutine gf64_standardize_genmat
subroutine gf64_encode(gg,message,codeword)
!
! Encoder for a (63,12) Reed-Solomon code.
! The generator matrix is supplied in array gg.
!
use gf64math
integer message(12) !Twelve 6-bit data symbols
integer codeword(63) !RS(63,12) codeword
integer gg(12,63)
codeword=0
do j=1,12
do i=1,63
iprod=gf64_product(message(j),gg(j,i))
codeword(i)=gf64_sum(codeword(i),iprod)
enddo
enddo
return
end subroutine gf64_encode

View File

@ -1,59 +0,0 @@
module gf64math
! Basic math in GF(64), for JT65 and QRA64
implicit none
integer :: gf64exp(0:62),gf64log(0:63)
! gf64exp: GF(64) decimal representation, indexed by logarithm
data gf64exp/ &
1, 2, 4, 8, 16, 32, 3, 6, 12, 24, &
48, 35, 5, 10, 20, 40, 19, 38, 15, 30, &
60, 59, 53, 41, 17, 34, 7, 14, 28, 56, &
51, 37, 9, 18, 36, 11, 22, 44, 27, 54, &
47, 29, 58, 55, 45, 25, 50, 39, 13, 26, &
52, 43, 21, 42, 23, 46, 31, 62, 63, 61, &
57, 49, 33/
! logarithms of GF(64) elements, indexed by decimal representation
data gf64log/ &
-1, 0, 1, 6, 2, 12, 7, 26, 3, 32, &
13, 35, 8, 48, 27, 18, 4, 24, 33, 16, &
14, 52, 36, 54, 9, 45, 49, 38, 28, 41, &
19, 56, 5, 62, 25, 11, 34, 31, 17, 47, &
15, 23, 53, 51, 37, 44, 55, 40, 10, 61, &
46, 30, 50, 22, 39, 43, 29, 60, 42, 21, &
20, 59, 57, 58/
contains
! Product of two GF(64) field elements
function gf64_product(i1,i2)
integer, intent(in) :: i1,i2
integer :: gf64_product
if(i1.ne.0.and.i2.ne.0) then
gf64_product=gf64exp(mod(gf64log(i1)+gf64log(i2),63))
else
gf64_product=0
endif
end function gf64_product
! Inverse of a GF(64) field element for arguments in [1,63]. Undefined otherwise.
function gf64_inverse(i1)
integer, intent(in) :: i1
integer :: gf64_inverse
if(i1.gt.1) then
gf64_inverse=gf64exp(63-gf64log(i1))
else
gf64_inverse=1
endif
end function gf64_inverse
! Sum two GF(64) field elements
function gf64_sum(i1,i2)
integer, intent(in) :: i1,i2
integer :: gf64_sum
gf64_sum=ieor(i1,i2)
end function gf64_sum
end module gf64math

View File

@ -1,59 +0,0 @@
program jt65osdtest
!
! Demonstrate some procedures that can be used to implement an ordered-
! statistics decoder for JT65.
! 1. Test JT65 generator-matrix-based encoding by comparing codewords with
! those produced by the tried-and-true KA9Q encoder
! 2. Demonstrate how to reconfigure the generator matrix to make an arbitrary
! subset of 12 symbols the systematic symbols, and show that re-encoding using
! the subset of symbols regenerates the original codeword.
!
use jt65_generator_matrix
use gf64math
use packjt
character*22 message
integer m(12),cwka9q(63),cwk9an(63),cwtest(63)
integer gmrb(12,63)
data m/61,51,10,42,51,55, 3,29,53,55,58,42/ !"K9AN K1JT -25"
message="K1ABC W9XYZ EN37"
call packmsg(message,m,itype,.false.)
write(*,*) 'Message text: ',message
write(*,*) 'Message symbols:'
write(*,'(12i3)') m
! Encode using Karn encoder.
call rs_encode(m,cwka9q)
write(*,*) 'KA9Q codeword'
write(*,'(63i3)') cwka9q
! Encode using generator matrix.
call gf64_encode(g,m,cwk9an)
write(*,*) 'K9AN codeword'
write(*,'(63i3)') cwk9an
! The message symbols are the last 12 symbols of the codeword. For this test,
! "pretend" that the symbols at positions 1,3,5,7,9,11,13,15,17,19,21,23 are
! the best received symbols, i.e. the best symbols are all parity symbols.
! Reorder columns of the generator matrix so that the best symbols are in front
! and then use Gauss-Jordan elimination to create a generator matrix that
! can be used to re-encode the best 12 symbols, producing the same codeword
! that we started with.
gmrb=g
do i=1,12
gmrb(1:12,i)=g(1:12,2*i-1)
gmrb(1:12,i+12)=g(1:12,2*i)
enddo
call gf64_standardize_genmat(gmrb)
! Now demonstrate that we can use the revised generator matrix to encode the 12
! best symbols and recover the codeword that we started with.
m(1:12)=cwk9an(1:23:2) !Take symbols 1,3,5,...23 as the message
call gf64_encode(gmrb,m,cwtest) !reencode using the revised generator matrix
write(*,*) 'Re-encode using generator matrix reconfigured to use odd-index symbols starting at 1 as the message:'
write(*,'(12i3)') m
write(*,*) 'Re-encoded codeword should be the same as the original codeword:'
write(*,'(63i3)') cwtest !This should be the same as the original cw.
end program jt65osdtest

View File

@ -477,9 +477,8 @@ contains
enddo
nadd=nsum*ismo
call extract(s3c,nadd,mode65,ntrials,naggressive,ndepth,nflip,mycall, &
hiscall,hisgrid,nQSOProgress,ljt65apon,nexp_decode,ncount,nhist, &
avemsg,ltext,nftt,qual)
call extract(s3,nadd,mode65,ntrials,naggressive,ndepth,nflip,mycall, &
hiscall,hisgrid,nexp_decode,ncount,nhist,decoded,ltext,nft,qual)
if(nftt.eq.1) then
nsmo=ismo
param(9)=nsmo

View File

@ -1033,7 +1033,6 @@ void MainWindow::writeSettings()
m_settings->setValue("pwrBandTxMemory",m_pwrBandTxMemory);
m_settings->setValue("pwrBandTuneMemory",m_pwrBandTuneMemory);
m_settings->setValue ("FT8AP", ui->actionEnable_AP_FT8->isChecked ());
m_settings->setValue ("JT65AP", ui->actionEnable_AP_JT65->isChecked ());
{
QList<QVariant> coeffs; // suitable for QSettings
for (auto const& coeff : m_phaseEqCoefficients)
@ -1119,7 +1118,6 @@ void MainWindow::readSettings()
m_pwrBandTxMemory=m_settings->value("pwrBandTxMemory").toHash();
m_pwrBandTuneMemory=m_settings->value("pwrBandTuneMemory").toHash();
ui->actionEnable_AP_FT8->setChecked (m_settings->value ("FT8AP", false).toBool());
ui->actionEnable_AP_JT65->setChecked (m_settings->value ("JT65AP", false).toBool());
{
auto const& coeffs = m_settings->value ("PhaseEqualizationCoefficients"
, QList<QVariant> {0., 0., 0., 0., 0.}).toList ();
@ -2583,7 +2581,7 @@ void MainWindow::decode() //decode()
if(m_modeTx=="JT65") dec_data.params.ntxmode=65;
dec_data.params.nmode=9;
if(m_mode=="JT65") dec_data.params.nmode=65;
if(m_mode=="JT65") dec_data.params.ljt65apon = ui->actionEnable_AP_JT65->isVisible () && ui->actionEnable_AP_JT65->isChecked ();
if(m_mode=="JT65") dec_data.params.ljt65apon = false;
if(m_mode=="QRA64") dec_data.params.nmode=164;
if(m_mode=="QRA64") dec_data.params.ntxmode=164;
if(m_mode=="JT9+JT65") dec_data.params.nmode=9+65; // = 74
@ -4839,7 +4837,7 @@ void MainWindow::displayWidgets(int n)
}
ui->cbFirst->setVisible ("FT8" == m_mode);
ui->actionEnable_AP_FT8->setVisible ("FT8" == m_mode);
ui->actionEnable_AP_JT65->setVisible ("JT65" == m_mode);
// ui->actionEnable_AP_JT65->setVisible ("JT65" == m_mode);
ui->cbVHFcontest->setVisible(m_mode=="FT8" or m_mode=="MSK144");
ui->measure_check_box->setChecked (false);
ui->measure_check_box->setVisible ("FreqCal" == m_mode);

View File

@ -2532,7 +2532,6 @@ QPushButton[state=&quot;ok&quot;] {
<addaction name="actionInclude_averaging"/>
<addaction name="actionInclude_correlation"/>
<addaction name="actionEnable_AP_FT8"/>
<addaction name="actionEnable_AP_JT65"/>
<addaction name="actionEnable_AP_DXcall"/>
</widget>
<widget class="QMenu" name="menuSave">
@ -3143,14 +3142,6 @@ QPushButton[state=&quot;ok&quot;] {
<string>Enable AP</string>
</property>
</action>
<action name="actionEnable_AP_JT65">
<property name="checkable">
<bool>true</bool>
</property>
<property name="text">
<string>Enable AP</string>
</property>
</action>
<action name="actionSolve_FreqCal">
<property name="text">
<string>Solve for calibration parameters</string>