From 31065dba14edba66ef671b9399ec0e85bb4ad6b1 Mon Sep 17 00:00:00 2001 From: Steven Franke Date: Sat, 9 Jan 2016 16:36:30 +0000 Subject: [PATCH] Small tweaks to ftrsd paper - sections 1-6 seem to be in pretty good shape. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6374 ab8295b8-cf94-4d9e-aec4-7959e3be5d79 --- lib/ftrsd/ftrsd_paper/ftrsd.lyx | 25 +++++++++++++++---------- 1 file changed, 15 insertions(+), 10 deletions(-) diff --git a/lib/ftrsd/ftrsd_paper/ftrsd.lyx b/lib/ftrsd/ftrsd_paper/ftrsd.lyx index 2db64d8f1..5d7ac7b34 100644 --- a/lib/ftrsd/ftrsd_paper/ftrsd.lyx +++ b/lib/ftrsd/ftrsd_paper/ftrsd.lyx @@ -1276,7 +1276,7 @@ Make independent stochastic decisions about whether to erase each symbol \end_layout \begin_layout Enumerate -Attempt errors-and-erasures decoding by using the BM algorithm and the set +Attempt errors-and-erasures decoding using the BM algorithm and the set of erasures determined in step 2. If the BM decoder produces a candidate codeword, go to step 5. \end_layout @@ -1752,7 +1752,7 @@ reference "fig:bodide" also shows results calculated from theoretical probability distributions for comparison with the BM results. The simulated BM results agree with theory to within about 0.1 dB. - This differences are caused by small errors in the estimates of time and + The differences are caused by small errors in the estimates of time and frequency offset of the received signal in the simulated data. Such \begin_inset Quotes eld @@ -2423,7 +2423,7 @@ The signal to noise ratio in a bandwidth, , that is at least as large as the bandwidth occupied by the signal is: \begin_inset Formula \begin{equation} -\mathrm{SNR}_{B}=\frac{P_{s}}{N_{o}B}\label{eq:SNR} +\mathrm{SNR}_{B}=\frac{P_{s}}{N_{0}B}\label{eq:SNR} \end{equation} \end_inset @@ -2432,8 +2432,8 @@ where \begin_inset Formula $P_{s}$ \end_inset - is the signal power (W), -\begin_inset Formula $N_{o}$ + is the average signal power (W), +\begin_inset Formula $N_{0}$ \end_inset is one-sided noise power spectral density (W/Hz), and @@ -2453,7 +2453,7 @@ where \begin_layout Standard In the professional literature, decoder performance is characterized in terms of -\begin_inset Formula $E_{b}/N_{o}$ +\begin_inset Formula $E_{b}/N_{0}$ \end_inset , the ratio of the energy collected per information bit, @@ -2461,7 +2461,7 @@ In the professional literature, decoder performance is characterized in \end_inset , to the one-sided noise power spectral density, -\begin_inset Formula $N_{o}$ +\begin_inset Formula $N_{0}$ \end_inset . @@ -2474,7 +2474,12 @@ In the professional literature, decoder performance is characterized in \end_inset ). - Signal power is related to the energy per symbol by + JT65 signals have constant envelope, so the average signal power is related + to the energy per symbol, +\begin_inset Formula $E_{s}$ +\end_inset + +, by \begin_inset Formula \begin{equation} P_{s}=E_{s}/\tau_{s}.\label{eq:signal_power} @@ -2525,7 +2530,7 @@ reference "eq:Eb_Es" : \begin_inset Formula \begin{equation} -\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.\label{eq:SNR2500} +\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{0}}.\label{eq:SNR2500} \end{equation} \end_inset @@ -2536,7 +2541,7 @@ If all quantities are expressed in dB, then: \begin_layout Standard \begin_inset Formula \begin{equation} -\mathrm{SNR}_{2500}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}=(E_{s}/N_{0})_{\mathrm{dB}}-29.7\,\mathrm{dB}.\label{eq:SNR_all_types} +\mathrm{SNR}_{2500}=(E_{b}/N_{0})_{\mathrm{dB}}-29.1\,\mathrm{dB}=(E_{s}/N_{0})_{\mathrm{dB}}-29.7\,\mathrm{dB}.\label{eq:SNR_all_types} \end{equation} \end_inset