Add/update some experimental routines.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@7636 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
Joe Taylor 2017-04-19 16:06:42 +00:00
parent 7ef46cdbe0
commit 3124648fbc
12 changed files with 911 additions and 421 deletions

View File

@ -329,12 +329,12 @@ set (wsjt_FSRCS
lib/ccf2.f90
lib/ccf65.f90
lib/fsk4hf/chkcrc10.f90
lib/fsk4hf/chkcrc12.f90
lib/chkhist.f90
lib/chkmsg.f90
lib/chkss2.f90
lib/coord.f90
lib/db.f90
lib/fsk4hf/dbpsksim.f90
lib/decode4.f90
lib/decode65a.f90
lib/decode65b.f90
@ -385,10 +385,10 @@ set (wsjt_FSRCS
lib/gen4.f90
lib/gen65.f90
lib/gen9.f90
lib/fsk4hf/genbpsk.f90
lib/geniscat.f90
lib/genmsk144.f90
lib/genmsk40.f90
lib/fsk4hf/genmskhf.f90
lib/genqra64.f90
lib/genwspr.f90
lib/geodist.f90
@ -435,11 +435,13 @@ set (wsjt_FSRCS
lib/mskrtd.f90
lib/msk144signalquality.f90
lib/msk144sim.f90
lib/fsk4hf/mskhfsim.f90
lib/mskrtd.f90
lib/pctile.f90
lib/peakdt9.f90
lib/peakup.f90
lib/polyfit.f90
lib/fsk4hf/polyfit4.f90
lib/prog_args.f90
lib/ps4.f90
lib/qra64a.f90
@ -476,6 +478,7 @@ set (wsjt_FSRCS
lib/timf2.f90
lib/tweak1.f90
lib/twkfreq.f90
lib/fsk4hf/twkfreq1.f90
lib/twkfreq65.f90
lib/unpackmsg144.f90
lib/update_recent_calls.f90
@ -1115,6 +1118,9 @@ target_link_libraries (ldpcsim144 wsjt_fort wsjt_cxx)
add_executable (ldpcsim168 lib/fsk4hf/ldpcsim168.f90 wsjtx.rc)
target_link_libraries (ldpcsim168 wsjt_fort wsjt_cxx)
add_executable (mskhfsim lib/fsk4hf/mskhfsim.f90 wsjtx.rc)
target_link_libraries (mskhfsim wsjt_fort wsjt_cxx)
add_executable (msk144sim lib/msk144sim.f90 wsjtx.rc)
target_link_libraries (msk144sim wsjt_fort wsjt_cxx)

View File

@ -58,6 +58,26 @@ OBJS8 = dbpsksim.o four2a.o gran.o genbpsk.o watterson.o db.o \
dbpsksim.exe: $(OBJS8)
$(FC) -o dbpsksim.exe $(OBJS8) C:\JTSDK\fftw3f\libfftw3f-3.dll
OBJS9 = fsk4a.o four2a.o gran.o genfsk4a.o spec4.o \
watterson.o db.o
fsk4a.exe: $(OBJS9)
$(FC) -o fsk4a.exe $(OBJS9) C:\JTSDK\fftw3f\libfftw3f-3.dll
OBJS10 = gmsk8.o gaussfilt.o four2a.o
gmsk8.exe: $(OBJS10)
$(FC) -o gmsk8.exe $(OBJS10) C:\JTSDK\fftw3f\libfftw3f-3.dll
OBJS11 = gmsksim.o four2a.o gran.o gengmsk.o genbpsk.o watterson.o db.o \
encode168.o bpdecode168.o platanh.o gaussfilt.o tweak1.o smo121.o
gmsksim.exe: $(OBJS11)
$(FC) -o gmsksim.exe $(OBJS11) C:\JTSDK\fftw3f\libfftw3f-3.dll
OBJS12 = mskhfsim.o four2a.o gran.o genmskhf.o watterson.o db.o \
encode168.o bpdecode168.o platanh.o twkfreq1.o smo121.o \
polyfit4.o
mskhfsim.exe: $(OBJS12)
$(FC) -o mskhfsim.exe $(OBJS12) C:\JTSDK\fftw3f\libfftw3f-3.dll
.PHONY : clean
clean:

View File

@ -5,14 +5,17 @@ program dbpsksim
parameter (NSPS=28800) !Samples per symbol at 12000 sps
parameter (NZ=NSPS*NN) !Samples in waveform (3484800)
parameter (NFFT1=65536,NH1=NFFT1/2)
parameter (NFFT2=128,NH2=NFFT2/2)
character*8 arg
complex c(0:NZ-1) !Complex waveform
complex c2(0:NFFT1-1) !Short spectra
complex cr(0:NZ-1)
complex ct(0:NZ-1)
complex cz(0:NFFT2-1)
complex z0,z,zp
real s(-NH1+1:NH1)
real s2(-NH2+1:NH2)
real xnoise(0:NZ-1) !Generated random noise
real ynoise(0:NZ-1) !Generated random noise
real rxdata(120),llr(120)
@ -26,8 +29,8 @@ program dbpsksim
nnn=0
nargs=iargc()
if(nargs.ne.5) then
print*,'Usage: dbpsksim f0(Hz) delay(ms) fspread(Hz) iters snr(dB)'
if(nargs.ne.6) then
print*,'Usage: dbpsksim f0(Hz) delay(ms) fspread(Hz) ndiff iters snr(dB)'
print*,'Example: dbpsksim 1500 0 0 10 -35'
print*,'Set snr=0 to cycle through a range'
go to 999
@ -39,8 +42,10 @@ program dbpsksim
call getarg(3,arg)
read(arg,*) fspread
call getarg(4,arg)
read(arg,*) iters
read(arg,*) ndiff
call getarg(5,arg)
read(arg,*) iters
call getarg(6,arg)
read(arg,*) snrdb
twopi=8.d0*atan(1.d0)
@ -50,13 +55,12 @@ program dbpsksim
baud=1.d0/ts
txt=NZ*dt
bandwidth_ratio=2500.0/6000.0
ndiff=1 !Encode/decode differentially
write(*,1000) baud,5*baud,txt,delay,fspread
write(*,1000) baud,5*baud,txt,delay,fspread,ndiff
1000 format('Baud:',f6.3,' BW:',f4.1,' TxT:',f6.1,' Delay:',f5.2, &
' fSpread:',f5.2/)
' fSpread:',f5.2,' ndiff:',i2/)
write(*,1004)
1004 format(' SNR e1 e2 ber1 ber2 fer1 fer2 fsigma'/55('-'))
1004 format(' SNR err ber fer fsigma'/35('-'))
call encode120(msgbits,codeword) !Encode the test message
isna=-28
@ -69,8 +73,8 @@ program dbpsksim
snrdb=isnr
sig=sqrt(bandwidth_ratio) * 10.0**(0.05*snrdb)
if(snrdb.gt.90.0) sig=1.0
nhard1=0
nhard2=0
nhard=0
nhardc=0
nfe1=0
nfe2=0
sqf=0.
@ -89,7 +93,7 @@ program dbpsksim
c=c + cmplx(xnoise,ynoise) !Add noise to signal
endif
! First attempt at finding carrier frequency fc
! First attempt at finding carrier frequency fc: 64k FFTs ==> avg power spectra
nspec=NZ/NFFT1
df1=12000.0/NFFT1
s=0.
@ -121,7 +125,7 @@ program dbpsksim
a=(s(ipk+1)-s(ipk-1))/2.0
b=(s(ipk+1)+s(ipk-1)-2.0*s(ipk))/2.0
dx=-a/(2.0*b)
fc=fc + df1*dx
fc=fc + df1*dx !Estimated carrier frequency
sqf=sqf + (fc-f0)**2
! The following is for testing SNR calibration:
@ -132,29 +136,21 @@ program dbpsksim
! xsnrdb=db(psig/pnoise)
call genbpsk(id,fc,ndiff,1,cr) !Generate reference carrier
c=c*conjg(cr) !Mix to baseband
c=c*conjg(cr) !Mix signal to baseband
z0=1.0
ie0=1
do j=1,NN !Demodulate
ia=(j-1)*NSPS
ib=ia+NSPS-1
z=sum(c(ia:ib))
cz(j-1)=z
zp=z*conjg(z0)
p=1.e-4*real(zp)
id1(j)=-1
if(p.ge.0.0) id1(j)=1
if(j.ge.2) rxdata(j-1)=p
z0=z
! For testing, treat every 3rd symbol as having a known value (i.e., as Sync):
! ie=id(j)*ie0
! if(mod(j,3).eq.0) write(12,1010) j,ie,1.e-3*ie*z, &
! atan2(aimag(ie*z),real(ie*z))
!1010 format(2i4,3f10.3)
! ie0=ie
enddo
nhard1=nhard1 + count(id1.ne.id) !Count hard errors
rxav=sum(rxdata)/120
rx2av=sum(rxdata*rxdata)/120
@ -166,42 +162,30 @@ program dbpsksim
max_iterations=10
call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
! Count the hard errors in id1() and icw()
! icw(1)=1
! icw(2:NN)=2*cw-1
! nid1=0
! ncw=0
! ie0=1
! do j=2,NN
! ib=(id(j)+1)/2
! ib1=(id1(j)+1)/2
! if(ib1.ne.ib) nid1=nid1+1
! if(cw(j-1).ne.ib) ncw=ncw+1
! enddo
! print*,niterations,nid1,ncw
! Count frame errors
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0) nfe1=nfe1+1
! Generate a new reference carrier, using first-pass hard bits
call genbpsk(id1,0.0,ndiff,0,cr)
ct=c*conjg(cr)
call four2a(ct,NZ,1,-1,1)
df2=12000.0/NZ
pmax=0.
do i=0,NZ-1
f=i*df2
if(i.gt.NZ/2) f=(i-NZ)*df2
if(abs(f).lt.1.0) then
p=real(ct(i))**2 + aimag(ct(i))**2
if(p.gt.pmax) then
pmax=p
fc2=f
ipk=i
endif
endif
enddo
! Find carrier frequency from squared cz array.
cz(121:)=0.
cz=cz*cz
call four2a(cz,NFFT2,1,-1,1)
s2max=0.
do i=0,NFFT2-1
j=i
if(i.gt.NH2) j=j-NFFT2
s2(j)=real(cz(i))**2 + aimag(cz(i))**2
if(s2(j).gt.s2max) then
s2max=s2(j)
jpk=j
endif
! write(16,1200) j*baud/NFFT2,1.e-12*s2(j)
!1200 format(2f12.3)
enddo
a=(s2(jpk+1)-s2(jpk-1))/2.0
b=(s2(jpk+1)+s2(jpk-1)-2.0*s2(jpk))/2.0
dx=-a/(2.0*b)
fc2=0.5*(jpk+dx)*baud/NFFT2
call genbpsk(id,fc2,ndiff,1,cr) !Generate new ref carrier at fc2
c=c*conjg(cr)
z0=1.0
@ -209,14 +193,21 @@ program dbpsksim
ia=(j-1)*NSPS
ib=ia+NSPS-1
z=sum(c(ia:ib))
if(j.eq.1) z0=z
zp=z*conjg(z0)
p=1.e-4*real(zp)
id2(j)=-1
if(p.ge.0.0) id2(j)=1
if(j.ge.2) rxdata(j-1)=p
ierr=0
if(id2(j).ne.id(j)) ierr=1
id3=-1
if(real(z).ge.0.0) id3=1
if(j.ge.2 .and. id3.ne.id(j)) nhardc=nhardc+1
if(j.ge.2 .and. ndiff.eq.0) rxdata(j-1)=real(z)
z0=z
enddo
nhard2=nhard2 + count(id2.ne.id) !Count hard errors
nhard=nhard + count(id2.ne.id) !Count hard errors
rxav=sum(rxdata)/120
rx2av=sum(rxdata*rxdata)/120
@ -226,20 +217,25 @@ program dbpsksim
llr=2.0*rxdata/(ss*ss) !Soft symbols
apmask=0
max_iterations=10
decoded=0
call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
! if(niterations.lt.0) then
! llr=-llr
! call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
! if(niterations.ge.0) nhard=NN*iters-nhard
! endif
if(niterations.ge.0) call chkcrc10(decoded,nbadcrc)
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0 .or. &
nbadcrc.ne.0) nfe2=nfe2+1
enddo
if(ndiff.eq.0) nhard=nhardc
fsigma=sqrt(sqf/iters)
ber1=float(nhard1)/(NN*iters)
ber2=float(nhard2)/(NN*iters)
fer1=float(nfe1)/iters
fer2=float(nfe2)/iters
write(*,1050) snrdb,nhard1,nhard2,ber1,ber2,fer1,fer2,fsigma
write(14,1050) snrdb,nhard1,nhard2,ber1,ber2,fer1,fer2,fsigma
1050 format(f6.1,2i5,2f8.4,2f7.3,f8.2,3i5)
ber=float(nhard)/(NN*iters)
fer=float(nfe2)/iters
write(*,1050) snrdb,nhard,ber,fer,fsigma
write(14,1050) snrdb,nhard,ber,fer,fsigma
1050 format(f6.1,i5,f8.4,f7.3,f8.2)
enddo
999 end program dbpsksim

View File

@ -1,100 +1,62 @@
program fsk4sim
use wavhdr
parameter (NR=4) !Ramp up, ramp down
parameter (NS=12) !Sync symbols (2 @ Costas 4x4)
parameter (ND=84) !Data symbols: LDPC (168,84), r=1/2
parameter (NN=NR+NS+ND) !Total symbols (100)
parameter (NSPS=2688) !Samples per symbol at 12000 sps
parameter (NZ=NSPS*NN) !Samples in waveform (268800)
parameter (NSYNC=NS*NSPS) !Samples in sync waveform (32256)
parameter (NFFT=512*1024)
parameter (NDOWN=84) !Downsample factor
parameter (NFFT2=NZ/NDOWN,NH2=NFFT2/2) !3200
parameter (NSPSD=NFFT2/NN) !Samples per symbol after downsample
parameter (ND=60) !Data symbols: LDPC (120,60), r=1/2
parameter (NN=ND) !Total symbols (60)
parameter (NSPS=57600) !Samples per symbol at 12000 sps
parameter (NZ=NSPS*NN) !Samples in waveform (3456000)
type(hdr) header !Header for .wav file
character*8 arg
complex c(0:NFFT-1) !Complex waveform
complex cf(0:NFFT-1)
complex cs(0:NSYNC-1)
complex ct(0:NSPS-1)
complex csync(0:NSYNC-1)
complex c2(0:NFFT2-1)
complex c2a(0:NSPSD-1)
complex cf2(0:NFFT2-1)
complex cx(0:3,NN)
complex z,zpk
logical snrtest
real*8 twopi,dt,fs,baud,f0,dphi,phi
complex c(0:NZ-1) !Complex waveform
complex cr(0:NZ-1)
complex cs(NSPS,NN)
complex cps(0:3)
complex ct(0:2*NN-1)
complex z,w,zsum
real r(0:NZ-1)
real s(NSPS,NN)
real savg(NSPS)
real tmp(NN) !For generating random data
real xnoise(0:NZ-1) !Generated random noise
real s(NSYNC/2)
real ps(0:3)
! integer*2 iwave(NZ) !Generated waveform
integer id(NN) !Encoded 2-bit data (values 0-3)
integer id2(NN) !Decoded after downsampling
integer icos4(4) !4x4 Costas array
data icos4/0,1,3,2/,eps/1.e-8/
integer id(NN) !Encoded 2-bit data (values 0-3)
integer id2(NN) !Recovered data
equivalence (r,cr)
nnn=0
nargs=iargc()
if(nargs.ne.4) then
print*,'Usage: fsk8sim f0 fspread iters snr'
if(nargs.ne.6) then
print*,'Usage: fsk8sim f0 delay(ms) fspread(Hz) nts iters snr(dB)'
go to 999
endif
call getarg(1,arg)
read(arg,*) f0 !Low tone frequency
call getarg(2,arg)
read(arg,*) fspread
read(arg,*) delay
call getarg(3,arg)
read(arg,*) iters
read(arg,*) fspread
call getarg(4,arg)
read(arg,*) nts
call getarg(5,arg)
read(arg,*) iters
call getarg(6,arg)
read(arg,*) snrdb
snrtest=.false.
if(iters.lt.0) then
snrtest=.true.
iters=abs(iters)
endif
twopi=8.d0*atan(1.d0)
fs=12000.d0
dt=1.0/fs
ts=NSPS*dt
baud=1.d0/ts
txt=NZ*dt
! Generate sync waveform
phi=0.d0
k=-1
do j=1,12
n=mod(j-1,4) + 1
dphi=twopi*(icos4(n)*baud)*dt
do i=1,NSPS
k=k+1
phi=phi+dphi
if(phi.gt.twopi) phi=phi-twopi
xphi=phi
csync(k)=cmplx(cos(xphi),-sin(xphi))
enddo
enddo
bandwidth_ratio=2500.0/6000.0
header=default_header(12000,NZ)
write(*,1000) baud,5*baud,txt,delay,fspread,nts
1000 format('Baud:',f6.3,' BW:',f5.1,' TxT:',f5.1,' Delay:',f5.2, &
' fSpread:',f5.2,' nts:',i3/)
write(*,1000) 2*ND,ND,NS,NN,NSPS,baud,txt,fspread
1000 format('LDPC('i3,',',i2,') SyncSym:',i2,' ChanSym:',i3,' NSPS:',i4, &
' Baud:',f6.3,' TxT:',f5.1,' fDop:',f5.2/)
if(snrtest) then
write(*,1002)
1002 format(5x,'SNR test'/'Requested Measured Difference')
else
write(*,1004)
1004 format(' SNR Sync Sym1 Sym2 Bits SyncErr Sym1Err BER'/ &
60('-'))
endif
write(*,1004)
1004 format(' SNR Sym Bit SER BER Sym Bit SER BER'/59('-'))
isna=-15
isnb=-27
isna=-25
isnb=-40
if(snrdb.ne.0.0) then
isna=nint(snrdb)
isnb=isna
@ -103,204 +65,121 @@ program fsk4sim
snrdb=isnr
sig=sqrt(2*bandwidth_ratio) * 10.0**(0.05*snrdb)
if(snrdb.gt.90.0) sig=1.0
! open(10,file='000000_0001.wav',access='stream',status='unknown')
nsyncerr=0
nharderr=0
nherr=0
nbiterr=0
nhard1=0
nhard2=0
nbit1=0
nbit2=0
nh2=0
nb2=0
do iter=1,iters
nnn=nnn+1
id=0
if(.not.snrtest) then
! Generate random data
call random_number(tmp)
where(tmp.ge.0.25 .and. tmp.lt.0.50) id=1
where(tmp.ge.0.50 .and. tmp.lt.0.75) id=2
where(tmp.ge.0.75) id=3
id(1:2)=icos4(3:4) !Ramp up
id(45:48)=icos4 !Costas sync
id(49:52)=icos4 !Costas sync
id(53:56)=icos4 !Costas sync
id(NN-1:NN)=icos4(1:2) !Ramp down
endif
call random_number(tmp)
where(tmp.ge.0.25 .and. tmp.lt.0.50) id=1
where(tmp.ge.0.50 .and. tmp.lt.0.75) id=2
where(tmp.ge.0.75) id=3
call genfsk4(id,f0,c) !Generate the 4-FSK waveform
call genfsk4(id,f0,nts,c) !Generate the 4-FSK waveform
call watterson(c,delay,fspread)
if(sig.ne.1.0) c=sig*c !Scale to requested SNR
if(snrdb.lt.90) then
do i=0,NZ-1 !Generate gaussian noise
xnoise(i)=gran()
enddo
endif
if(fspread.gt.0.0) call dopspread(c,fspread)
c(0:NZ-1)=real(c(0:NZ-1)) + xnoise !Add noise to signal
! fac=32767.0
! rms=100.0
! if(snrdb.ge.90.0) iwave(1:NZ)=nint(fac*aimag(c(0:NZ-1)))
! if(snrdb.lt.90.0) iwave(1:NZ)=nint(rms*aimag(c(0:NZ-1)))
! call set_wsjtx_wav_params(14.0,'JT65 ',1,30,iwave)
! write(10) header,iwave !Save the .wav file
ppmax=0.
fpk=-99.
xdt=-99.
df1=12000.0/NSYNC
iaa=nint(250.0/df1)
ibb=nint(2750.0/df1)
if(.not.snrtest) then
do j4=-40,40
ia=(44+0.25*j4)*NSPS
ib=ia+NSYNC-1
cs=csync*c(ia:ib)
call four2a(cs,NSYNC,1,-1,1) !Transform to frequency domain
s=0.
do i=iaa,ibb
s(i)=1.e-6*(real(cs(i))**2 + aimag(cs(i))**2)
enddo
if(j4.eq.0) then
do i=iaa,ibb
write(66,3301) i*df1,s(i)
3301 format(f10.3,2f12.6)
enddo
endif
call smo121(s,NSYNC/2)
if(j4.eq.0) then
do i=iaa,ibb
write(67,3301) i*df1,s(i)
enddo
endif
do i=iaa,ibb
if(s(i).gt.ppmax) then
fpk=i*df1
xdt=0.25*j4*ts
ppmax=s(i)
endif
enddo
enddo
endif
if(xdt.ne.0.0 .or. fpk.ne.1500.0) nsyncerr=nsyncerr+1
! Compute spectrum again
cf=c
df2=12000.0/NZ
call four2a(cf,NZ,1,-1,1) !Transform to frequency domain
if(snrtest) then
width=5.0*df2 + fspread
iz=nint(2500.0/df2) + 2
if(iter.eq.1) then
pnoise=0.
psig=0.
n=0
endif
do i=0,iz !Remove spectral sidelobes
f=i*df2
if(i.gt.NZ/2) f=(i-NZ)*df2
p=1.e-6*(real(cf(i))**2 + aimag(cf(i))**2)
if(abs(f-f0).lt.width) then
psig=psig+p
n=n+1
else
pnoise=pnoise + p
endif
enddo
if(iter.eq.iters) then
db=10.0*log10(psig/pnoise)
write(*,1010) snrdb,db,db-snrdb
1010 format(f7.1,2f9.1)
endif
go to 40
endif
! Select a small frequency slice around fpk.
cf=cf/NZ
ib=nint(fpk/df2)+NH2
ia=ib-NFFT2+1
cf2=cshift(cf(ia:ib),NH2-1)
flo=-baud
fhi=4*baud
do i=0,NFFT2-1
f=i*df2
if(i.gt.NH2) f=(i-NFFT2)*df2
if(f.le.flo .or. f.ge.fhi) cf2(i)=0.
s2=real(cf2(i))**2 + aimag(cf2(i))**2
write(15,3001) f,s2,10*log10(s2+eps)
3001 format(f10.3,2f15.6)
enddo
r(0:NZ-1)=real(c(0:NZ-1)) + xnoise !Add noise to signal
c2=cf2
call four2a(c2,NFFT2,1,1,1) !Back to time domain
call snr2_wsprlf(r,freq,snr2500,width,1)
write(*,3001) freq,snr2500,width
3001 format(40x,3f10.3)
df=12000.0/(2*NSPS)
! i0=nint(f0/df)
! i0=nint((1500.0+freq)/df)
i0=nint((f0+freq)/df)
call spec4(r,cs,s,savg)
fshift=NSPS*baud/NSPSD
dt2=dt*NDOWN
do j=1,NN
ia=(j-1)*NSPSD
ib=ia+NSPSD-1
c2a=c2(ia:ib)
call four2a(c2a,NSPSD,1,-1,1) !To freq domain
cx(0:3,j)=c2a(0:3)
ipk=-1
zpk=0.
pmax=0.0
do i=0,3
if(abs(cx(i,j)).gt.pmax) then
ipk=i
zpk=cx(i,j)
pmax=abs(zpk)
endif
enddo
id2(j)=ipk
if(ipk.ne.id(j)) nherr=nherr+1
write(16,3003) j,id(j),ipk,ipk-id(j),abs(zpk), &
atan2(aimag(zpk),real(zpk)),abs(cx(0:3,j))
3003 format(3i3,i4,6f9.3)
enddo
ipk=0
do j=1,NN
ia=(j-1)*NSPS + 1
ib=ia+NSPS
pmax=0.
do i=0,3
f=fpk + i*baud
call tweak1(c(ia:ib),NSPS,-f,ct)
z=sum(ct)
ps(i)=1.e-3*(real(z)**2 + aimag(z)**2)
if(ps(i).gt.pmax) then
ipk=i
pmax=ps(i)
endif
enddo
nlo=0
nhi=0
ps=s(i0:i0+6*nts:2*nts,j)
cps=cs(i0:i0+6*nts:2*nts,j)
if(max(ps(1),ps(3)).ge.max(ps(0),ps(2))) nlo=1
if(max(ps(2),ps(3)).ge.max(ps(0),ps(1))) nhi=1
if(nlo.ne.iand(id(j),1)) nbiterr=nbiterr+1
if(nhi.ne.iand(id(j)/2,1)) nbiterr=nbiterr+1
if(ipk.ne.id(j)) nharderr=nharderr+1
write(17,1040) j,ps,ipk,id(j),id2(j),2*nhi+nlo,nhi,nlo,nbiterr
1040 format(i3,4f12.1,7i4)
id2(j)=2*nhi+nlo
z=cps(id2(j))
ct(j-1)=z
enddo
nh1=count(id.ne.id2)
nb1=count(iand(id,1).ne.iand(id2,1)) + count(iand(id,2).ne.iand(id2,2))
ct(NN:)=0.
call four2a(ct,2*NN,1,-1,1)
df2=baud/(2*NN)
ct=cshift(ct,NN)
ppmax=0.
dfpk=0.
do i=0,2*NN-1
f=(i-NN)*df2
pp=real(ct(i))**2 + aimag(ct(i))**2
if(pp.gt.ppmax) then
ppmax=pp
dfpk=f
endif
enddo
zsum=0.
do j=1,NN
phi=(j-1)*twopi*dfpk*ts
w=cmplx(cos(phi),sin(phi))
cps=cs(i0:i0+6*nts:2*nts,j)*conjg(w)
z=cps(id2(j))
ct(j)=z
zsum=zsum+z
write(12,1042) j,id(j),id2(j),20*ps,atan2(aimag(z),real(z)), &
atan2(aimag(zsum),real(zsum)),zsum
1042 format(3i2,6f8.3,2f8.1)
enddo
phi0=atan2(aimag(zsum),real(zsum))
zsum=0.
do j=1,NN
phi=(j-1)*twopi*dfpk*ts + phi0
w=cmplx(cos(phi),sin(phi))
nlo=0
nhi=0
cps=cs(i0:i0+6*nts:2*nts,j)*conjg(w)
ps=real(cps)
if(max(ps(1),ps(3)).ge.max(ps(0),ps(2))) nlo=1
if(max(ps(2),ps(3)).ge.max(ps(0),ps(1))) nhi=1
id2(j)=2*nhi+nlo
z=cps(id2(j))
ct(j)=z
zsum=zsum+z
enddo
nh2=count(id.ne.id2)
nb2=count(iand(id,1).ne.iand(id2,1)) + count(iand(id,2).ne.iand(id2,2))
nhard1=nhard1+nh1
nhard2=nhard2+nh2
nbit1=nbit1+nb1
nbit2=nbit2+nb2
fdiff=1500.0+freq - f0
write(13,1040) snrdb,snr2500,f0,fdiff,width,nh1,nb1,nh2,nb2
1040 format(2f7.1,f9.2,f7.2,f6.1,2(i8,i6))
40 continue
enddo
if(.not.snrtest) then
fsyncerr=float(nsyncerr)/iters
ser=float(nharderr)/(NN*iters)
ber=float(nbiterr)/(2*NN*iters)
write(*,1050) snrdb,nsyncerr,nharderr,nherr,nbiterr,fsyncerr,ser,ber
write(18,1050) snrdb,nsyncerr,nharderr,nherr,nbiterr,fsyncerr,ser,ber
1050 format(f6.1,4i6,3f10.6)
endif
ser1=float(nhard1)/(NN*iters)
ser2=float(nhard2)/(NN*iters)
ber1=float(nbit1)/(2*NN*iters)
ber2=float(nbit2)/(2*NN*iters)
write(*,1050) snrdb,nhard1,nbit1,ser1,ber1,nhard2,nbit2,ser2,ber2
write(14,1050) snrdb,nhard1,nbit1,ser1,ber1,nhard2,nbit2,ser2,ber2
1050 format(f6.1,2(2i5,2f8.4))
enddo
if(.not.snrtest) write(*,1060) iters,100*iters,100*iters,200*iters
1060 format(60('-')/'Max: ',4i6)
write(*,1060) NN*iters,2*NN*iters
1060 format(59('-')/'Max: ',2i5)
999 end program fsk4sim

View File

@ -16,10 +16,12 @@ subroutine genbpsk(id,f00,ndiff,nref,c)
dt=1.0/fs
baud=1.d0/(NSPS*dt)
ie(1)=1 !First bit is always 1
do i=2,NN !Differentially encode
ie(i)=id(i)*ie(i-1)
enddo
if(ndiff.ne.0) then
ie(1)=1 !First bit is always 1
do i=2,NN !Differentially encode
ie(i)=id(i)*ie(i-1)
enddo
endif
! Generate the BPSK waveform
phi=0.d0

View File

@ -1,24 +1,16 @@
subroutine genfsk4(id,f0,c)
subroutine genfsk4(id,f00,nts,c)
parameter (NR=4) !Ramp up, ramp down
parameter (NS=12) !Sync symbols (2 @ Costas 4x4)
parameter (ND=84) !Data symbols: LDPC (168,84), r=1/2
parameter (NN=NR+NS+ND) !Total symbols (100)
parameter (NSPS=2688) !Samples per symbol at 12000 sps
parameter (NZ=NSPS*NN) !Samples in waveform (268800)
parameter (NFFT=512*1024)
parameter (NSYNC=NS*NSPS)
parameter (NDOWN=168)
parameter (NFFT2=NZ/NDOWN,NH2=NFFT2/2) !3200
parameter (NSPSD=NFFT2/NN)
parameter (ND=60) !Data symbols: LDPC (120,60), r=1/2
parameter (NN=ND) !Total symbols (60)
parameter (NSPS=57600) !Samples per symbol at 12000 sps
parameter (NZ=NSPS*NN) !Samples in waveform (3456000)
parameter (NFFT=NZ) !Full length FFT
complex c(0:NFFT-1) !Complex waveform
complex cf(0:NFFT-1)
complex c(0:NFFT-1) !Complex waveform
real*8 twopi,dt,fs,baud,f0,dphi,phi
integer id(NN) !Encoded 2-bit data (values 0-3)
integer icos4(4) !4x4 Costas array
data icos4/0,1,3,2/
integer id(NN) !Encoded 2-bit data (values 0-3)
f0=f00
twopi=8.d0*atan(1.d0)
fs=12000.d0
dt=1.0/fs
@ -30,7 +22,7 @@ subroutine genfsk4(id,f0,c)
phi=0.d0
k=-1
do j=1,NN
dphi=twopi*(f0 + id(j)*baud)*dt
dphi=twopi*(f0 + nts*id(j)*baud)*dt
do i=1,NSPS
k=k+1
phi=phi+dphi
@ -40,24 +32,5 @@ subroutine genfsk4(id,f0,c)
enddo
enddo
nh=NFFT/2
df=12000.0/NFFT
cf=c
call four2a(cf,NFFT,1,-1,1) !Transform to frequency domain
if(sum(id).ne.0) then
flo=f0-baud
fhi=f0+4*baud
do i=0,NFFT-1 !Remove spectral sidelobes
f=i*df
if(i.gt.nh) f=(i-nfft)*df
if(f.le.flo .or. f.ge.fhi) cf(i)=0.
enddo
endif
c=cf
call four2a(c,NFFT,1,1,1) !Transform back to time domain
c=c/nfft
return
end subroutine genfsk4

129
lib/fsk4hf/genmskhf.f90 Normal file
View File

@ -0,0 +1,129 @@
subroutine genmskhf(msgbits,id,icw,cbb,csync)
!Encode an MSK-HF message, produce baseband waveform and sync vector.
parameter (KK=84) !Information bits (72 + CRC12)
parameter (ND=168) !Data symbols: LDPC (168,84), r=1/2
parameter (NS=65) !Sync symbols (2 x 26 + Barker 13)
parameter (NR=3) !Ramp up/down
parameter (NN=NR+NS+ND) !Total symbols (236)
parameter (NSPS=16) !Samples per MSK symbol (16)
parameter (N2=2*NSPS) !Samples per OQPSK symbol (32)
parameter (NZ=NSPS*NN) !Samples in baseband waveform (3760)
complex cbb(0:NZ-1)
complex csync(0:NZ-1)
real x(0:NZ-1)
real y(0:NZ-1)
real pp(N2)
logical first
integer*1 msgbits(KK),codeword(ND)
integer icw(ND)
integer id(NS+ND)
integer isync(26) !Long sync vector
integer ib13(13) !Barker 13 code
data ib13/1,1,1,1,1,-1,-1,1,1,-1,1,-1,1/
data first/.true./
save first,isync,twopi,pp
if(first) then
n=z'2c1aeb1'
do i=1,26
isync(i)=-1
if(iand(n,1).eq.1) isync(i)=1
n=n/2
enddo
twopi=8.0*atan(1.0)
do i=1,N2 !Half-sine shaped pulse
pp(i)=sin(0.5*(i-1)*twopi/N2)
enddo
first=.false.
endif
call random_number(x)
codeword=0
where(x(1:ND).ge.0.5) codeword=1
call encode168(msgbits,codeword) !Encode the test message
icw=2*codeword - 1
! Message structure: R1 26*(S1+D1) S13 26*(D1+S1) R1
! Generate QPSK without any offset; then shift the y array to get OQPSK.
! Do the I channel first: results in array x
n=0
k=0
ia=0
ib=NSPS-1
x(ia:ib)=0. !Ramp up (half-symbol; shape TBD)
do j=1,26 !Insert group of 26*(S1+D1)
ia=ib+1
ib=ia+N2-1
n=n+1
id(n)=2*isync(j)
x(ia:ib)=isync(j)*pp !Insert Sync bit
ia=ib+1
ib=ia+N2-1
k=k+1
n=n+1
id(n)=icw(k)
x(ia:ib)=id(n)*pp !Insert data bit
enddo
do j=1,13 !Insert Barker 13 code
ia=ib+1
ib=ia+N2-1
n=n+1
id(n)=2*ib13(j)
x(ia:ib)=ib13(j)*pp
enddo
do j=1,26 !Insert group of 26*(S1+D1)
ia=ib+1
ib=ia+N2-1
k=k+1
n=n+1
id(n)=icw(k)
x(ia:ib)=id(n)*pp !Insert data bit
ia=ib+1
ib=ia+N2-1
n=n+1
id(n)=2*isync(j)
x(ia:ib)=isync(j)*pp !Insert Sync bit
enddo
ia=ib+1
ib=ia+NSPS-1
x(ia:ib)=0. !Ramp down (half-symbol; shape TBD)
! Now do the Q channel: results in array y
ia=0
ib=NSPS-1
y(ia:ib)=0. !Ramp up (half-symbol; shape TBD)
do j=1,116
ia=ib+1
ib=ia+N2-1
k=k+1
n=n+1
id(n)=icw(k)
y(ia:ib)=id(n)*pp
enddo
ia=ib+1
ib=ia+NSPS-1
y(ia:ib)=0. !Ramp down (half-symbol; shape TBD)
y=cshift(y,-NSPS) !Shift Q array to get OQPSK
cbb=cmplx(x,y) !Complex baseband waveform
ib=NSPS-1
ib2=NSPS-1+64*N2
do j=1,26 !Zero all data symbols in x
ia=ib+1+N2
ib=ia+N2-1
x(ia:ib)=0.
ia2=ib2+1+N2
ib2=ia2+N2-1
x(ia2:ib2)=0.
enddo
csync=x
return
end subroutine genmskhf

347
lib/fsk4hf/mskhfsim.f90 Normal file
View File

@ -0,0 +1,347 @@
program msksim
! Simulate characteristics of a potential "MSK10" mode using LDPC (168,84)
! code, OQPDK modulation, and 30 s T/R sequences.
! Reception and Demodulation algorithm:
! 1. Compute coarse spectrum; find fc1 = approx carrier freq
! 2. Mix from fc1 to 0; LPF at +/- 0.75*R
! 3. Square, FFT; find peaks near -R/2 and +R/2 to get fc2
! 4. Mix from fc2 to 0
! 5. Fit cb13 (central part of csync) to c -> lag, phase
! 6. Fit complex ploynomial for channel equalization
! 7. Get soft bits from equalized data
parameter (KK=84) !Information bits (72 + CRC12)
parameter (ND=168) !Data symbols: LDPC (168,84), r=1/2
parameter (NS=65) !Sync symbols (2 x 26 + Barker 13)
parameter (NR=3) !Ramp up/down
parameter (NN=NR+NS+ND) !Total symbols (236)
parameter (NSPS=16) !Samples per MSK symbol (16)
parameter (N2=2*NSPS) !Samples per OQPSK symbol (32)
parameter (N13=13*N2) !Samples in central sync vector (416)
parameter (NZ=NSPS*NN) !Samples in baseband waveform (3760)
parameter (NFFT1=4*NSPS,NH1=NFFT1/2)
character*8 arg
complex cbb(0:NZ-1) !Complex baseband waveform
complex csync(0:NZ-1) !Sync symbols only, from cbb
complex cb13(0:N13-1) !Barker 13 waveform
complex c(0:NZ-1) !Complex waveform
complex cs(0:NZ-1) !For computing spectrum
complex c2(0:NFFT1-1) !Short spectra
complex zz(NS+ND) !Complex symbol values (intermediate)
complex z,z0
real s(-NH1+1:NH1) !Coarse spectrum
real xnoise(0:NZ-1) !Generated random noise
real ynoise(0:NZ-1) !Generated random noise
real x(NS),yi(NS),yq(NS) !For complex polyfit
real rxdata(ND),llr(ND) !Soft symbols
real pp(2*NSPS) !Shaped pulse for OQPSK
real a(5) !For twkfreq1
real aa(20),bb(20) !Fitted polyco's
integer id(NS+ND) !NRZ values (+/-1) for Sync and Data
integer icw(NN)
integer*1 msgbits(KK),decoded(KK),apmask(ND),cw(ND)
! integer*1 codeword(ND)
data msgbits/0,0,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1, &
1,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,1, &
1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0/
nargs=iargc()
if(nargs.ne.6) then
print*,'Usage: msksim f0(Hz) delay(ms) fspread(Hz) maxn iters snr(dB)'
print*,'Example: msksim 20 0 0 5 10 -20'
print*,'Set snr=0 to cycle through a range'
go to 999
endif
call getarg(1,arg)
read(arg,*) f0 !Generated carrier frequency
call getarg(2,arg)
read(arg,*) delay !Delta_t (ms) for Watterson model
call getarg(3,arg)
read(arg,*) fspread !Fspread (Hz) for Watterson model
call getarg(4,arg)
read(arg,*) maxn !Max nterms for polyfit
call getarg(5,arg)
read(arg,*) iters !Iterations at each SNR
call getarg(6,arg)
read(arg,*) snrdb !Specified SNR_2500
twopi=8.0*atan(1.0)
fs=12000.0/72.0 !Sample rate = 166.6666667 Hz
dt=1.0/fs !Sample interval (s)
tt=NSPS*dt !Duration of "itone" symbols (s)
ts=2*NSPS*dt !Duration of OQPSK symbols (s)
baud=1.0/tt !Keying rate for "itone" symbols (baud)
txt=NZ*dt !Transmission length (s)
bandwidth_ratio=2500.0/(fs/2.0)
write(*,1000) f0,delay,fspread,maxn,iters,baud,1.5*baud,txt
1000 format('f0:',f5.1,' Delay:',f4.1,' fSpread:',f5.2,' maxn:',i3, &
' Iters:',i6/'Baud:',f7.3,' BW:',f5.1,' TxT:',f5.1,f5.2/)
write(*,1004)
1004 format(/' SNR err ber fer fsigma'/37('-'))
do i=1,N2 !Half-sine pulse shape
pp(i)=sin(0.5*(i-1)*twopi/(2*NSPS))
enddo
call genmskhf(msgbits,id,icw,cbb,csync) !Generate baseband waveform and csync
cb13=csync(1680:2095) !Copy the Barker 13 waveform
a=0.
a(1)=f0
call twkfreq1(cbb,NZ,fs,a,cbb) !Mix to specified frequency
isna=-10
isnb=-30
if(snrdb.ne.0.0) then
isna=nint(snrdb)
isnb=isna
endif
do isnr=isna,isnb,-1 !Loop over SNR range
snrdb=isnr
sig=sqrt(bandwidth_ratio) * 10.0**(0.05*snrdb)
if(snrdb.gt.90.0) sig=1.0
nhard=0
nhardsync=0
nfe=0
sqf=0.
do iter=1,iters !Loop over requested iterations
nhard0=0
nhardsync0=0
c=cbb
if(delay.ne.0.0 .or. fspread.ne.0.0) call watterson(c,fs,delay,fspread)
c=sig*c !Scale to requested SNR
if(snrdb.lt.90) then
do i=0,NZ-1 !Generate gaussian noise
xnoise(i)=gran()
ynoise(i)=gran()
enddo
c=c + cmplx(xnoise,ynoise) !Add AWGN noise
endif
!----------------------------------------------------------------- fc1
! First attempt at finding carrier frequency, fc1: low-resolution power spectra
nspec=NZ/NFFT1
df1=fs/NFFT1
s=0.
do k=1,nspec
ia=(k-1)*N2
ib=ia+N2-1
c2(0:N2-1)=c(ia:ib)
c2(N2:)=0.
call four2a(c2,NFFT1,1,-1,1)
do i=0,NFFT1-1
j=i
if(j.gt.NH1) j=j-NFFT1
s(j)=s(j) + real(c2(i))**2 + aimag(c2(i))**2
enddo
enddo
! call smo121(s,NFFT1)
smax=0.
ipk=0
fc1=0.
ia=nint(40.0/df1)
do i=-ia,ia
f=i*df1
if(s(i).gt.smax) then
smax=s(i)
ipk=i
fc1=f
endif
! write(51,3001) f,s(i),db(s(i))
! 3001 format(f10.3,e12.3,f10.3)
enddo
! The following is for testing SNR calibration:
! sp3n=(s(ipk-1)+s(ipk)+s(ipk+1)) !Sig + 3*noise
! base=(sum(s)-sp3n)/(NFFT1-3.0) !Noise per bin
! psig=sp3n-3*base !Sig only
! pnoise=(2500.0/df1)*base !Noise in 2500 Hz
! xsnrdb=db(psig/pnoise)
a(1)=-fc1
a(2:5)=0.
call twkfreq1(c,NZ,fs,a,cs) !Mix down by fc1
!----------------------------------------------------------------- fc2
! Filter, square, then FFT to get refined carrier frequency fc2.
call four2a(cs,NZ,1,-1,1) !To freq domain
df=fs/NZ
ia=nint(0.75*baud/df)
cs(ia:NZ-1-ia)=0. !Save only freqs around fc1
call four2a(cs,NZ,1,1,1) !Back to time domain
cs=cs/NZ
cs=cs*cs !Square the data
call four2a(cs,NZ,1,-1,1) !Compute squared spectrum
! Find two peaks separated by baud
pmax=0.
fc2=0.
ic=nint(baud/df)
ja=nint(0.5*baud/df)
do j=-ja,ja
f2=j*df
ia=nint((f2-0.5*baud)/df)
if(ia.lt.0) ia=ia+NZ
ib=nint((f2+0.5*baud)/df)
p=real(cs(ia))**2 + aimag(cs(ia))**2 + &
real(cs(ib))**2 + aimag(cs(ib))**2
if(p.gt.pmax) then
pmax=p
fc2=0.5*f2
endif
! write(52,1200) f2,p,db(p)
!1200 format(f10.3,2f15.3)
enddo
sqf=sqf + (fc1+fc2-f0)**2
a(1)=-(fc1+fc2)
a(2:5)=0.
call twkfreq1(c,NZ,fs,a,c) !Mix c down by fc1+fc2
! z=sum(c(1680:2095)*cb13)/208.0 !Get phase from Barker 13 vector
! z0=z/abs(z)
! c=c*conjg(z0)
!---------------------------------------------------------------- DT
amax=0.
jpk=0
do j=-20*NSPS,20*NSPS !Get jpk
z=sum(c(1680+j:2095+j)*cb13)/208.0
if(abs(z).gt.amax) then
amax=abs(z)
jpk=j
endif
! write(53,1220) j,j*dt,z
!1220 format(i6,3f10.4)
enddo
xdt=jpk/fs
!------------------------------------------------------------------ cpolyfit
ib=NSPS-1
ib2=N2-1
n=0
do j=1,117 !First-pass demodulation
ia=ib+1
ib=ia+N2-1
zz(j)=sum(pp*c(ia:ib))/NSPS
if(abs(id(j)).eq.2) then !Save all sync symbols
n=n+1
x(n)=float(ia+ib)/NZ - 1.0
yi(n)=real(zz(j))*0.5*id(j)
yq(n)=aimag(zz(j))*0.5*id(j)
! write(54,1225) n,x(n),yi(n),yq(n)
!1225 format(i5,3f12.4)
endif
if(j.le.116) then
zz(j+117)=sum(pp*c(ia+NSPS:ib+NSPS))/NSPS
endif
enddo
aa=0.
bb=0.
nterms=0
if(maxn.gt.0) then
! Fit sync info with a complex polynomial
npts=n
mode=0
chisqa0=1.e30
chisqb0=1.e30
do nterms=1,maxn
call polyfit4(x,yi,yi,npts,nterms,mode,aa,chisqa)
call polyfit4(x,yq,yq,npts,nterms,mode,bb,chisqb)
if(chisqa/chisqa0.ge.0.98 .and. chisqb/chisqb0.ge.0.98) exit
chisqa0=chisqa
chisqb0=chisqb
enddo
endif
!-------------------------------------------------------------- Soft Symbols
n=0
do j=1,117
xx=j*2.0/117.0 - 1.0
yii=1.
yqq=0.
if(nterms.gt.0) then
yii=aa(1)
yqq=bb(1)
do i=2,nterms
yii=yii + aa(i)*xx**(i-1)
yqq=yqq + bb(i)*xx**(i-1)
enddo
endif
z0=cmplx(yii,yqq)
z=zz(j)*conjg(z0)
if(abs(id(j)).eq.2) then
if(real(z)*id(j).lt.0) then
nhardsync=nhardsync+1
nhardsync0=nhardsync0+1
endif
! write(55,2002) j,id(j)/2,xx,z*id(j)/2 !Sync bit
!2002 format(2i5,3f10.3)
else
p=real(z) !Data bit
n=n+1
rxdata(n)=p
ierr=0
if(id(j)*p.lt.0) ierr=1
nhard0=nhard0+ierr
nhard=nhard+ierr
! write(56,2003) j,id(j),n,ierr,nhard,xx,p*id(j),z
!2003 format(5i6,4f10.3)
endif
enddo
do j=118,233
xx=(j-116.5)*2.0/117.0 - 1.0
yii=1.
yqq=0.
if(nterms.gt.0) then
yii=aa(1)
yqq=bb(1)
do i=2,nterms
yii=yii + aa(i)*xx**(i-1)
yqq=yqq + bb(i)*xx**(i-1)
enddo
endif
z0=cmplx(yii,yqq)
z=zz(j)*conjg(z0)
p=aimag(z)
n=n+1
rxdata(n)=p
ierr=0
if(id(j)*p.lt.0) ierr=1
nhard=nhard+ierr
enddo
rxav=sum(rxdata)/ND
rx2av=sum(rxdata*rxdata)/ND
rxsig=sqrt(rx2av-rxav*rxav)
rxdata=rxdata/rxsig
ss=0.84
llr=2.0*rxdata/(ss*ss)
apmask=0
max_iterations=40
call bpdecode168(llr,apmask,max_iterations,decoded,niterations,cw)
nbadcrc=0
ifer=0
if(niterations.ge.0) call chkcrc12(decoded,nbadcrc)
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0 .or. &
nbadcrc.ne.0) ifer=1
nfe=nfe+ifer
write(58,1045) snrdb,nhard0,nhardsync0,niterations,nbadcrc,ifer, &
nterms,fc1+fc2-f0,xdt
if(ifer.eq.1) write(59,1045) snrdb,nhard0,nhardsync0,niterations, &
nbadcrc,ifer,nterms,fc1+fc2-f0,xdt
1045 format(f6.1,6i5,2f8.3)
enddo
fsigma=sqrt(sqf/iters)
ber=float(nhard)/((NS+ND)*iters)
fer=float(nfe)/iters
write(*,1050) snrdb,nhard,ber,fer,fsigma
write(60,1050) snrdb,nhard,ber,fer,fsigma
1050 format(f6.1,i7,f8.4,f7.3,f8.2)
enddo
999 end program msksim

109
lib/fsk4hf/polyfit4.f90 Normal file
View File

@ -0,0 +1,109 @@
subroutine polyfit4(x,y,sigmay,npts,nterms,mode,a,chisqr)
parameter (MAXN=20)
implicit real*8 (a-h,o-z)
real x(npts), y(npts), sigmay(npts), a(nterms),chisqr
real*8 sumx(2*MAXN-1), sumy(MAXN), array(MAXN,MAXN)
! Accumulate weighted sums
nmax = 2*nterms-1
sumx=0.
sumy=0.
chisq=0.
do i=1,npts
xi=x(i)
yi=y(i)
if(mode.lt.0) then
weight=1./abs(yi)
else if(mode.eq.0) then
weight=1
else
weight=1./sigmay(i)**2
end if
xterm=weight
do n=1,nmax
sumx(n)=sumx(n)+xterm
xterm=xterm*xi
enddo
yterm=weight*yi
do n=1,nterms
sumy(n)=sumy(n)+yterm
yterm=yterm*xi
enddo
chisq=chisq+weight*yi**2
enddo
! Construct matrices and calculate coefficients
do j=1,nterms
do k=1,nterms
n=j+k-1
array(j,k)=sumx(n)
enddo
enddo
delta=determ4(array,nterms)
if(delta.eq.0) then
chisqr=0.
a=0.
else
do l=1,nterms
do j=1,nterms
do k=1,nterms
n=j+k-1
array(j,k)=sumx(n)
enddo
array(j,l)=sumy(j)
enddo
a(l)=determ4(array,nterms)/delta
enddo
! Calculate chi square
do j=1,nterms
chisq=chisq-2*a(j)*sumy(j)
do k=1,nterms
n=j+k-1
chisq=chisq+a(j)*a(k)*sumx(n)
enddo
enddo
free=npts-nterms
chisqr=chisq/free
end if
return
end subroutine polyfit4
real*8 function determ4(array,norder)
parameter (MAXN=20)
implicit real*8 (a-h,o-z)
real*8 array(MAXN,MAXN)
determ4=1.
do k=1,norder
if (array(k,k).ne.0) go to 41
do j=k,norder
if(array(k,j).ne.0) go to 31
enddo
determ4=0.
go to 60
31 do i=k,norder
s8=array(i,j)
array(i,j)=array(i,k)
array(i,k)=s8
enddo
determ4=-1.*determ4
41 determ4=determ4*array(k,k)
if(k.lt.norder) then
k1=k+1
do i=k1,norder
do j=k1,norder
array(i,j)=array(i,j)-array(i,k)*array(k,j)/array(k,k)
enddo
enddo
end if
enddo
60 return
end function determ4

26
lib/fsk4hf/twkfreq1.f90 Normal file
View File

@ -0,0 +1,26 @@
subroutine twkfreq1(ca,npts,fsample,a,cb)
complex ca(npts)
complex cb(npts)
complex w,wstep
real a(5)
data twopi/6.283185307/
! Mix the complex signal
w=1.0
wstep=1.0
x0=0.5*(npts+1)
s=2.0/npts
do i=1,npts
x=s*(i-x0)
p2=1.5*x*x - 0.5
p3=2.5*(x**3) - 1.5*x
p4=4.375*(x**4) - 3.75*(x**2) + 0.375
dphi=(a(1) + x*a(2) + p2*a(3) + p3*a(4) + p4*a(5)) * (twopi/fsample)
wstep=cmplx(cos(dphi),sin(dphi))
w=w*wstep
cb(i)=w*ca(i)
enddo
return
end subroutine twkfreq1

View File

@ -1,39 +1,41 @@
subroutine watterson(c,delay,fspread)
subroutine watterson(c,fs,delay,fspread)
parameter (NZ=3456000)
parameter (NZ=3840)
complex c(0:NZ-1)
complex c2(0:NZ-1)
complex cs1(0:NZ-1)
complex cs2(0:NZ-1)
df=12000.0/NZ
nonzero=0
df=fs/NZ
if(fspread.gt.0.0) then
do i=0,NZ-1
xx=gran()
yy=gran()
cs1(i)=cmplx(xx,yy)
cs1(i)=0.707*cmplx(xx,yy)
xx=gran()
yy=gran()
cs2(i)=cmplx(xx,yy)
cs2(i)=0.707*cmplx(xx,yy)
enddo
call four2a(cs1,NZ,1,-1,1) !To freq domain
call four2a(cs2,NZ,1,-1,1)
do i=0,NZ-1
f=i*df
if(i.gt.NZ/2) f=(i-NZ)*df
x=(f/fspread)**2
x=(f/(0.5*fspread))**2
a=0.
if(x.le.50.0) then
a=exp(-x)
endif
cs1(i)=a*cs1(i)
cs2(i)=a*cs2(i)
! if(abs(f).lt.10.0) then
! p1=real(cs1(i))**2 + aimag(cs1(i))**2
! p2=real(cs2(i))**2 + aimag(cs2(i))**2
! write(62,3101) f,db(p1+1.e-12)-60,db(p2+1.e-12)-60
!3101 format(3f10.3)
! endif
if(abs(f).lt.10.0) then
p1=real(cs1(i))**2 + aimag(cs1(i))**2
p2=real(cs2(i))**2 + aimag(cs2(i))**2
if(p1.gt.0.0) nonzero=nonzero+1
! write(62,3101) f,p1,p2,db(p1+1.e-12)-60,db(p2+1.e-12)-60
!3101 format(f10.3,2f12.3,2f10.3)
endif
enddo
call four2a(cs1,NZ,1,1,1) !Back to time domain
call four2a(cs2,NZ,1,1,1)
@ -43,11 +45,13 @@ subroutine watterson(c,delay,fspread)
nshift=0.001*delay*12000.0
c2=cshift(c,nshift)
sq=0.
do i=0,NZ-1
if(fspread.eq.0.0) c(i)=0.5*(c(i) + c2(i))
if(fspread.gt.0.0) c(i)=0.5*(cs1(i)*c(i) + cs2(i)*c2(i))
if(nonzero.gt.1) then
c(i)=0.5*(cs1(i)*c(i) + cs2(i)*c2(i))
else
c(i)=0.5*(c(i) + c2(i))
endif
sq=sq + real(c(i))**2 + aimag(c(i))**2
! write(61,3001) i/12000.0,c(i)
!3001 format(3f12.6)

View File

@ -1,41 +1,45 @@
program wsprlf
parameter (NN=121) !Total symbols
! parameter (NSPS=28672) !Samples per symbol
parameter (NSPS=28800) !Samples per symbol
parameter (NSPS=28800) !Samples per symbol @ fs=12000 Hz
parameter (NZ=NSPS*NN) !Samples in waveform
parameter (NFFT=11*NSPS)
character*8 arg
complex c(0:NZ-1)
complex ct(0:NFFT-1)
real*8 twopi,f0,dt,phi,dphi
real s(0:NZ-1)
real h0(0:NSPS/2)
real h1(0:NSPS/2)
real p(0:NFFT-1)
real*8 twopi,fs,f0,dt,phi,dphi
real x(0:NZ-1)
real p(0:NZ/2)
real h0(0:NSPS/2) !Pulse shape, rising edge
real h1(0:NSPS/2) !Pulse shape, trailing edge
real tmp(NN)
integer id(NN)
integer id(NN) !Generated data
integer ie(NN) !Differentially encoded data
data fs/12000.d0/
nargs=iargc()
if(nargs.ne.2) then
print*,'Usage: wsprlf f0 t1'
if(nargs.ne.3) then
print*,'Usage: wsprlf f0 t1 snr'
goto 999
endif
call getarg(1,arg)
read(arg,*) f0
call getarg(2,arg)
read(arg,*) t1
call getarg(3,arg)
read(arg,*) snrdb
call random_number(tmp) !Generate random data
id=0
where(tmp.ge.0.5) id=1
id(1)=0
call random_number(tmp) !Generate random bipolar data
id=1
where(tmp.lt.0.5) id=-1
ie(1)=1
do i=2,NN !Differentially encode
ie(i)=id(i)*ie(i-1)
enddo
n1=nint(t1*NSPS)
twopi=8.d0*atan(1.d0)
do i=0,2*n1-1
do i=0,2*n1-1 !Define the shape functions
if(i.le.n1-1) then
h0(i)=0.5*(1.0-cos(0.5*i*twopi/n1))
else
@ -45,67 +49,62 @@ program wsprlf
if(t1.eq.0.0) h0=1
if(t1.eq.0.0) h1=1
s=1.
s(0:n1-1)=h0(0:n1-1) !Leading edge of 1st pulse
! Shape the channel pulses
x=1.
x(0:n1-1)=h0(0:n1-1) !Leading edge of 1st pulse
do j=2,NN !Leading edges
if(id(j).ne.id(j-1)) then
if(ie(j).ne.ie(j-1)) then
ia=(j-1)*NSPS + 1
ib=ia+n1-1
s(ia:ib)=h0(0:n1-1)
x(ia:ib)=h0(0:n1-1)
endif
enddo
do j=1,NN-1 !Trailing edges
if(id(j+1).ne.id(j)) then
if(ie(j+1).ne.ie(j)) then
ib=j*NSPS
ia=ib-n1+1
s(ia:ib)=h1(0:n1-1)
x(ia:ib)=h1(0:n1-1)
endif
enddo
ib=NN*NSPS-1
ia=ib-n1+1
s(ia:ib)=h1(0:n1-1) !Trailing edge of last pulse
x(ia:ib)=h1(0:n1-1) !Trailing edge of last pulse
dt=1.d0/12000.d0
dt=1.d0/fs
ts=dt*NSPS
baud=12000.0/NSPS
baud=fs/NSPS
write(*,1000) baud,ts
1000 format('Baud:',f6.3,' Tsym:',f6.3)
phi=0.
dphi=twopi*f0*dt
phi=0.d0
i=-1
do j=1,NN
x=1.
if(id(j).eq.1) x=-1.
do j=1,NN !Generate the baseband waveform
a=ie(j)
do k=1,NSPS
i=i+1
x(i)=a*x(i)
phi=phi+dphi
if(phi.gt.twopi) phi=phi-twopi
c(i)=x*s(i)*cmplx(cos(phi),sin(phi))
t=i*dt
sym=t/ts
if(sym.ge.10.0 .and. sym.le.20.0) write(13,3001) t, &
sym,s(i),c(i)
3001 format(5f12.6,i10)
xphi=phi
c(i)=x(i)*cmplx(cos(xphi),sin(xphi))
sym=i*dt/ts
if(j.le.20) write(13,1010) sym,x(i),c(i)
1010 format(4f12.6)
enddo
enddo
p=0.
do iblk=1,11
ia=(iblk-1)*NFFT
ib=ia+NFFT-1
ct=c(ia:ib)
call four2a(ct,NFFT,1,-1,1)
do i=0,NFFT-1
p(i)=p(i) + real(ct(i))**2 + aimag(ct(i))**2
enddo
call four2a(c,NZ,1,-1,1) !To freq domain
df=fs/NZ
nh=NZ/2
do i=0,nh
f=i*df
p(i)=real(c(i))**2 + aimag(c(i))**2
enddo
p=cshift(p,NFFT/2)/maxval(p)
df=12000.0/NFFT
do i=0,NFFT-1
f=i*df - 6000.0
write(14,1020) f,p(i),10.0*log10(p(i)+1.e-12)
1020 format(f12.4,2e12.3)
p=p/maxval(p)
do i=0,nh !Save spectrum for plotting
write(14,1020) i*df,p(i),10.0*log10(p(i)+1.e-8)
1020 format(f10.3,2e12.3)
enddo
999 end program wsprlf