mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-25 13:48:42 -05:00
Fix two small typos.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6369 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
e0f40f71fc
commit
33b46a60cb
@ -246,7 +246,7 @@ The minimum Hamming distance of the JT65 code is
|
||||
\end_inset
|
||||
|
||||
, which means that any particular codeword differs from all other codewords
|
||||
in at least 52 or the 63 symbol positions.
|
||||
in at least 52 of the 63 symbol positions.
|
||||
|
||||
\end_layout
|
||||
|
||||
@ -849,7 +849,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
||||
\end_inset
|
||||
|
||||
of the symbol's fractional power
|
||||
\begin_inset Formula $p_{1,\,j}$
|
||||
\begin_inset Formula $p_{1,\, j}$
|
||||
\end_inset
|
||||
|
||||
in a sorted list of
|
||||
@ -919,7 +919,7 @@ t educated guesses to select symbols for erasure.
|
||||
, the soft distance between the received word and the codeword:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance}
|
||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\, j}).\label{eq:soft_distance}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -937,7 +937,7 @@ Here
|
||||
\end_inset
|
||||
|
||||
if the received symbol and codeword symbol are different, and
|
||||
\begin_inset Formula $p_{1,\,j}$
|
||||
\begin_inset Formula $p_{1,\, j}$
|
||||
\end_inset
|
||||
|
||||
is the fractional power associated with received symbol
|
||||
@ -981,7 +981,7 @@ In practice we find that
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric}
|
||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).\label{eq:u-metric}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -1014,7 +1014,7 @@ The correct JT65 codeword produces a value for
|
||||
|
||||
bins containing noise only.
|
||||
Thus, if the spectral array
|
||||
\begin_inset Formula $S(i,\,j)$
|
||||
\begin_inset Formula $S(i,\, j)$
|
||||
\end_inset
|
||||
|
||||
has been normalized so that the average value of the noise-only bins is
|
||||
@ -1263,7 +1263,7 @@ For each received symbol, define the erasure probability as 1.3 times the
|
||||
a priori
|
||||
\emph default
|
||||
symbol-error probability determined from soft-symbol information
|
||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$
|
||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
@ -1595,7 +1595,7 @@ If
|
||||
\begin_inset Formula $u$
|
||||
\end_inset
|
||||
|
||||
is the largest found so far, presevre any previous value of
|
||||
is the largest found so far, preserve any previous value of
|
||||
\begin_inset Formula $u_{1}$
|
||||
\end_inset
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user