From 3620d664519ba80f34f71d9fcf50183182e966e8 Mon Sep 17 00:00:00 2001 From: Joe Taylor Date: Wed, 27 Jun 2007 19:49:29 +0000 Subject: [PATCH] Removed some unised files. Added dphi = 310 degrees, correction different for feedline lengths. NB: this will be different, with new array! git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/map65@425 ab8295b8-cf94-4d9e-aec4-7959e3be5d79 --- decode1a.f | 11 +++- decode65b.f | 4 +- lpf1.f | 67 ------------------- map65a.f90 | 9 +-- ps.f | 23 ------- xfft.f | 12 ---- xfft2.f | 184 ---------------------------------------------------- 7 files changed, 16 insertions(+), 294 deletions(-) delete mode 100644 lpf1.f delete mode 100644 ps.f delete mode 100644 xfft.f delete mode 100644 xfft2.f diff --git a/decode1a.f b/decode1a.f index 05ab6916a..1be6d199a 100644 --- a/decode1a.f +++ b/decode1a.f @@ -1,5 +1,5 @@ - subroutine decode1a(id,newdat,nfilt,freq,nflip,ipol,sync2,a,dt, - + pol,nkv,nhist,qual,decoded) + subroutine decode1a(id,newdat,nfilt,freq,nflip,dphi,ipol, + + sync2,a,dt,pol,nkv,nhist,qual,decoded) C Apply AFC corrections to a candidate JT65 signal, and then try C to decode it. @@ -13,6 +13,7 @@ C to decode it. complex cx(NMAX/64), cy(NMAX/64) !Data at 1378.125 samples/s complex c5x(NMAX/256),c5y(NMAX/256) complex c5a(256), c5b(256) + complex z real s2(256,126) real a(5) @@ -73,6 +74,12 @@ C Find best DF, f1, f2, DT, and pol call fil6521(cx,n5,c5x,n6) call fil6521(cy,n5,c5y,n6) +! Adjust for cable length difference: + z=cmplx(cos(dphi),sin(dphi)) + do i=1,n6 + c5y(i)=z*c5y(i) + enddo + fsample=1378.125/4. a(5)=dt00 i0=nint((a(5)+0.5)*fsample) - 2 diff --git a/decode65b.f b/decode65b.f index bbb60d790..d0146ae8e 100644 --- a/decode65b.f +++ b/decode65b.f @@ -35,7 +35,7 @@ C Suppress "birdie messages": endif qual=0. - if(nkv.eq.0) then +! if(nkv.eq.0) then mycall='K1JT' hiscall='W1ABC' hisgrid='EM79' @@ -51,7 +51,7 @@ C Save symbol spectra for possible decoding of average. ! if(flip.lt.0.0) k=mdat2(j) ! call move(s2(8,k),ppsave(1,j,nsave),64) ! enddo - endif +! endif if(nkv.eq.0 .and. qual.ge.1.0) decoded=deepmsg diff --git a/lpf1.f b/lpf1.f deleted file mode 100644 index 698923375..000000000 --- a/lpf1.f +++ /dev/null @@ -1,67 +0,0 @@ - subroutine lpf1(dat,jz,nz,mousedf,mousedf2) - - parameter (NMAX=1024*1024) - parameter (NMAXH=NMAX) - real dat(jz),x(NMAX) - complex c(0:NMAXH) - equivalence (x,c) - -C Find FFT length - xn=log(float(jz))/log(2.0) - n=xn - if((xn-n).gt.0.) n=n+1 - nfft=2**n - nh=nfft/2 - -C Load data into real array x; pad with zeros up to nfft. - do i=1,jz - x(i)=dat(i) - enddo - if(nfft.gt.jz) call zero(x(jz+1),nfft-jz) -C Do the FFT - call xfft(x,nfft) - df=11025.0/nfft - - ia=70/df - do i=0,ia - c(i)=0. - enddo - ia=5000.0/df - do i=ia,nh - c(i)=0. - enddo - -C See if frequency needs to be shifted: - ndf=0 - if(mousedf.lt.-600) ndf=-670 - if(mousedf.gt.600) ndf=1000 - if(mousedf.gt.1600) ndf=2000 - if(mousedf.gt.2600) ndf=3000 - - if(ndf.ne.0) then -C Shift frequency up or down by ndf Hz: - i0=nint(ndf/df) - if(i0.lt.0) then - do i=nh,-i0,-1 - c(i)=c(i+i0) - enddo - do i=0,-i0-1 - c(i)=0. - enddo - else - do i=0,nh-i0 - c(i)=c(i+i0) - enddo - endif - endif - - mousedf2=mousedf-ndf !Adjust mousedf - call four2a(c,nh,1,1,-1) !Return to time domain - fac=1.0/nfft - nz=jz/2 - do i=1,nz - dat(i)=fac*x(i) - enddo - - return - end diff --git a/map65a.f90 b/map65a.f90 index d7d277b1a..06920bb9d 100644 --- a/map65a.f90 +++ b/map65a.f90 @@ -54,6 +54,7 @@ subroutine map65a(newdat) ! nfilt=2 should be faster (but doesn't work quite right?) nfilt=1 !nfilt=2 is faster for selected freq + dphi=310/57.2957795 do kpol=0,3 freq=fselect + 0.001*mousedf if(even) ip0=ip000+kpol @@ -61,8 +62,8 @@ subroutine map65a(newdat) if(ip0.gt.4) ip0=ip0-4 dt00=2.314240 dt=dt00 - call decode1a(id(1,1,kbuf),newdat,nfilt,freq,nflip,ip0,sync2, & - a,dt,pol,nkv,nhist,qual,decoded) + call decode1a(id(1,1,kbuf),newdat,nfilt,freq,nflip,dphi,ip0, & + sync2,a,dt,pol,nkv,nhist,qual,decoded) nsync1=0 nsync2=nint(10.0*log10(sync2)) - 40 !### empirical ### ndf=nint(a(1)) + mousedf @@ -194,8 +195,8 @@ subroutine map65a(newdat) if(freq-freq0.gt.ftol .or. sync1.gt.sync10) then nflip=nint(flipk) - call decode1a(id(1,1,kbuf),newdat,nfilt,freq,nflip,ipol, & - sync2,a,dt,pol,nkv,nhist,qual,decoded) + call decode1a(id(1,1,kbuf),newdat,nfilt,freq,nflip,dphi, & + ipol,sync2,a,dt,pol,nkv,nhist,qual,decoded) ! i9=index(decoded,'AA1YN') ! if(i9.gt.0) print*,i,i9,fselect,freq,decoded kk=kk+1 diff --git a/ps.f b/ps.f deleted file mode 100644 index dc6848816..000000000 --- a/ps.f +++ /dev/null @@ -1,23 +0,0 @@ - subroutine ps(dat,nfft,s) - - parameter (NMAX=16384+2) - parameter (NHMAX=NMAX/2-1) - real dat(nfft) - real s(NHMAX) - real x(NMAX) - complex c(0:NHMAX) - equivalence (x,c) - - nh=nfft/2 - do i=1,nfft - x(i)=dat(i)/128.0 !### Why 128 ?? - enddo - - call xfft(x,nfft) - fac=1.0/nfft - do i=1,nh - s(i)=fac*(real(c(i))**2 + aimag(c(i))**2) - enddo - - return - end diff --git a/xfft.f b/xfft.f deleted file mode 100644 index 04684aa12..000000000 --- a/xfft.f +++ /dev/null @@ -1,12 +0,0 @@ - subroutine xfft(x,nfft) - -C Real-to-complex FFT. - - real x(nfft) - -! call four2(x,nfft,1,-1,0) - call four2a(x,nfft,1,-1,0) - - return - end - diff --git a/xfft2.f b/xfft2.f deleted file mode 100644 index 2a7b05b20..000000000 --- a/xfft2.f +++ /dev/null @@ -1,184 +0,0 @@ - SUBROUTINE xfft2(DATA,NB) -c -c the cooley-tukey fast fourier transform in usasi basic fortran -c -C .. Scalar Arguments .. - INTEGER NB -C .. -C .. Array Arguments .. - REAL DATA(NB+2) -C .. -C .. Local Scalars .. - REAL DIFI,DIFR,RTHLF,SUMI,SUMR,T2I,T2R,T3I,T3R,T4I, - + T4R,TEMPI,TEMPR,THETA,TWOPI,U1I,U1R,U2I,U2R,U3I,U3R, - + U4I,U4R,W2I,W2R,W3I,W3R,WI,WR,WSTPI,WSTPR - INTEGER I,I2,IPAR,J,K1,K2,K3,K4,KDIF,KMIN, - + KSTEP,L,LMAX,M,MMAX,NH -C .. -C .. Intrinsic Functions .. - INTRINSIC COS,MAX0,REAL,SIN -C .. -C .. Data statements .. - DATA TWOPI/6.2831853071796/,RTHLF/0.70710678118655/ -c -c 1. real transform for the 1st dimension, n even. method-- -c transform a complex array of length n/2 whose real parts -c are the even numbered real values and whose imaginary parts -c are the odd numbered real values. separate and supply -c the second half by conjugate symmetry. -c - - NH = NB/2 -c -c shuffle data by bit reversal, since n=2**k. -c - J = 1 - DO 131 I2 = 1,NB,2 - IF (J-I2) 124,127,127 - 124 TEMPR = DATA(I2) - TEMPI = DATA(I2+1) - DATA(I2) = DATA(J) - DATA(I2+1) = DATA(J+1) - DATA(J) = TEMPR - DATA(J+1) = TEMPI - 127 M = NH - 128 IF (J-M) 130,130,129 - 129 J = J - M - M = M/2 - IF (M-2) 130,128,128 - 130 J = J + M - 131 CONTINUE - -c -c main loop for factors of two. perform fourier transforms of -c length four, with one of length two if needed. the twiddle factor -c w=exp(-2*pi*sqrt(-1)*m/(4*mmax)). check for w=-sqrt(-1) -c and repeat for w=w*(1-sqrt(-1))/sqrt(2). -c - IF (NB-2) 174,174,143 - 143 IPAR = NH - 144 IF (IPAR-2) 149,146,145 - 145 IPAR = IPAR/4 - GO TO 144 - - 146 DO 147 K1 = 1,NB,4 - K2 = K1 + 2 - TEMPR = DATA(K2) - TEMPI = DATA(K2+1) - DATA(K2) = DATA(K1) - TEMPR - DATA(K2+1) = DATA(K1+1) - TEMPI - DATA(K1) = DATA(K1) + TEMPR - DATA(K1+1) = DATA(K1+1) + TEMPI - 147 CONTINUE - 149 MMAX = 2 - 150 IF (MMAX-NH) 151,174,174 - 151 LMAX = MAX0(4,MMAX/2) - DO 173 L = 2,LMAX,4 - M = L - IF (MMAX-2) 156,156,152 - 152 THETA = -TWOPI*REAL(L)/REAL(4*MMAX) - WR = COS(THETA) - WI = SIN(THETA) - 155 W2R = WR*WR - WI*WI - W2I = 2.*WR*WI - W3R = W2R*WR - W2I*WI - W3I = W2R*WI + W2I*WR - 156 KMIN = 1 + IPAR*M - IF (MMAX-2) 157,157,158 - 157 KMIN = 1 - 158 KDIF = IPAR*MMAX - 159 KSTEP = 4*KDIF - IF (KSTEP-NB) 160,160,169 - 160 DO 168 K1 = KMIN,NB,KSTEP - K2 = K1 + KDIF - K3 = K2 + KDIF - K4 = K3 + KDIF - IF (MMAX-2) 161,161,164 - 161 U1R = DATA(K1) + DATA(K2) - U1I = DATA(K1+1) + DATA(K2+1) - U2R = DATA(K3) + DATA(K4) - U2I = DATA(K3+1) + DATA(K4+1) - U3R = DATA(K1) - DATA(K2) - U3I = DATA(K1+1) - DATA(K2+1) - U4R = DATA(K3+1) - DATA(K4+1) - U4I = DATA(K4) - DATA(K3) - GO TO 167 - - 164 T2R = W2R*DATA(K2) - W2I*DATA(K2+1) - T2I = W2R*DATA(K2+1) + W2I*DATA(K2) - T3R = WR*DATA(K3) - WI*DATA(K3+1) - T3I = WR*DATA(K3+1) + WI*DATA(K3) - T4R = W3R*DATA(K4) - W3I*DATA(K4+1) - T4I = W3R*DATA(K4+1) + W3I*DATA(K4) - U1R = DATA(K1) + T2R - U1I = DATA(K1+1) + T2I - U2R = T3R + T4R - U2I = T3I + T4I - U3R = DATA(K1) - T2R - U3I = DATA(K1+1) - T2I - U4R = T3I - T4I - U4I = T4R - T3R - - 167 DATA(K1) = U1R + U2R - DATA(K1+1) = U1I + U2I - DATA(K2) = U3R + U4R - DATA(K2+1) = U3I + U4I - DATA(K3) = U1R - U2R - DATA(K3+1) = U1I - U2I - DATA(K4) = U3R - U4R - DATA(K4+1) = U3I - U4I - 168 CONTINUE - KDIF = KSTEP - KMIN = 4*KMIN - 3 - GO TO 159 - - 169 M = M + LMAX - IF (M-MMAX) 170,170,173 - 170 TEMPR = WR - WR = (WR+WI)*RTHLF - WI = (WI-TEMPR)*RTHLF - GO TO 155 - - 173 CONTINUE - IPAR = 3 - IPAR - MMAX = MMAX + MMAX - GO TO 150 -c -c complete a real transform in the 1st dimension, n even, by con- -c jugate symmetries. -c - 174 THETA = -TWOPI/REAL(NB) - WSTPR = COS(THETA) - WSTPI = SIN(THETA) - WR = WSTPR - WI = WSTPI - I = 3 - J = NB - 1 - GO TO 207 - - 205 SUMR = (DATA(I)+DATA(J))/2. - SUMI = (DATA(I+1)+DATA(J+1))/2. - DIFR = (DATA(I)-DATA(J))/2. - DIFI = (DATA(I+1)-DATA(J+1))/2. - TEMPR = WR*SUMI + WI*DIFR - TEMPI = WI*SUMI - WR*DIFR - DATA(I) = SUMR + TEMPR - DATA(I+1) = DIFI + TEMPI - DATA(J) = SUMR - TEMPR - DATA(J+1) = -DIFI + TEMPI - I = I + 2 - J = J - 2 - TEMPR = WR - WR = WR*WSTPR - WI*WSTPI - WI = TEMPR*WSTPI + WI*WSTPR - 207 IF (I-J) 205,208,211 - 208 DATA(I+1) = -DATA(I+1) - - 211 DATA(NB+1) = DATA(1) - DATA(2) - DATA(NB+2) = 0. - - DATA(1) = DATA(1) + DATA(2) - DATA(2) = 0. - - RETURN - END