mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-03-22 20:18:35 -04:00
Prune further...
This commit is contained in:
parent
ecaa0b8861
commit
39318e9d21
@ -41,7 +41,6 @@ set (libm65_FSRCS
|
||||
recvpkt.f90
|
||||
rfile3a.f90
|
||||
s3avg.f90
|
||||
sec_midn.f90
|
||||
set.f90
|
||||
shell.f90
|
||||
sleep_msec.f90
|
||||
@ -59,36 +58,10 @@ set (libm65_FSRCS
|
||||
f77_wisdom.f
|
||||
)
|
||||
|
||||
set (libm65_ka9q_CSRCS
|
||||
decode_rs.c
|
||||
encode_rs.c
|
||||
init_rs.c
|
||||
)
|
||||
set_source_files_properties (${libm65_ka9q_CSRCS} PROPERTIES COMPILE_FLAGS -Wno-sign-compare)
|
||||
|
||||
set (libm65_CSRCS
|
||||
${libm65_ka9q_CSRCS}
|
||||
ftrsd2.c
|
||||
# gran.c
|
||||
igray.c
|
||||
tmoonsub.c
|
||||
usleep.c
|
||||
wrapkarn.c
|
||||
)
|
||||
|
||||
if (WIN32)
|
||||
set (libm65_CSRCS ${libm65_CSRCS} ptt.c)
|
||||
else ()
|
||||
set (libm65_CSRCS ${libm65_CSRCS} ptt_unix.c)
|
||||
endif ()
|
||||
|
||||
set (libm65_CXXSRCS
|
||||
ipcomm.cpp
|
||||
)
|
||||
|
||||
add_definitions (-DBIGSYM=1)
|
||||
set_source_files_properties (sec_midn.f90 PROPERTIES COMPILE_FLAGS -fno-second-underscore)
|
||||
|
||||
set (libm65_C_and_CXXSRCS
|
||||
${libm65_CSRCS}
|
||||
${libm65_CXXSRCS}
|
||||
|
@ -1,93 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
// #include <sys/times.h>
|
||||
// #include <time.h>
|
||||
// #include <sys/time.h>
|
||||
#include "sleep.h"
|
||||
#include "timeval.h"
|
||||
|
||||
/* FORTRAN: fd = close(filedes) */
|
||||
int close_(int *filedes)
|
||||
{
|
||||
return(close(*filedes));
|
||||
}
|
||||
/* FORTRAN: fd = open(filnam,mode) */
|
||||
int open_(char filnam[], int *mode)
|
||||
{
|
||||
return(open(filnam,*mode));
|
||||
}
|
||||
/* FORTRAN: fd = creat(filnam,mode) */
|
||||
int creat_(char filnam[],int *mode)
|
||||
{
|
||||
return(creat(filnam,*mode));
|
||||
}
|
||||
/* FORTRAN: nread = read(fd,buf,n) */
|
||||
int read_(int *fd, char buf[], int *n)
|
||||
{
|
||||
return(read(*fd,buf,*n));
|
||||
}
|
||||
/* FORTRAN: nwrt = write(fd,buf,n) */
|
||||
int write_(int *fd, char buf[], int *n)
|
||||
{
|
||||
return(write(*fd,buf,*n));
|
||||
}
|
||||
/* FORTRAN: ns = lseek(fd,offset,origin) */
|
||||
int lseek_(int *fd,int *offset, int *origin)
|
||||
{
|
||||
return(lseek(*fd,*offset,*origin));
|
||||
}
|
||||
/* times(2) */
|
||||
//int times_(struct tms *buf)
|
||||
//{
|
||||
// return (times(buf));
|
||||
//}
|
||||
/* ioperm(2) */
|
||||
//ioperm_(from,num,turn_on)
|
||||
//unsigned long *from,*num,*turn_on;
|
||||
//{
|
||||
// return (ioperm(*from,*num,*turn_on));
|
||||
// return (i386_get_ioperm(*from,*num,*turn_on));
|
||||
//}
|
||||
|
||||
/* usleep(3) */
|
||||
void usleep_(unsigned long *microsec)
|
||||
{
|
||||
usleep(*microsec);
|
||||
}
|
||||
|
||||
/* returns random numbers between 0 and 32767 to FORTRAN program */
|
||||
int iran_(int *arg)
|
||||
{
|
||||
return (rand());
|
||||
}
|
||||
|
||||
int exit_(int *n)
|
||||
{
|
||||
printf("\n\n");
|
||||
exit(*n);
|
||||
}
|
||||
|
||||
/*
|
||||
struct tm *
|
||||
gmtime_r_(const time_t *clock, struct tm *result)
|
||||
{
|
||||
gmtime_r(clock, result);
|
||||
}
|
||||
*/
|
||||
|
||||
time_t time_(void)
|
||||
{
|
||||
return time(0);
|
||||
}
|
||||
|
||||
/* hrtime() */
|
||||
double hrtime_(void)
|
||||
{
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv,NULL);
|
||||
return(tv.tv_sec+1.e-6*tv.tv_usec);
|
||||
}
|
@ -1,268 +0,0 @@
|
||||
/* Reed-Solomon decoder
|
||||
* Copyright 2002 Phil Karn, KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
* Modified by Steve Franke, K9AN, for use in a soft-symbol RS decoder
|
||||
*/
|
||||
|
||||
#ifdef DEBUG
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define NULL ((void *)0)
|
||||
#define min(a,b) ((a) < (b) ? (a) : (b))
|
||||
|
||||
#ifdef FIXED
|
||||
#include "fixed.h"
|
||||
#elif defined(BIGSYM)
|
||||
#include "int.h"
|
||||
#else
|
||||
#include "char.h"
|
||||
#endif
|
||||
|
||||
int DECODE_RS(
|
||||
#ifndef FIXED
|
||||
void *p,
|
||||
#endif
|
||||
DTYPE *data, int *eras_pos, int no_eras, int calc_syn){
|
||||
|
||||
#ifndef FIXED
|
||||
struct rs *rs = (struct rs *)p;
|
||||
#endif
|
||||
int deg_lambda, el, deg_omega;
|
||||
int i, j, r,k;
|
||||
DTYPE u,q,tmp,num1,num2,den,discr_r;
|
||||
DTYPE lambda[NROOTS+1]; // Err+Eras Locator poly
|
||||
static DTYPE s[51]; // and syndrome poly
|
||||
DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
|
||||
DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
|
||||
int syn_error, count;
|
||||
|
||||
if( calc_syn ) {
|
||||
/* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
|
||||
for(i=0;i<NROOTS;i++)
|
||||
s[i] = data[0];
|
||||
|
||||
for(j=1;j<NN;j++){
|
||||
for(i=0;i<NROOTS;i++){
|
||||
if(s[i] == 0){
|
||||
s[i] = data[j];
|
||||
} else {
|
||||
s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Convert syndromes to index form, checking for nonzero condition */
|
||||
syn_error = 0;
|
||||
for(i=0;i<NROOTS;i++){
|
||||
syn_error |= s[i];
|
||||
s[i] = INDEX_OF[s[i]];
|
||||
}
|
||||
|
||||
|
||||
if (!syn_error) {
|
||||
/* if syndrome is zero, data[] is a codeword and there are no
|
||||
* errors to correct. So return data[] unmodified
|
||||
*/
|
||||
count = 0;
|
||||
goto finish;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
|
||||
lambda[0] = 1;
|
||||
|
||||
if (no_eras > 0) {
|
||||
/* Init lambda to be the erasure locator polynomial */
|
||||
lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
|
||||
for (i = 1; i < no_eras; i++) {
|
||||
u = MODNN(PRIM*(NN-1-eras_pos[i]));
|
||||
for (j = i+1; j > 0; j--) {
|
||||
tmp = INDEX_OF[lambda[j - 1]];
|
||||
if(tmp != A0)
|
||||
lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
|
||||
}
|
||||
}
|
||||
|
||||
#if DEBUG >= 1
|
||||
/* Test code that verifies the erasure locator polynomial just constructed
|
||||
Needed only for decoder debugging. */
|
||||
|
||||
/* find roots of the erasure location polynomial */
|
||||
for(i=1;i<=no_eras;i++)
|
||||
reg[i] = INDEX_OF[lambda[i]];
|
||||
|
||||
count = 0;
|
||||
for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
|
||||
q = 1;
|
||||
for (j = 1; j <= no_eras; j++)
|
||||
if (reg[j] != A0) {
|
||||
reg[j] = MODNN(reg[j] + j);
|
||||
q ^= ALPHA_TO[reg[j]];
|
||||
}
|
||||
if (q != 0)
|
||||
continue;
|
||||
/* store root and error location number indices */
|
||||
root[count] = i;
|
||||
loc[count] = k;
|
||||
count++;
|
||||
}
|
||||
if (count != no_eras) {
|
||||
printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
#if DEBUG >= 2
|
||||
printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
|
||||
for (i = 0; i < count; i++)
|
||||
printf("%d ", loc[i]);
|
||||
printf("\n");
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
for(i=0;i<NROOTS+1;i++)
|
||||
b[i] = INDEX_OF[lambda[i]];
|
||||
|
||||
/*
|
||||
* Begin Berlekamp-Massey algorithm to determine error+erasure
|
||||
* locator polynomial
|
||||
*/
|
||||
r = no_eras;
|
||||
el = no_eras;
|
||||
while (++r <= NROOTS) { /* r is the step number */
|
||||
/* Compute discrepancy at the r-th step in poly-form */
|
||||
discr_r = 0;
|
||||
for (i = 0; i < r; i++){
|
||||
if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
|
||||
discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
|
||||
}
|
||||
}
|
||||
discr_r = INDEX_OF[discr_r]; /* Index form */
|
||||
if (discr_r == A0) {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
memmove(&b[1],b,NROOTS*sizeof(b[0]));
|
||||
b[0] = A0;
|
||||
} else {
|
||||
/* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
|
||||
t[0] = lambda[0];
|
||||
for (i = 0 ; i < NROOTS; i++) {
|
||||
if(b[i] != A0)
|
||||
t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
|
||||
else
|
||||
t[i+1] = lambda[i+1];
|
||||
}
|
||||
if (2 * el <= r + no_eras - 1) {
|
||||
el = r + no_eras - el;
|
||||
/*
|
||||
* 2 lines below: B(x) <-- inv(discr_r) *
|
||||
* lambda(x)
|
||||
*/
|
||||
for (i = 0; i <= NROOTS; i++)
|
||||
b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
|
||||
} else {
|
||||
/* 2 lines below: B(x) <-- x*B(x) */
|
||||
memmove(&b[1],b,NROOTS*sizeof(b[0]));
|
||||
b[0] = A0;
|
||||
}
|
||||
memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
|
||||
}
|
||||
}
|
||||
|
||||
/* Convert lambda to index form and compute deg(lambda(x)) */
|
||||
deg_lambda = 0;
|
||||
for(i=0;i<NROOTS+1;i++){
|
||||
lambda[i] = INDEX_OF[lambda[i]];
|
||||
if(lambda[i] != A0)
|
||||
deg_lambda = i;
|
||||
}
|
||||
/* Find roots of the error+erasure locator polynomial by Chien search */
|
||||
memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
|
||||
count = 0; /* Number of roots of lambda(x) */
|
||||
for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
|
||||
q = 1; /* lambda[0] is always 0 */
|
||||
for (j = deg_lambda; j > 0; j--){
|
||||
if (reg[j] != A0) {
|
||||
reg[j] = MODNN(reg[j] + j);
|
||||
q ^= ALPHA_TO[reg[j]];
|
||||
}
|
||||
}
|
||||
if (q != 0)
|
||||
continue; /* Not a root */
|
||||
/* store root (index-form) and error location number */
|
||||
#if DEBUG>=2
|
||||
printf("count %d root %d loc %d\n",count,i,k);
|
||||
#endif
|
||||
root[count] = i;
|
||||
loc[count] = k;
|
||||
/* If we've already found max possible roots,
|
||||
* abort the search to save time
|
||||
*/
|
||||
if(++count == deg_lambda)
|
||||
break;
|
||||
}
|
||||
if (deg_lambda != count) {
|
||||
/*
|
||||
* deg(lambda) unequal to number of roots => uncorrectable
|
||||
* error detected
|
||||
*/
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
/*
|
||||
* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
|
||||
* x**NROOTS). in index form. Also find deg(omega).
|
||||
*/
|
||||
deg_omega = 0;
|
||||
for (i = 0; i < NROOTS;i++){
|
||||
tmp = 0;
|
||||
j = (deg_lambda < i) ? deg_lambda : i;
|
||||
for(;j >= 0; j--){
|
||||
if ((s[i - j] != A0) && (lambda[j] != A0))
|
||||
tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
|
||||
}
|
||||
if(tmp != 0)
|
||||
deg_omega = i;
|
||||
omega[i] = INDEX_OF[tmp];
|
||||
}
|
||||
omega[NROOTS] = A0;
|
||||
|
||||
/*
|
||||
* Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
|
||||
* inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
|
||||
*/
|
||||
for (j = count-1; j >=0; j--) {
|
||||
num1 = 0;
|
||||
for (i = deg_omega; i >= 0; i--) {
|
||||
if (omega[i] != A0)
|
||||
num1 ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
|
||||
}
|
||||
num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
|
||||
den = 0;
|
||||
|
||||
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
|
||||
for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
|
||||
if(lambda[i+1] != A0)
|
||||
den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
|
||||
}
|
||||
if (den == 0) {
|
||||
#if DEBUG >= 1
|
||||
printf("\n ERROR: denominator = 0\n");
|
||||
#endif
|
||||
count = -1;
|
||||
goto finish;
|
||||
}
|
||||
/* Apply error to data */
|
||||
if (num1 != 0) {
|
||||
data[loc[j]] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
|
||||
}
|
||||
}
|
||||
finish:
|
||||
if(eras_pos != NULL){
|
||||
for(i=0;i<count;i++)
|
||||
eras_pos[i] = loc[i];
|
||||
}
|
||||
return count;
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
/* Reed-Solomon encoder
|
||||
* Copyright 2002, Phil Karn, KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
*/
|
||||
#include <string.h>
|
||||
|
||||
#ifdef FIXED
|
||||
#include "fixed.h"
|
||||
#elif defined(BIGSYM)
|
||||
#include "int.h"
|
||||
#else
|
||||
#include "char.h"
|
||||
#endif
|
||||
|
||||
void ENCODE_RS(
|
||||
#ifndef FIXED
|
||||
void *p,
|
||||
#endif
|
||||
DTYPE *data, DTYPE *bb){
|
||||
#ifndef FIXED
|
||||
struct rs *rs = (struct rs *)p;
|
||||
#endif
|
||||
int i, j;
|
||||
DTYPE feedback;
|
||||
|
||||
memset(bb,0,NROOTS*sizeof(DTYPE));
|
||||
|
||||
for(i=0;i<NN-NROOTS;i++){
|
||||
feedback = INDEX_OF[data[i] ^ bb[0]];
|
||||
if(feedback != A0){ /* feedback term is non-zero */
|
||||
#ifdef UNNORMALIZED
|
||||
/* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
|
||||
* always be for the polynomials constructed by init_rs()
|
||||
*/
|
||||
feedback = MODNN(NN - GENPOLY[NROOTS] + feedback);
|
||||
#endif
|
||||
for(j=1;j<NROOTS;j++)
|
||||
bb[j] ^= ALPHA_TO[MODNN(feedback + GENPOLY[NROOTS-j])];
|
||||
}
|
||||
/* Shift */
|
||||
memmove(&bb[0],&bb[1],sizeof(DTYPE)*(NROOTS-1));
|
||||
if(feedback != A0)
|
||||
bb[NROOTS-1] = ALPHA_TO[MODNN(feedback + GENPOLY[0])];
|
||||
else
|
||||
bb[NROOTS-1] = 0;
|
||||
}
|
||||
}
|
@ -1,213 +0,0 @@
|
||||
/*
|
||||
ftrsd2.c
|
||||
|
||||
A soft-decision decoder for the JT65 (63,12) Reed-Solomon code.
|
||||
|
||||
This decoding scheme is built around Phil Karn's Berlekamp-Massey
|
||||
errors and erasures decoder. The approach is inspired by a number of
|
||||
publications, including the stochastic Chase decoder described
|
||||
in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al.,
|
||||
IEEE Communications Letters, Vol. 14, No. 9, September 2010 and
|
||||
"Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error-
|
||||
and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar.
|
||||
|
||||
Steve Franke K9AN and Joe Taylor K1JT
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <time.h>
|
||||
#include <string.h>
|
||||
#include "rs2.h"
|
||||
|
||||
static void *rs;
|
||||
void getpp_(int workdat[], float *pp);
|
||||
|
||||
void ftrsd2_(int mrsym[], int mrprob[], int mr2sym[], int mr2prob[],
|
||||
int* ntrials0, int correct[], int param[], int ntry[])
|
||||
{
|
||||
int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63];
|
||||
int workdat[63];
|
||||
int indexes[63];
|
||||
int era_pos[51];
|
||||
int i, j, numera, nerr, nn=63;
|
||||
int ntrials = *ntrials0;
|
||||
int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768;
|
||||
int ntotal=0,ntotal_min=32768,ncandidates;
|
||||
int nera_best=0;
|
||||
float pp,pp1,pp2;
|
||||
static unsigned int nseed;
|
||||
|
||||
// Power-percentage symbol metrics - composite gnnf/hf
|
||||
int perr[8][8] = {
|
||||
{ 4, 9, 11, 13, 14, 14, 15, 15},
|
||||
{ 2, 20, 20, 30, 40, 50, 50, 50},
|
||||
{ 7, 24, 27, 40, 50, 50, 50, 50},
|
||||
{13, 25, 35, 46, 52, 70, 50, 50},
|
||||
{17, 30, 42, 54, 55, 64, 71, 70},
|
||||
{25, 39, 48, 57, 64, 66, 77, 77},
|
||||
{32, 45, 54, 63, 66, 75, 78, 83},
|
||||
{51, 58, 57, 66, 72, 77, 82, 86}};
|
||||
|
||||
|
||||
// Initialize the KA9Q Reed-Solomon encoder/decoder
|
||||
unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51;
|
||||
rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0);
|
||||
|
||||
// Reverse the received symbol vectors for BM decoder
|
||||
for (i=0; i<63; i++) {
|
||||
rxdat[i]=mrsym[62-i];
|
||||
rxprob[i]=mrprob[62-i];
|
||||
rxdat2[i]=mr2sym[62-i];
|
||||
rxprob2[i]=mr2prob[62-i];
|
||||
}
|
||||
|
||||
// Sort rxprob to find indexes of the least reliable symbols
|
||||
int k, pass, tmp, nsym=63;
|
||||
int probs[63];
|
||||
for (i=0; i<63; i++) {
|
||||
indexes[i]=i;
|
||||
probs[i]=rxprob[i];
|
||||
}
|
||||
for (pass = 1; pass <= nsym-1; pass++) {
|
||||
for (k = 0; k < nsym - pass; k++) {
|
||||
if( probs[k] < probs[k+1] ) {
|
||||
tmp = probs[k];
|
||||
probs[k] = probs[k+1];
|
||||
probs[k+1] = tmp;
|
||||
tmp = indexes[k];
|
||||
indexes[k] = indexes[k+1];
|
||||
indexes[k+1] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// See if we can decode using BM HDD, and calculate the syndrome vector.
|
||||
memset(era_pos,0,51*sizeof(int));
|
||||
numera=0;
|
||||
memcpy(workdat,rxdat,sizeof(rxdat));
|
||||
nerr=decode_rs_int(rs,workdat,era_pos,numera,1);
|
||||
if( nerr >= 0 ) {
|
||||
// Hard-decision decoding succeeded. Save codeword and some parameters.
|
||||
nhard=0;
|
||||
for (i=0; i<63; i++) {
|
||||
if( workdat[i] != rxdat[i] ) nhard=nhard+1;
|
||||
}
|
||||
memcpy(correct,workdat,63*sizeof(int));
|
||||
param[0]=0;
|
||||
param[1]=nhard;
|
||||
param[2]=0;
|
||||
param[3]=0;
|
||||
param[4]=0;
|
||||
param[5]=0;
|
||||
param[7]=1000*1000;
|
||||
ntry[0]=0;
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
Hard-decision decoding failed. Try the FT soft-decision method.
|
||||
Generate random erasure-locator vectors and see if any of them
|
||||
decode. This will generate a list of "candidate" codewords. The
|
||||
soft distance between each candidate codeword and the received
|
||||
word is estimated by finding the largest (pp1) and second-largest
|
||||
(pp2) outputs from a synchronized filter-bank operating on the
|
||||
symbol spectra, and using these to decide which candidate
|
||||
codeword is "best".
|
||||
*/
|
||||
|
||||
nseed=1; //Seed for random numbers
|
||||
float ratio;
|
||||
int thresh, nsum;
|
||||
int thresh0[63];
|
||||
ncandidates=0;
|
||||
nsum=0;
|
||||
int ii,jj;
|
||||
for (i=0; i<nn; i++) {
|
||||
nsum=nsum+rxprob[i];
|
||||
j = indexes[62-i];
|
||||
ratio = (float)rxprob2[j]/((float)rxprob[j]+0.01);
|
||||
ii = 7.999*ratio;
|
||||
jj = (62-i)/8;
|
||||
thresh0[i] = 1.3*perr[ii][jj];
|
||||
}
|
||||
if(nsum<=0) return;
|
||||
|
||||
pp1=0.0;
|
||||
pp2=0.0;
|
||||
for (k=1; k<=ntrials; k++) {
|
||||
memset(era_pos,0,51*sizeof(int));
|
||||
memcpy(workdat,rxdat,sizeof(rxdat));
|
||||
|
||||
/*
|
||||
Mark a subset of the symbols as erasures.
|
||||
Run through the ranked symbols, starting with the worst, i=0.
|
||||
NB: j is the symbol-vector index of the symbol with rank i.
|
||||
*/
|
||||
numera=0;
|
||||
for (i=0; i<nn; i++) {
|
||||
j = indexes[62-i];
|
||||
thresh=thresh0[i];
|
||||
long int ir;
|
||||
|
||||
// Generate a random number ir, 0 <= ir < 100 (see POSIX.1-2001 example).
|
||||
nseed = nseed * 1103515245 + 12345;
|
||||
ir = (unsigned)(nseed/65536) % 32768;
|
||||
ir = (100*ir)/32768;
|
||||
|
||||
if((ir < thresh ) && numera < 51) {
|
||||
era_pos[numera]=j;
|
||||
numera=numera+1;
|
||||
}
|
||||
}
|
||||
|
||||
nerr=decode_rs_int(rs,workdat,era_pos,numera,0);
|
||||
if( nerr >= 0 ) {
|
||||
// We have a candidate codeword. Find its hard and soft distance from
|
||||
// the received word. Also find pp1 and pp2 from the full array
|
||||
// s3(64,63) of synchronized symbol spectra.
|
||||
ncandidates=ncandidates+1;
|
||||
nhard=0;
|
||||
nsoft=0;
|
||||
for (i=0; i<63; i++) {
|
||||
if(workdat[i] != rxdat[i]) {
|
||||
nhard=nhard+1;
|
||||
if(workdat[i] != rxdat2[i]) {
|
||||
nsoft=nsoft+rxprob[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
nsoft=63*nsoft/nsum;
|
||||
ntotal=nsoft+nhard;
|
||||
|
||||
getpp_(workdat,&pp);
|
||||
if(pp>pp1) {
|
||||
pp2=pp1;
|
||||
pp1=pp;
|
||||
nsoft_min=nsoft;
|
||||
nhard_min=nhard;
|
||||
ntotal_min=ntotal;
|
||||
memcpy(correct,workdat,63*sizeof(int));
|
||||
nera_best=numera;
|
||||
ntry[0]=k;
|
||||
} else {
|
||||
if(pp>pp2 && pp!=pp1) pp2=pp;
|
||||
}
|
||||
if(nhard_min <= 41 && ntotal_min <= 71) break;
|
||||
}
|
||||
if(k == ntrials) ntry[0]=k;
|
||||
}
|
||||
|
||||
param[0]=ncandidates;
|
||||
param[1]=nhard_min;
|
||||
param[2]=nsoft_min;
|
||||
param[3]=nera_best;
|
||||
param[4]= pp1 > 0 ? 1000.0*pp2/pp1 : 1000.0;
|
||||
param[5]=ntotal_min;
|
||||
param[6]=ntry[0];
|
||||
param[7]=1000.0*pp2;
|
||||
param[8]=1000.0*pp1;
|
||||
if(param[0]==0) param[2]=-1;
|
||||
return;
|
||||
}
|
@ -1,28 +0,0 @@
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
/* Generate gaussian random float with mean=0 and std_dev=1 */
|
||||
float gran_()
|
||||
{
|
||||
float fac,rsq,v1,v2;
|
||||
static float gset;
|
||||
static int iset;
|
||||
|
||||
if(iset){
|
||||
/* Already got one */
|
||||
iset = 0;
|
||||
return gset;
|
||||
}
|
||||
/* Generate two evenly distributed numbers between -1 and +1
|
||||
* that are inside the unit circle
|
||||
*/
|
||||
do {
|
||||
v1 = 2.0 * (float)rand() / RAND_MAX - 1;
|
||||
v2 = 2.0 * (float)rand() / RAND_MAX - 1;
|
||||
rsq = v1*v1 + v2*v2;
|
||||
} while(rsq >= 1.0 || rsq == 0.0);
|
||||
fac = sqrt(-2.0*log(rsq)/rsq);
|
||||
gset = v1*fac;
|
||||
iset++;
|
||||
return v2*fac;
|
||||
}
|
@ -1,22 +0,0 @@
|
||||
#ifdef CVF
|
||||
extern int __stdcall IGRAY(int *n0, int *idir)
|
||||
#else
|
||||
int igray_(int *n0, int *idir)
|
||||
#endif
|
||||
{
|
||||
int n;
|
||||
unsigned long sh;
|
||||
unsigned long nn;
|
||||
n=*n0;
|
||||
|
||||
if(*idir>0) return (n ^ (n >> 1));
|
||||
|
||||
sh = 1;
|
||||
nn = (n >> sh);
|
||||
while (nn > 0) {
|
||||
n ^= nn;
|
||||
sh <<= 1;
|
||||
nn = (n >> sh);
|
||||
}
|
||||
return (n);
|
||||
}
|
@ -1,120 +0,0 @@
|
||||
/* Initialize a RS codec
|
||||
*
|
||||
* Copyright 2002 Phil Karn, KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
*/
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifdef CCSDS
|
||||
#include "ccsds.h"
|
||||
#elif defined(BIGSYM)
|
||||
#include "int.h"
|
||||
#else
|
||||
#include "char.h"
|
||||
#endif
|
||||
|
||||
void FREE_RS(void *p){
|
||||
struct rs *rs = (struct rs *)p;
|
||||
|
||||
free(rs->alpha_to);
|
||||
free(rs->index_of);
|
||||
free(rs->genpoly);
|
||||
free(rs);
|
||||
}
|
||||
|
||||
/* Initialize a Reed-Solomon codec
|
||||
* symsize = symbol size, bits (1-8)
|
||||
* gfpoly = Field generator polynomial coefficients
|
||||
* fcr = first root of RS code generator polynomial, index form
|
||||
* prim = primitive element to generate polynomial roots
|
||||
* nroots = RS code generator polynomial degree (number of roots)
|
||||
*/
|
||||
void *INIT_RS(unsigned int symsize,unsigned int gfpoly,unsigned fcr,unsigned prim,
|
||||
unsigned int nroots){
|
||||
struct rs *rs;
|
||||
int i, j, sr,root,iprim;
|
||||
|
||||
/* Check parameter ranges */
|
||||
if(symsize < 0 || symsize > (int)(8*sizeof(DTYPE)))
|
||||
return NULL; /* Need version with ints rather than chars */
|
||||
|
||||
if(fcr >= (1<<symsize))
|
||||
return NULL;
|
||||
if(prim == 0 || prim >= (1<<symsize))
|
||||
return NULL;
|
||||
if(nroots >= (1<<symsize))
|
||||
return NULL; /* Can't have more roots than symbol values! */
|
||||
|
||||
rs = (struct rs *)calloc(1,sizeof(struct rs));
|
||||
rs->mm = symsize;
|
||||
rs->nn = (1<<symsize)-1;
|
||||
|
||||
rs->alpha_to = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
|
||||
if(rs->alpha_to == NULL){
|
||||
free(rs);
|
||||
return NULL;
|
||||
}
|
||||
rs->index_of = (DTYPE *)malloc(sizeof(DTYPE)*(rs->nn+1));
|
||||
if(rs->index_of == NULL){
|
||||
free(rs->alpha_to);
|
||||
free(rs);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Generate Galois field lookup tables */
|
||||
rs->index_of[0] = A0; /* log(zero) = -inf */
|
||||
rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
|
||||
sr = 1;
|
||||
for(i=0;i<rs->nn;i++){
|
||||
rs->index_of[sr] = i;
|
||||
rs->alpha_to[i] = sr;
|
||||
sr <<= 1;
|
||||
if(sr & (1<<symsize))
|
||||
sr ^= gfpoly;
|
||||
sr &= rs->nn;
|
||||
}
|
||||
if(sr != 1){
|
||||
/* field generator polynomial is not primitive! */
|
||||
free(rs->alpha_to);
|
||||
free(rs->index_of);
|
||||
free(rs);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Form RS code generator polynomial from its roots */
|
||||
rs->genpoly = (DTYPE *)malloc(sizeof(DTYPE)*(nroots+1));
|
||||
if(rs->genpoly == NULL){
|
||||
free(rs->alpha_to);
|
||||
free(rs->index_of);
|
||||
free(rs);
|
||||
return NULL;
|
||||
}
|
||||
rs->fcr = fcr;
|
||||
rs->prim = prim;
|
||||
rs->nroots = nroots;
|
||||
|
||||
/* Find prim-th root of 1, used in decoding */
|
||||
for(iprim=1;(iprim % prim) != 0;iprim += rs->nn)
|
||||
;
|
||||
rs->iprim = iprim / prim;
|
||||
|
||||
rs->genpoly[0] = 1;
|
||||
for (i = 0,root=fcr*prim; i < nroots; i++,root += prim) {
|
||||
rs->genpoly[i+1] = 1;
|
||||
|
||||
/* Multiply rs->genpoly[] by @**(root + x) */
|
||||
for (j = i; j > 0; j--){
|
||||
if (rs->genpoly[j] != 0)
|
||||
rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
|
||||
else
|
||||
rs->genpoly[j] = rs->genpoly[j-1];
|
||||
}
|
||||
/* rs->genpoly[0] can never be zero */
|
||||
rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
|
||||
}
|
||||
/* convert rs->genpoly[] to index form for quicker encoding */
|
||||
for (i = 0; i <= nroots; i++)
|
||||
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
|
||||
|
||||
return rs;
|
||||
}
|
@ -1,54 +0,0 @@
|
||||
/* Include file to configure the RS codec for integer symbols
|
||||
*
|
||||
* Copyright 2002, Phil Karn, KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
*/
|
||||
#define DTYPE int
|
||||
|
||||
/* Reed-Solomon codec control block */
|
||||
struct rs {
|
||||
unsigned int mm; /* Bits per symbol */
|
||||
unsigned int nn; /* Symbols per block (= (1<<mm)-1) */
|
||||
int *alpha_to; /* log lookup table */
|
||||
int *index_of; /* Antilog lookup table */
|
||||
int *genpoly; /* Generator polynomial */
|
||||
unsigned int nroots; /* Number of generator roots = number of parity symbols */
|
||||
unsigned int fcr; /* First consecutive root, index form */
|
||||
unsigned int prim; /* Primitive element, index form */
|
||||
unsigned int iprim; /* prim-th root of 1, index form */
|
||||
};
|
||||
|
||||
static inline int modnn(struct rs *rs,int x){
|
||||
while (x >= rs->nn) {
|
||||
x -= rs->nn;
|
||||
x = (x >> rs->mm) + (x & rs->nn);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
#define MODNN(x) modnn(rs,x)
|
||||
|
||||
#define MM (rs->mm)
|
||||
#define NN (rs->nn)
|
||||
#define ALPHA_TO (rs->alpha_to)
|
||||
#define INDEX_OF (rs->index_of)
|
||||
#define GENPOLY (rs->genpoly)
|
||||
#define NROOTS (rs->nroots)
|
||||
#define FCR (rs->fcr)
|
||||
#define PRIM (rs->prim)
|
||||
#define IPRIM (rs->iprim)
|
||||
#define A0 (NN)
|
||||
|
||||
#define ENCODE_RS encode_rs_int
|
||||
#define DECODE_RS decode_rs_int
|
||||
#define INIT_RS init_rs_int
|
||||
#define FREE_RS free_rs_int
|
||||
|
||||
void ENCODE_RS(void *p,DTYPE *data,DTYPE *parity);
|
||||
int DECODE_RS(void *p,DTYPE *data,int *eras_pos,int no_eras, int calc_syn);
|
||||
void *INIT_RS(unsigned int symsize,unsigned int gfpoly,unsigned int fcr,
|
||||
unsigned int prim,unsigned int nroots);
|
||||
void FREE_RS(void *p);
|
||||
|
||||
|
||||
|
||||
|
@ -121,7 +121,6 @@ subroutine map65a(dd,ss,savg,newdat,nutc,fcenter,ntol,idphi,nfa,nfb, &
|
||||
short=0. !Zero the whole short array
|
||||
jpz=1
|
||||
|
||||
print*,'AAA',mode65
|
||||
call timer('filbig ',0)
|
||||
call filbig(dd,NSMAX,f0,newdat,nfsample,xpol,cx,cy,n5)
|
||||
call timer('filbig ',1)
|
||||
|
@ -1,43 +0,0 @@
|
||||
#include <windows.h>
|
||||
#include <stdio.h>
|
||||
|
||||
int ptt_(int *nport, int *ntx, int *iptt)
|
||||
{
|
||||
static HANDLE hFile;
|
||||
static int open=0;
|
||||
char s[10];
|
||||
int i3=0,i4=0,i5=0,i6=0,i9=0,i00=0;
|
||||
|
||||
if(*nport==0) {
|
||||
*iptt=*ntx;
|
||||
return(0);
|
||||
}
|
||||
|
||||
if(*ntx && (!open)) {
|
||||
sprintf(s,"COM%d",*nport);
|
||||
hFile=CreateFile(TEXT(s),GENERIC_WRITE,0,NULL,OPEN_EXISTING,
|
||||
FILE_ATTRIBUTE_NORMAL,NULL);
|
||||
if(hFile==INVALID_HANDLE_VALUE) {
|
||||
// printf("PTT: Cannot open COM port %d.\n",*nport);
|
||||
return 1;
|
||||
}
|
||||
open=1;
|
||||
}
|
||||
|
||||
if(*ntx && open) {
|
||||
EscapeCommFunction(hFile,3);
|
||||
EscapeCommFunction(hFile,5);
|
||||
*iptt=1;
|
||||
}
|
||||
|
||||
else {
|
||||
EscapeCommFunction(hFile,4);
|
||||
EscapeCommFunction(hFile,6);
|
||||
EscapeCommFunction(hFile,9);
|
||||
i00=CloseHandle(hFile);
|
||||
*iptt=0;
|
||||
open=0;
|
||||
}
|
||||
if((i00+i3+i4+i5+i6+i9)==-99) return -1; //Silence compiler warning
|
||||
return 0;
|
||||
}
|
@ -1,405 +0,0 @@
|
||||
/*
|
||||
* WSJT is Copyright (c) 2001-2006 by Joseph H. Taylor, Jr., K1JT,
|
||||
* and is licensed under the GNU General Public License (GPL).
|
||||
*
|
||||
* Code used from cwdaemon for parallel port ptt only.
|
||||
*
|
||||
* cwdaemon - morse sounding daemon for the parallel or serial port
|
||||
* Copyright (C) 2002 -2005 Joop Stakenborg <pg4i@amsat.org>
|
||||
* and many authors, see the AUTHORS file.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Library General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*/
|
||||
# if HAVE_STDIO_H
|
||||
# include <stdio.h>
|
||||
#endif
|
||||
#if STDC_HEADERS
|
||||
# include <stdlib.h>
|
||||
# include <stddef.h>
|
||||
#else
|
||||
# if HAVE_STDLIB_H
|
||||
# include <stdlib.h>
|
||||
# endif
|
||||
#endif
|
||||
#if HAVE_UNISTD_H
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#if HAVE_SYS_STAT_H
|
||||
# include <sys/stat.h>
|
||||
#endif
|
||||
#if HAVE_SYS_IOCTL_H
|
||||
# include <sys/ioctl.h>
|
||||
#endif
|
||||
#if HAVE_FCNTL_H
|
||||
# include <fcntl.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
# include <linux/ppdev.h>
|
||||
# include <linux/parport.h>
|
||||
#endif
|
||||
#ifdef HAVE_DEV_PPBUS_PPI_H
|
||||
# include <dev/ppbus/ppi.h>
|
||||
# include <dev/ppbus/ppbconf.h>
|
||||
#endif
|
||||
|
||||
int lp_reset (int fd);
|
||||
int lp_ptt (int fd, int onoff);
|
||||
|
||||
#ifdef HAVE_SYS_STAT_H
|
||||
# include <sys/stat.h>
|
||||
#endif
|
||||
#if (defined(__unix__) || defined(unix)) && !defined(USG)
|
||||
# include <sys/param.h>
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
/* parport functions */
|
||||
|
||||
int dev_is_parport(int fd);
|
||||
int ptt_parallel(int fd, int *ntx, int *iptt);
|
||||
int ptt_serial(int fd, int *ntx, int *iptt);
|
||||
|
||||
int fd=-1; /* Used for both serial and parallel */
|
||||
|
||||
/*
|
||||
* ptt_
|
||||
*
|
||||
* generic unix PTT routine called from Fortran
|
||||
*
|
||||
* Inputs
|
||||
* unused Unused, to satisfy old windows calling convention
|
||||
* ptt_port device name serial or parallel
|
||||
* ntx pointer to fortran command on or off
|
||||
* iptt pointer to fortran command status on or off
|
||||
* Returns - non 0 if error
|
||||
*/
|
||||
|
||||
/* Tiny state machine */
|
||||
#define STATE_PORT_CLOSED 0
|
||||
#define STATE_PORT_OPEN_PARALLEL 1
|
||||
#define STATE_PORT_OPEN_SERIAL 2
|
||||
|
||||
//int ptt_(int *unused, char *ptt_port, int *ntx, int *iptt)
|
||||
int ptt_(int *unused, int *ntx, int *iptt)
|
||||
{
|
||||
static int state=0;
|
||||
char *p;
|
||||
|
||||
// ### Temporary:
|
||||
char* ptt_port;
|
||||
if(*unused != -99) {
|
||||
*iptt=*ntx;
|
||||
return 0;
|
||||
}
|
||||
// ###
|
||||
|
||||
/* In the very unlikely event of a NULL pointer, just return.
|
||||
* Yes, I realise this should not be possible in WSJT.
|
||||
*/
|
||||
if (ptt_port == NULL) {
|
||||
*iptt = *ntx;
|
||||
return (0);
|
||||
}
|
||||
|
||||
switch (state) {
|
||||
case STATE_PORT_CLOSED:
|
||||
|
||||
/* Remove trailing ' ' */
|
||||
if ((p = strchr(ptt_port, ' ')) != NULL)
|
||||
*p = '\0';
|
||||
|
||||
/* If all that is left is a '\0' then also just return */
|
||||
if (*ptt_port == '\0') {
|
||||
*iptt = *ntx;
|
||||
return(0);
|
||||
}
|
||||
|
||||
if ((fd = open(ptt_port, O_RDWR|O_NONBLOCK)) < 0) {
|
||||
fprintf(stderr, "Can't open %s.\n", ptt_port);
|
||||
return (1);
|
||||
}
|
||||
|
||||
if (dev_is_parport(fd)) {
|
||||
state = STATE_PORT_OPEN_PARALLEL;
|
||||
lp_reset(fd);
|
||||
ptt_parallel(fd, ntx, iptt);
|
||||
} else {
|
||||
state = STATE_PORT_OPEN_SERIAL;
|
||||
ptt_serial(fd, ntx, iptt);
|
||||
}
|
||||
break;
|
||||
|
||||
case STATE_PORT_OPEN_PARALLEL:
|
||||
ptt_parallel(fd, ntx, iptt);
|
||||
break;
|
||||
|
||||
case STATE_PORT_OPEN_SERIAL:
|
||||
ptt_serial(fd, ntx, iptt);
|
||||
break;
|
||||
|
||||
default:
|
||||
close(fd);
|
||||
fd = -1;
|
||||
state = STATE_PORT_CLOSED;
|
||||
break;
|
||||
}
|
||||
return(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* ptt_serial
|
||||
*
|
||||
* generic serial unix PTT routine called indirectly from Fortran
|
||||
*
|
||||
* fd - already opened file descriptor
|
||||
* ntx - pointer to fortran command on or off
|
||||
* iptt - pointer to fortran command status on or off
|
||||
*/
|
||||
|
||||
int
|
||||
ptt_serial(int fd, int *ntx, int *iptt)
|
||||
{
|
||||
int control = TIOCM_RTS | TIOCM_DTR;
|
||||
|
||||
#if defined (TIOCMBIS) && defined (TIOCMBIS)
|
||||
if(*ntx) {
|
||||
ioctl(fd, TIOCMBIS, &control); /* Set DTR and RTS */
|
||||
*iptt = 1;
|
||||
} else {
|
||||
ioctl(fd, TIOCMBIC, &control);
|
||||
*iptt = 0;
|
||||
}
|
||||
#else
|
||||
unsigned y;
|
||||
ioctl(fd, TIOCMGET, &y);
|
||||
if (*ntx) {
|
||||
y |= control;
|
||||
} else {
|
||||
y &= ~control;
|
||||
}
|
||||
ioctl(fd, TIOCMSET, &y);
|
||||
#endif
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
/* parport functions */
|
||||
|
||||
/*
|
||||
* dev_is_parport(fd):
|
||||
*
|
||||
* inputs - Already open fd
|
||||
* output - 1 if parallel port, 0 if not
|
||||
* side effects - Unfortunately, this is platform specific.
|
||||
*/
|
||||
|
||||
#if defined(HAVE_LINUX_PPDEV_H) /* Linux (ppdev) */
|
||||
|
||||
int
|
||||
dev_is_parport(int fd)
|
||||
{
|
||||
struct stat st;
|
||||
int m;
|
||||
|
||||
if ((fstat(fd, &st) == -1) ||
|
||||
((st.st_mode & S_IFMT) != S_IFCHR) ||
|
||||
(ioctl(fd, PPGETMODE, &m) == -1))
|
||||
return(0);
|
||||
|
||||
return(1);
|
||||
}
|
||||
|
||||
#elif defined(HAVE_DEV_PPBUS_PPI_H) /* FreeBSD (ppbus/ppi) */
|
||||
|
||||
int
|
||||
dev_is_parport(int fd)
|
||||
{
|
||||
struct stat st;
|
||||
unsigned char c;
|
||||
|
||||
if ((fstat(fd, &st) == -1) ||
|
||||
((st.st_mode & S_IFMT) != S_IFCHR) ||
|
||||
(ioctl(fd, PPISSTATUS, &c) == -1))
|
||||
return(0);
|
||||
|
||||
return(1);
|
||||
}
|
||||
|
||||
#else /* Fallback (nothing) */
|
||||
|
||||
int
|
||||
dev_is_parport(int fd)
|
||||
{
|
||||
return(0);
|
||||
}
|
||||
|
||||
#endif
|
||||
/* Linux wrapper around PPFCONTROL */
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
static void
|
||||
parport_control (int fd, unsigned char controlbits, int values)
|
||||
{
|
||||
struct ppdev_frob_struct frob;
|
||||
frob.mask = controlbits;
|
||||
frob.val = values;
|
||||
|
||||
if (ioctl (fd, PPFCONTROL, &frob) == -1)
|
||||
{
|
||||
fprintf(stderr, "Parallel port PPFCONTROL");
|
||||
exit (1);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* FreeBSD wrapper around PPISCTRL */
|
||||
#ifdef HAVE_DEV_PPBUS_PPI_H
|
||||
static void
|
||||
parport_control (int fd, unsigned char controlbits, int values)
|
||||
{
|
||||
unsigned char val;
|
||||
|
||||
if (ioctl (fd, PPIGCTRL, &val) == -1)
|
||||
{
|
||||
fprintf(stderr, "Parallel port PPIGCTRL");
|
||||
exit (1);
|
||||
}
|
||||
|
||||
val &= ~controlbits;
|
||||
val |= values;
|
||||
|
||||
if (ioctl (fd, PPISCTRL, &val) == -1)
|
||||
{
|
||||
fprintf(stderr, "Parallel port PPISCTRL");
|
||||
exit (1);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Initialise a parallel port, given open fd */
|
||||
int
|
||||
lp_init (int fd)
|
||||
{
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
int mode;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
mode = PARPORT_MODE_PCSPP;
|
||||
|
||||
if (ioctl (fd, PPSETMODE, &mode) == -1)
|
||||
{
|
||||
fprintf(stderr, "Setting parallel port mode");
|
||||
close (fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
if (ioctl (fd, PPEXCL, NULL) == -1)
|
||||
{
|
||||
fprintf(stderr, "Parallel port is already in use.\n");
|
||||
close (fd);
|
||||
return(-1);
|
||||
}
|
||||
if (ioctl (fd, PPCLAIM, NULL) == -1)
|
||||
{
|
||||
fprintf(stderr, "Claiming parallel port.\n");
|
||||
fprintf(stderr, "HINT: did you unload the lp kernel module?");
|
||||
close (fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
/* Enable CW & PTT - /STROBE bit (pin 1) */
|
||||
parport_control (fd, PARPORT_CONTROL_STROBE, PARPORT_CONTROL_STROBE);
|
||||
#endif
|
||||
#ifdef HAVE_DEV_PPBUS_PPI_H
|
||||
parport_control (fd, STROBE, STROBE);
|
||||
#endif
|
||||
lp_reset (fd);
|
||||
return(0);
|
||||
}
|
||||
|
||||
/* release ppdev and close port */
|
||||
int
|
||||
lp_free (int fd)
|
||||
{
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
lp_reset (fd);
|
||||
|
||||
/* Disable CW & PTT - /STROBE bit (pin 1) */
|
||||
parport_control (fd, PARPORT_CONTROL_STROBE, 0);
|
||||
|
||||
ioctl (fd, PPRELEASE);
|
||||
#endif
|
||||
#ifdef HAVE_DEV_PPBUS_PPI_H
|
||||
/* Disable CW & PTT - /STROBE bit (pin 1) */
|
||||
parport_control (fd, STROBE, 0);
|
||||
#endif
|
||||
close (fd);
|
||||
return(0);
|
||||
}
|
||||
|
||||
/* set to a known state */
|
||||
int
|
||||
lp_reset (int fd)
|
||||
{
|
||||
#if defined (HAVE_LINUX_PPDEV_H) || defined (HAVE_DEV_PPBUS_PPI_H)
|
||||
lp_ptt (fd, 0);
|
||||
#endif
|
||||
return(0);
|
||||
}
|
||||
|
||||
/* SSB PTT keying - /INIT bit (pin 16) (inverted) */
|
||||
int
|
||||
lp_ptt (int fd, int onoff)
|
||||
{
|
||||
#ifdef HAVE_LINUX_PPDEV_H
|
||||
if (onoff == 1)
|
||||
parport_control (fd, PARPORT_CONTROL_INIT,
|
||||
PARPORT_CONTROL_INIT);
|
||||
else
|
||||
parport_control (fd, PARPORT_CONTROL_INIT, 0);
|
||||
#endif
|
||||
#ifdef HAVE_DEV_PPBUS_PPI_H
|
||||
if (onoff == 1)
|
||||
parport_control (fd, nINIT,
|
||||
nINIT);
|
||||
else
|
||||
parport_control (fd, nINIT, 0);
|
||||
#endif
|
||||
return(0);
|
||||
}
|
||||
|
||||
/*
|
||||
* ptt_parallel
|
||||
*
|
||||
* generic parallel unix PTT routine called indirectly from Fortran
|
||||
*
|
||||
* fd - already opened file descriptor
|
||||
* ntx - pointer to fortran command on or off
|
||||
* iptt - pointer to fortran command status on or off
|
||||
*/
|
||||
|
||||
int
|
||||
ptt_parallel(int fd, int *ntx, int *iptt)
|
||||
{
|
||||
if(*ntx) {
|
||||
lp_ptt(fd, 1);
|
||||
*iptt=1;
|
||||
} else {
|
||||
lp_ptt(fd, 0);
|
||||
*iptt=0;
|
||||
}
|
||||
return(0);
|
||||
}
|
@ -1,35 +0,0 @@
|
||||
/* User include file for the Reed-Solomon codec
|
||||
* Copyright 2002, Phil Karn KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
*/
|
||||
|
||||
/* General purpose RS codec, 8-bit symbols */
|
||||
void encode_rs_char(void *rs,unsigned char *data,unsigned char *parity);
|
||||
int decode_rs_char(void *rs,unsigned char *data,int *eras_pos,
|
||||
int no_eras);
|
||||
void *init_rs_char(int symsize,int gfpoly,
|
||||
int fcr,int prim,int nroots,
|
||||
int pad);
|
||||
void free_rs_char(void *rs);
|
||||
|
||||
/* General purpose RS codec, integer symbols */
|
||||
void encode_rs_int(void *rs,int *data,int *parity);
|
||||
int decode_rs_int(void *rs,int *data,int *eras_pos,int no_eras);
|
||||
void *init_rs_int(int symsize,int gfpoly,int fcr,
|
||||
int prim,int nroots,int pad);
|
||||
void free_rs_int(void *rs);
|
||||
|
||||
/* CCSDS standard (255,223) RS codec with conventional (*not* dual-basis)
|
||||
* symbol representation
|
||||
*/
|
||||
void encode_rs_8(unsigned char *data,unsigned char *parity,int pad);
|
||||
int decode_rs_8(unsigned char *data,int *eras_pos,int no_eras,int pad);
|
||||
|
||||
/* CCSDS standard (255,223) RS codec with dual-basis symbol representation */
|
||||
void encode_rs_ccsds(unsigned char *data,unsigned char *parity,int pad);
|
||||
int decode_rs_ccsds(unsigned char *data,int *eras_pos,int no_eras,int pad);
|
||||
|
||||
/* Tables to map from conventional->dual (Taltab) and
|
||||
* dual->conventional (Tal1tab) bases
|
||||
*/
|
||||
extern unsigned char Taltab[],Tal1tab[];
|
@ -1,16 +0,0 @@
|
||||
/* User include file for the Reed-Solomon codec
|
||||
* Copyright 2002, Phil Karn KA9Q
|
||||
* May be used under the terms of the GNU General Public License (GPL)
|
||||
*/
|
||||
|
||||
/* General purpose RS codec, integer symbols */
|
||||
void encode_rs_int(void *rs,int *data,int *parity);
|
||||
int decode_rs_int(void *rs,int *data,int *eras_pos,int no_eras, int calc_syn);
|
||||
void *init_rs_int(int symsize,int gfpoly,int fcr,
|
||||
int prim,int nroots,int pad);
|
||||
void free_rs_int(void *rs);
|
||||
|
||||
/* Tables to map from conventional->dual (Taltab) and
|
||||
* dual->conventional (Tal1tab) bases
|
||||
*/
|
||||
extern unsigned char Taltab[],Tal1tab[];
|
@ -1,11 +0,0 @@
|
||||
real function sec_midn()
|
||||
sec_midn=secnds(0.0)
|
||||
return
|
||||
end function sec_midn
|
||||
|
||||
subroutine sleep_msec(n)
|
||||
|
||||
call usleep(1000*n)
|
||||
|
||||
return
|
||||
end subroutine sleep_msec
|
@ -1,32 +0,0 @@
|
||||
/*
|
||||
* sleep.h 1.0 02/03/10
|
||||
*
|
||||
* Defines cross-platform sleep, usleep, etc.
|
||||
*
|
||||
* By Wu Yongwei
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _SLEEP_H
|
||||
#define _SLEEP_H
|
||||
|
||||
#ifdef _WIN32
|
||||
# if defined(_NEED_SLEEP_ONLY) && (defined(_MSC_VER) || defined(__MINGW32__))
|
||||
# include <stdlib.h>
|
||||
# define sleep(t) _sleep((t) * 1000)
|
||||
# else
|
||||
# include <windows.h>
|
||||
# define sleep(t) Sleep((t) * 1000)
|
||||
# endif
|
||||
# ifndef _NEED_SLEEP_ONLY
|
||||
# define msleep(t) Sleep(t)
|
||||
# define usleep(t) Sleep((t) / 1000)
|
||||
# endif
|
||||
#else
|
||||
# include <unistd.h>
|
||||
# ifndef _NEED_SLEEP_ONLY
|
||||
# define msleep(t) usleep((t) * 1000)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif /* _SLEEP_H */
|
@ -1,76 +0,0 @@
|
||||
/*
|
||||
* timeval.h 1.0 01/12/19
|
||||
*
|
||||
* Defines gettimeofday, timeval, etc. for Win32
|
||||
*
|
||||
* By Wu Yongwei
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _TIMEVAL_H
|
||||
#define _TIMEVAL_H
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#include <time.h>
|
||||
|
||||
#ifndef __GNUC__
|
||||
#define EPOCHFILETIME (116444736000000000i64)
|
||||
#else
|
||||
#define EPOCHFILETIME (116444736000000000LL)
|
||||
#endif
|
||||
|
||||
//struct timeval {
|
||||
// long tv_sec; /* seconds */
|
||||
// long tv_usec; /* microseconds */
|
||||
//};
|
||||
|
||||
/*
|
||||
struct timezone {
|
||||
int tz_minuteswest; // minutes W of Greenwich
|
||||
int tz_dsttime; // type of dst correction
|
||||
};
|
||||
*/
|
||||
|
||||
__inline int gettimeofday(struct timeval *tv, struct timezone *tz)
|
||||
{
|
||||
FILETIME ft;
|
||||
LARGE_INTEGER li;
|
||||
__int64 t;
|
||||
static int tzflag;
|
||||
|
||||
if (tv)
|
||||
{
|
||||
GetSystemTimeAsFileTime(&ft);
|
||||
li.LowPart = ft.dwLowDateTime;
|
||||
li.HighPart = ft.dwHighDateTime;
|
||||
t = li.QuadPart; /* In 100-nanosecond intervals */
|
||||
t -= EPOCHFILETIME; /* Offset to the Epoch time */
|
||||
t /= 10; /* In microseconds */
|
||||
tv->tv_sec = (long)(t / 1000000);
|
||||
tv->tv_usec = (long)(t % 1000000);
|
||||
}
|
||||
|
||||
if (tz)
|
||||
{
|
||||
if (!tzflag)
|
||||
{
|
||||
_tzset();
|
||||
tzflag++;
|
||||
}
|
||||
tz->tz_minuteswest = _timezone / 60;
|
||||
tz->tz_dsttime = _daylight;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else /* _WIN32 */
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
#endif /* _WIN32 */
|
||||
|
||||
#endif /* _TIMEVAL_H */
|
@ -1,514 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#define RADS 0.0174532925199433
|
||||
#define DEGS 57.2957795130823
|
||||
#define TPI 6.28318530717959
|
||||
#define PI 3.1415927
|
||||
|
||||
/* ratio of earth radius to astronomical unit */
|
||||
#define ER_OVER_AU 0.0000426352325194252
|
||||
|
||||
/* all prototypes here */
|
||||
|
||||
double getcoord(int coord);
|
||||
void getargs(int argc, char *argv[], int *y, int *m, double *tz, double *glong, double *glat);
|
||||
double range(double y);
|
||||
double rangerad(double y);
|
||||
double days(int y, int m, int dn, double hour);
|
||||
double days_(int *y, int *m, int *dn, double *hour);
|
||||
void moonpos(double, double *, double *, double *);
|
||||
void sunpos(double , double *, double *, double *);
|
||||
double moontransit(int y, int m, int d, double timezone, double glat, double glong, int *nt);
|
||||
double atan22(double y, double x);
|
||||
double epsilon(double d);
|
||||
void equatorial(double d, double *lon, double *lat, double *r);
|
||||
void ecliptic(double d, double *lon, double *lat, double *r);
|
||||
double gst(double d);
|
||||
void topo(double lst, double glat, double *alp, double *dec, double *r);
|
||||
double alt(double glat, double ha, double dec);
|
||||
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p);
|
||||
void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill);
|
||||
int daysinmonth(int y, int m);
|
||||
int isleap(int y);
|
||||
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,
|
||||
double *mrv, double *l, double *b, double *paxis);
|
||||
|
||||
static const char
|
||||
*usage = " Usage: tmoon date[yyyymm] timz[+/-h.hh] long[+/-dddmm] lat[+/-ddmm]\n"
|
||||
"example: tmoon 200009 0 -00155 5230\n";
|
||||
|
||||
/*
|
||||
getargs() gets the arguments from the command line, does some basic error
|
||||
checking, and converts arguments into numerical form. Arguments are passed
|
||||
back in pointers. Error messages print to stderr so re-direction of output
|
||||
to file won't leave users blind. Error checking prints list of all errors
|
||||
in a command line before quitting.
|
||||
*/
|
||||
void getargs(int argc, char *argv[], int *y, int *m, double *tz,
|
||||
double *glong, double *glat) {
|
||||
|
||||
int date, latitude, longitude;
|
||||
int mflag = 0, yflag = 0, longflag = 0, latflag = 0, tzflag = 0;
|
||||
int longminflag = 0, latminflag = 0, dflag = 0;
|
||||
|
||||
/* if not right number of arguments, then print example command line */
|
||||
|
||||
if (argc !=5) {
|
||||
fprintf(stderr, usage);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
date = atoi(argv[1]);
|
||||
*y = date / 100;
|
||||
*m = date - *y * 100;
|
||||
*tz = (double) atof(argv[2]);
|
||||
longitude = atoi(argv[3]);
|
||||
latitude = atoi(argv[4]);
|
||||
*glong = RADS * getcoord(longitude);
|
||||
*glat = RADS * getcoord(latitude);
|
||||
|
||||
/* set a flag for each error found */
|
||||
|
||||
if (*m > 12 || *m < 1) mflag = 1;
|
||||
if (*y > 2500) yflag = 1;
|
||||
if (date < 150001) dflag = 1;
|
||||
if (fabs((float) *glong) > 180 * RADS) longflag = 1;
|
||||
if (abs(longitude) % 100 > 59) longminflag = 1;
|
||||
if (fabs((float) *glat) > 90 * RADS) latflag = 1;
|
||||
if (abs(latitude) % 100 > 59) latminflag = 1;
|
||||
if (fabs((float) *tz) > 12) tzflag = 1;
|
||||
|
||||
/* print all the errors found */
|
||||
|
||||
if (dflag == 1) {
|
||||
fprintf(stderr, "date: dates must be in form yyyymm, gregorian, and later than 1500 AD\n");
|
||||
}
|
||||
if (yflag == 1) {
|
||||
fprintf(stderr, "date: too far in future - accurate from 1500 to 2500\n");
|
||||
}
|
||||
if (mflag == 1) {
|
||||
fprintf(stderr, "date: month must be in range 0 to 12, eg - August 2000 is entered as 200008\n");
|
||||
}
|
||||
if (tzflag == 1) {
|
||||
fprintf(stderr, "timz: must be in range +/- 12 hours, eg -6 for Chicago\n");
|
||||
}
|
||||
if (longflag == 1) {
|
||||
fprintf(stderr, "long: must be in range +/- 180 degrees\n");
|
||||
}
|
||||
if (longminflag == 1) {
|
||||
fprintf(stderr, "long: last two digits are arcmin - max 59\n");
|
||||
}
|
||||
if (latflag == 1) {
|
||||
fprintf(stderr, " lat: must be in range +/- 90 degrees\n");
|
||||
}
|
||||
if (latminflag == 1) {
|
||||
fprintf(stderr, " lat: last two digits are arcmin - max 59\n");
|
||||
}
|
||||
|
||||
/* quits if one or more flags set */
|
||||
|
||||
if (dflag + mflag + yflag + longflag + latflag + tzflag + longminflag + latminflag > 0) {
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
returns coordinates in decimal degrees given the
|
||||
coord as a ddmm value stored in an integer.
|
||||
*/
|
||||
double getcoord(int coord) {
|
||||
int west = 1;
|
||||
double glg, deg;
|
||||
if (coord < 0) west = -1;
|
||||
glg = fabs((double) coord/100);
|
||||
deg = floor(glg);
|
||||
glg = west* (deg + (glg - deg)*100 / 60);
|
||||
return(glg);
|
||||
}
|
||||
|
||||
/*
|
||||
days() takes the year, month, day in the month and decimal hours
|
||||
in the day and returns the number of days since J2000.0.
|
||||
Assumes Gregorian calendar.
|
||||
*/
|
||||
double days(int y, int m, int d, double h) {
|
||||
int a, b;
|
||||
double day;
|
||||
|
||||
/*
|
||||
The lines below work from 1900 march to feb 2100
|
||||
a = 367 * y - 7 * (y + (m + 9) / 12) / 4 + 275 * m / 9 + d;
|
||||
day = (double)a - 730531.5 + hour / 24;
|
||||
*/
|
||||
|
||||
/* These lines work for any Gregorian date since 0 AD */
|
||||
if (m ==1 || m==2) {
|
||||
m +=12;
|
||||
y -= 1;
|
||||
}
|
||||
a = y / 100;
|
||||
b = 2 - a + a/4;
|
||||
day = floor(365.25*(y + 4716)) + floor(30.6001*(m + 1))
|
||||
+ d + b - 1524.5 - 2451545 + h/24;
|
||||
return(day);
|
||||
}
|
||||
double days_(int *y0, int *m0, int *d0, double *h0)
|
||||
{
|
||||
return days(*y0,*m0,*d0,*h0);
|
||||
}
|
||||
|
||||
/*
|
||||
Returns 1 if y a leap year, and 0 otherwise, according
|
||||
to the Gregorian calendar
|
||||
*/
|
||||
int isleap(int y) {
|
||||
int a = 0;
|
||||
if(y % 4 == 0) a = 1;
|
||||
if(y % 100 == 0) a = 0;
|
||||
if(y % 400 == 0) a = 1;
|
||||
return(a);
|
||||
}
|
||||
|
||||
/*
|
||||
Given the year and the month, function returns the
|
||||
number of days in the month. Valid for Gregorian
|
||||
calendar.
|
||||
*/
|
||||
int daysinmonth(int y, int m) {
|
||||
int b = 31;
|
||||
if(m == 2) {
|
||||
if(isleap(y) == 1) b= 29;
|
||||
else b = 28;
|
||||
}
|
||||
if(m == 4 || m == 6 || m == 9 || m == 11) b = 30;
|
||||
return(b);
|
||||
}
|
||||
|
||||
/*
|
||||
moonpos() takes days from J2000.0 and returns ecliptic coordinates
|
||||
of moon in the pointers. Note call by reference.
|
||||
This function is within a couple of arcminutes most of the time,
|
||||
and is truncated from the Meeus Ch45 series, themselves truncations of
|
||||
ELP-2000. Returns moon distance in earth radii.
|
||||
Terms have been written out explicitly rather than using the
|
||||
table based method as only a small number of terms is
|
||||
retained.
|
||||
*/
|
||||
void moonpos(double d, double *lambda, double *beta, double *rvec) {
|
||||
double dl, dB, dR, L, D, M, M1, F, e, lm, bm, rm, t;
|
||||
|
||||
t = d / 36525;
|
||||
|
||||
L = range(218.3164591 + 481267.88134236 * t) * RADS;
|
||||
D = range(297.8502042 + 445267.1115168 * t) * RADS;
|
||||
M = range(357.5291092 + 35999.0502909 * t) * RADS;
|
||||
M1 = range(134.9634114 + 477198.8676313 * t - .008997 * t * t) * RADS;
|
||||
F = range(93.27209929999999 + 483202.0175273 * t - .0034029*t*t)*RADS;
|
||||
e = 1 - .002516 * t;
|
||||
|
||||
dl = 6288774 * sin(M1);
|
||||
dl += 1274027 * sin(2 * D - M1);
|
||||
dl += 658314 * sin(2 * D);
|
||||
dl += 213618 * sin(2 * M1);
|
||||
dl -= e * 185116 * sin(M);
|
||||
dl -= 114332 * sin(2 * F) ;
|
||||
dl += 58793 * sin(2 * D - 2 * M1);
|
||||
dl += e * 57066 * sin(2 * D - M - M1) ;
|
||||
dl += 53322 * sin(2 * D + M1);
|
||||
dl += e * 45758 * sin(2 * D - M);
|
||||
dl -= e * 40923 * sin(M - M1);
|
||||
dl -= 34720 * sin(D) ;
|
||||
dl -= e * 30383 * sin(M + M1) ;
|
||||
dl += 15327 * sin(2 * D - 2 * F) ;
|
||||
dl -= 12528 * sin(M1 + 2 * F);
|
||||
dl += 10980 * sin(M1 - 2 * F);
|
||||
lm = rangerad(L + dl / 1000000 * RADS);
|
||||
|
||||
dB = 5128122 * sin(F);
|
||||
dB += 280602 * sin(M1 + F);
|
||||
dB += 277693 * sin(M1 - F);
|
||||
dB += 173237 * sin(2 * D - F);
|
||||
dB += 55413 * sin(2 * D - M1 + F);
|
||||
dB += 46271 * sin(2 * D - M1 - F);
|
||||
dB += 32573 * sin(2 * D + F);
|
||||
dB += 17198 * sin(2 * M1 + F);
|
||||
dB += 9266 * sin(2 * D + M1 - F);
|
||||
dB += 8822 * sin(2 * M1 - F);
|
||||
dB += e * 8216 * sin(2 * D - M - F);
|
||||
dB += 4324 * sin(2 * D - 2 * M1 - F);
|
||||
bm = dB / 1000000 * RADS;
|
||||
|
||||
dR = -20905355 * cos(M1);
|
||||
dR -= 3699111 * cos(2 * D - M1);
|
||||
dR -= 2955968 * cos(2 * D);
|
||||
dR -= 569925 * cos(2 * M1);
|
||||
dR += e * 48888 * cos(M);
|
||||
dR -= 3149 * cos(2 * F);
|
||||
dR += 246158 * cos(2 * D - 2 * M1);
|
||||
dR -= e * 152138 * cos(2 * D - M - M1) ;
|
||||
dR -= 170733 * cos(2 * D + M1);
|
||||
dR -= e * 204586 * cos(2 * D - M);
|
||||
dR -= e * 129620 * cos(M - M1);
|
||||
dR += 108743 * cos(D);
|
||||
dR += e * 104755 * cos(M + M1);
|
||||
dR += 79661 * cos(M1 - 2 * F);
|
||||
rm = 385000.56 + dR / 1000;
|
||||
|
||||
*lambda = lm;
|
||||
*beta = bm;
|
||||
/* distance to Moon must be in Earth radii */
|
||||
*rvec = rm / 6378.14;
|
||||
}
|
||||
|
||||
/*
|
||||
topomoon() takes the local siderial time, the geographical
|
||||
latitude of the observer, and pointers to the geocentric
|
||||
equatorial coordinates. The function overwrites the geocentric
|
||||
coordinates with topocentric coordinates on a simple spherical
|
||||
earth model (no polar flattening). Expects Moon-Earth distance in
|
||||
Earth radii. Formulas scavenged from Astronomical Almanac 'low
|
||||
precision formulae for Moon position' page D46.
|
||||
*/
|
||||
|
||||
void topo(double lst, double glat, double *alp, double *dec, double *r) {
|
||||
double x, y, z, r1;
|
||||
x = *r * cos(*dec) * cos(*alp) - cos(glat) * cos(lst);
|
||||
y = *r * cos(*dec) * sin(*alp) - cos(glat) * sin(lst);
|
||||
z = *r * sin(*dec) - sin(glat);
|
||||
r1 = sqrt(x*x + y*y + z*z);
|
||||
*alp = atan22(y, x);
|
||||
*dec = asin(z / r1);
|
||||
*r = r1;
|
||||
}
|
||||
|
||||
/*
|
||||
moontransit() takes date, the time zone and geographic longitude
|
||||
of observer and returns the time (decimal hours) of lunar transit
|
||||
on that day if there is one, and sets the notransit flag if there
|
||||
isn't. See Explanatory Supplement to Astronomical Almanac
|
||||
section 9.32 and 9.31 for the method.
|
||||
*/
|
||||
|
||||
double moontransit(int y, int m, int d, double tz, double glat, double glong, int *notransit) {
|
||||
double hm, ht, ht1, lon, lat, rv, dnew, lst;
|
||||
int itcount;
|
||||
|
||||
ht1 = 180 * RADS;
|
||||
ht = 0;
|
||||
itcount = 0;
|
||||
*notransit = 0;
|
||||
do {
|
||||
ht = ht1;
|
||||
itcount++;
|
||||
dnew = days(y, m, d, ht * DEGS/15) - tz/24;
|
||||
lst = gst(dnew) + glong;
|
||||
/* find the topocentric Moon ra (hence hour angle) and dec */
|
||||
moonpos(dnew, &lon, &lat, &rv);
|
||||
equatorial(dnew, &lon, &lat, &rv);
|
||||
topo(lst, glat, &lon, &lat, &rv);
|
||||
hm = rangerad(lst - lon);
|
||||
ht1 = rangerad(ht - hm);
|
||||
/* if no convergence, then no transit on that day */
|
||||
if (itcount > 30) {
|
||||
*notransit = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (fabs(ht - ht1) > 0.04 * RADS);
|
||||
return(ht1);
|
||||
}
|
||||
|
||||
/*
|
||||
Calculates the selenographic coordinates of either the sub Earth point
|
||||
(optical libration) or the sub-solar point (selen. coords of centre of
|
||||
bright hemisphere). Based on Meeus chapter 51 but neglects physical
|
||||
libration and nutation, with some simplification of the formulas.
|
||||
*/
|
||||
void libration(double day, double lambda, double beta, double alpha, double *l, double *b, double *p) {
|
||||
double i, f, omega, w, y, x, a, t, eps;
|
||||
t = day / 36525;
|
||||
i = 1.54242 * RADS;
|
||||
eps = epsilon(day);
|
||||
f = range(93.2720993 + 483202.0175273 * t - .0034029 * t * t) * RADS;
|
||||
omega = range(125.044555 - 1934.1361849 * t + .0020762 * t * t) * RADS;
|
||||
w = lambda - omega;
|
||||
y = sin(w) * cos(beta) * cos(i) - sin(beta) * sin(i);
|
||||
x = cos(w) * cos(beta);
|
||||
a = atan22(y, x);
|
||||
*l = a - f;
|
||||
|
||||
/* kludge to catch cases of 'round the back' angles */
|
||||
if (*l < -90 * RADS) *l += TPI;
|
||||
if (*l > 90 * RADS) *l -= TPI;
|
||||
*b = asin(-sin(w) * cos(beta) * sin(i) - sin(beta) * cos(i));
|
||||
|
||||
/* pa pole axis - not used for Sun stuff */
|
||||
x = sin(i) * sin(omega);
|
||||
y = sin(i) * cos(omega) * cos(eps) - cos(i) * sin(eps);
|
||||
w = atan22(x, y);
|
||||
*p = rangerad(asin(sqrt(x*x + y*y) * cos(alpha - w) / cos(*b)));
|
||||
}
|
||||
|
||||
/*
|
||||
Takes: days since J2000.0, eq coords Moon, ratio of moon to sun distance,
|
||||
eq coords Sun
|
||||
Returns: position angle of bright limb wrt NCP, percentage illumination
|
||||
of Sun
|
||||
*/
|
||||
void illumination(double day, double lra, double ldec, double dr, double sra, double sdec, double *pabl, double *ill) {
|
||||
double x, y, phi, i;
|
||||
y = cos(sdec) * sin(sra - lra);
|
||||
x = sin(sdec) * cos(ldec) - cos(sdec) * sin(ldec) * cos (sra - lra);
|
||||
*pabl = atan22(y, x);
|
||||
phi = acos(sin(sdec) * sin(ldec) + cos(sdec) * cos(ldec) * cos(sra-lra));
|
||||
i = atan22(sin(phi) , (dr - cos(phi)));
|
||||
*ill = 0.5*(1 + cos(i));
|
||||
}
|
||||
|
||||
/*
|
||||
sunpos() takes days from J2000.0 and returns ecliptic longitude
|
||||
of Sun in the pointers. Latitude is zero at this level of precision,
|
||||
but pointer left in for consistency in number of arguments.
|
||||
This function is within 0.01 degree (1 arcmin) almost all the time
|
||||
for a century either side of J2000.0. This is from the 'low precision
|
||||
fomulas for the Sun' from C24 of Astronomical Alamanac
|
||||
*/
|
||||
void sunpos(double d, double *lambda, double *beta, double *rvec) {
|
||||
double L, g, ls, bs, rs;
|
||||
|
||||
L = range(280.461 + .9856474 * d) * RADS;
|
||||
g = range(357.528 + .9856003 * d) * RADS;
|
||||
ls = L + (1.915 * sin(g) + .02 * sin(2 * g)) * RADS;
|
||||
bs = 0;
|
||||
rs = 1.00014 - .01671 * cos(g) - .00014 * cos(2 * g);
|
||||
*lambda = ls;
|
||||
*beta = bs;
|
||||
*rvec = rs;
|
||||
}
|
||||
|
||||
/*
|
||||
this routine returns the altitude given the days since J2000.0
|
||||
the hour angle and declination of the object and the latitude
|
||||
of the observer. Used to find the Sun's altitude to put a letter
|
||||
code on the transit time, and to find the Moon's altitude at
|
||||
transit just to make sure that the Moon is visible.
|
||||
*/
|
||||
double alt(double glat, double ha, double dec) {
|
||||
return(asin(sin(dec) * sin(glat) + cos(dec) * cos(glat) * cos(ha)));
|
||||
}
|
||||
|
||||
/* returns an angle in degrees in the range 0 to 360 */
|
||||
double range(double x) {
|
||||
double a, b;
|
||||
b = x / 360;
|
||||
a = 360 * (b - floor(b));
|
||||
if (a < 0)
|
||||
a = 360 + a;
|
||||
return(a);
|
||||
}
|
||||
|
||||
/* returns an angle in rads in the range 0 to two pi */
|
||||
double rangerad(double x) {
|
||||
double a, b;
|
||||
b = x / TPI;
|
||||
a = TPI * (b - floor(b));
|
||||
if (a < 0)
|
||||
a = TPI + a;
|
||||
return(a);
|
||||
}
|
||||
|
||||
/*
|
||||
gets the atan2 function returning angles in the right
|
||||
order and range
|
||||
*/
|
||||
double atan22(double y, double x) {
|
||||
double a;
|
||||
|
||||
a = atan2(y, x);
|
||||
if (a < 0) a += TPI;
|
||||
return(a);
|
||||
}
|
||||
|
||||
/*
|
||||
returns mean obliquity of ecliptic in radians given days since
|
||||
J2000.0.
|
||||
*/
|
||||
double epsilon(double d) {
|
||||
double t = d/ 36525;
|
||||
return((23.4392911111111 - (t* (46.8150 + 0.00059*t)/3600)) *RADS);
|
||||
}
|
||||
|
||||
/*
|
||||
replaces ecliptic coordinates with equatorial coordinates
|
||||
note: call by reference destroys original values
|
||||
R is unchanged.
|
||||
*/
|
||||
void equatorial(double d, double *lon, double *lat, double *r) {
|
||||
double eps, ceps, seps, l, b;
|
||||
|
||||
l = *lon;
|
||||
b = * lat;
|
||||
eps = epsilon(d);
|
||||
ceps = cos(eps);
|
||||
seps = sin(eps);
|
||||
*lon = atan22(sin(l)*ceps - tan(b)*seps, cos(l));
|
||||
*lat = asin(sin(b)*ceps + cos(b)*seps*sin(l));
|
||||
}
|
||||
|
||||
/*
|
||||
replaces equatorial coordinates with ecliptic ones. Inverse
|
||||
of above, but used to find topocentric ecliptic coords.
|
||||
*/
|
||||
void ecliptic(double d, double *lon, double *lat, double *r) {
|
||||
double eps, ceps, seps, alp, dec;
|
||||
alp = *lon;
|
||||
dec = *lat;
|
||||
eps = epsilon(d);
|
||||
ceps = cos(eps);
|
||||
seps = sin(eps);
|
||||
*lon = atan22(sin(alp)*ceps + tan(dec)*seps, cos(alp));
|
||||
*lat = asin(sin(dec)*ceps - cos(dec)*seps*sin(alp));
|
||||
}
|
||||
|
||||
/*
|
||||
returns the siderial time at greenwich meridian as
|
||||
an angle in radians given the days since J2000.0
|
||||
*/
|
||||
double gst( double d) {
|
||||
double t = d / 36525;
|
||||
double theta;
|
||||
theta = range(280.46061837 + 360.98564736629 * d + 0.000387933 * t * t);
|
||||
return(theta * RADS);
|
||||
}
|
||||
|
||||
void tmoonsub_(double *day, double *glat, double *glong, double *moonalt,
|
||||
double *mrv, double *l, double *b, double *paxis)
|
||||
{
|
||||
double mlambda, mbeta;
|
||||
double malpha, mdelta;
|
||||
double lst, mhr;
|
||||
double tlambda, tbeta, trv;
|
||||
|
||||
lst = gst(*day) + *glong;
|
||||
|
||||
/* find Moon topocentric coordinates for libration calculations */
|
||||
|
||||
moonpos(*day, &mlambda, &mbeta, mrv);
|
||||
malpha = mlambda;
|
||||
mdelta = mbeta;
|
||||
equatorial(*day, &malpha, &mdelta, mrv);
|
||||
topo(lst, *glat, &malpha, &mdelta, mrv);
|
||||
mhr = rangerad(lst - malpha);
|
||||
*moonalt = alt(*glat, mhr, mdelta);
|
||||
|
||||
/* Optical libration and Position angle of the Pole */
|
||||
|
||||
tlambda = malpha;
|
||||
tbeta = mdelta;
|
||||
trv = *mrv;
|
||||
ecliptic(*day, &tlambda, &tbeta, &trv);
|
||||
libration(*day, tlambda, tbeta, malpha, l, b, paxis);
|
||||
}
|
@ -1,7 +0,0 @@
|
||||
#include <unistd.h>
|
||||
|
||||
/* usleep(3) */
|
||||
void usleep_(unsigned long *microsec)
|
||||
{
|
||||
usleep(*microsec);
|
||||
}
|
@ -1,70 +0,0 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
#include <stdlib.h>
|
||||
#include "rs.h"
|
||||
|
||||
static void *rs;
|
||||
static int first=1;
|
||||
|
||||
void rs_encode_(int *dgen, int *sent)
|
||||
// Encode JT65 data dgen[12], producing sent[63].
|
||||
{
|
||||
int dat1[12];
|
||||
int b[51];
|
||||
int i;
|
||||
|
||||
if(first) {
|
||||
// Initialize the JT65 codec
|
||||
rs=init_rs_int(6,0x43,3,1,51,0);
|
||||
first=0;
|
||||
}
|
||||
|
||||
// Reverse data order for the Karn codec.
|
||||
for(i=0; i<12; i++) {
|
||||
dat1[i]=dgen[11-i];
|
||||
}
|
||||
// Compute the parity symbols
|
||||
encode_rs_int(rs,dat1,b);
|
||||
|
||||
// Move parity symbols and data into sent[] array, in reverse order.
|
||||
for (i = 0; i < 51; i++) sent[50-i] = b[i];
|
||||
for (i = 0; i < 12; i++) sent[i+51] = dat1[11-i];
|
||||
}
|
||||
|
||||
void rs_decode_(int *recd0, int *era0, int *numera0, int *decoded, int *nerr)
|
||||
// Decode JT65 received data recd0[63], producing decoded[12].
|
||||
// Erasures are indicated in era0[numera]. The number of corrected
|
||||
// errors is *nerr. If the data are uncorrectable, *nerr=-1 is returned.
|
||||
{
|
||||
int numera;
|
||||
int i;
|
||||
int era_pos[50];
|
||||
int recd[63];
|
||||
|
||||
if(first) {
|
||||
rs=init_rs_int(6,0x43,3,1,51,0);
|
||||
first=0;
|
||||
}
|
||||
|
||||
numera=*numera0;
|
||||
for(i=0; i<12; i++) recd[i]=recd0[62-i];
|
||||
for(i=0; i<51; i++) recd[12+i]=recd0[50-i];
|
||||
if(numera)
|
||||
for(i=0; i<numera; i++) era_pos[i]=era0[i];
|
||||
*nerr=decode_rs_int(rs,recd,era_pos,numera);
|
||||
for(i=0; i<12; i++) decoded[i]=recd[11-i];
|
||||
}
|
||||
|
||||
|
||||
void rs_encode__(int *dgen, int *sent)
|
||||
{
|
||||
rs_encode_(dgen, sent);
|
||||
}
|
||||
|
||||
void rs_decode__(int *recd0, int *era0, int *numera0, int *decoded, int *nerr)
|
||||
{
|
||||
rs_decode_(recd0, era0, numera0, decoded, nerr);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user