mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-04-05 10:58:38 -04:00
Computes theoretical probability of error for a bounded-distance decoder.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6302 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
ef49f6dbd6
commit
59806b11bd
54
lib/ftrsd/ftrsd_paper/bodide.f90
Normal file
54
lib/ftrsd/ftrsd_paper/bodide.f90
Normal file
@ -0,0 +1,54 @@
|
||||
program bodide
|
||||
! Compute probability of word error for a bounded distance decoder.
|
||||
! Hardwired for non-coherent 64-FSK and the JT65 RS (63,12) code on GF(64).
|
||||
!
|
||||
! Let ps be symbol error probability.
|
||||
! The probability of getting an error pattern with e symbol errors is:
|
||||
! ps^e * (1-ps)*(n-e)
|
||||
! The number of error patterns with e errors is binomial(63,e)
|
||||
! Overall probability of getting a word with e errors is:
|
||||
! P(e)= binomial(63,e)* ps^e * (1-ps)*(n-e)
|
||||
! Probability that word is correct is P(0 to 25 errors) = sum{e=0}^{25} P(e)
|
||||
! Probability that word is wrong is 1-P(0 to 25 errors)
|
||||
! P_word_error=1-( sum_{e=0}^{t} P(e) )
|
||||
!
|
||||
implicit real*16 (a-h,o-z)
|
||||
|
||||
integer*8 binomial
|
||||
integer x,s,XX,NN,M
|
||||
character arg*8
|
||||
|
||||
nargs=iargc()
|
||||
if(nargs.ne.1) then
|
||||
print*,'Probability of word error for noncoherent 64-FSK with bounded distance decoding'
|
||||
print*,'Usage: bounded_distance D'
|
||||
print*,'Example: bounded_distance 25'
|
||||
go to 999
|
||||
endif
|
||||
call getarg(1,arg)
|
||||
read(arg,*) nt
|
||||
M=64
|
||||
write(*,1012)
|
||||
1012 format('Es/No P(word error)'/ &
|
||||
'----------------------')
|
||||
do isnr=0,40
|
||||
esno=10**(isnr/2.0/10.0)
|
||||
hsum=0.d0
|
||||
do k=1,M-1
|
||||
h=binomial(M-1,k)
|
||||
h=h*((-1)**(k+1))/(k+1)
|
||||
h=h*exp(-esno*k/(k+1))
|
||||
hsum=hsum + h
|
||||
enddo
|
||||
ps=hsum
|
||||
hsum=0.d0
|
||||
do i=0,nt
|
||||
h=binomial(63,i)
|
||||
h=h*ps**i
|
||||
h=h*(1-ps)**(63-i)
|
||||
hsum=hsum+h
|
||||
enddo
|
||||
pw=1-hsum
|
||||
write(*,'(f4.1,4x,e10.4,4x,e10.4)') isnr/2.0, ps, pw
|
||||
enddo
|
||||
999 end program bodide
|
Loading…
Reference in New Issue
Block a user