mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-03-22 20:18:35 -04:00
Add xfft2: quick kludge to avoid re-entrancy problem, since xfft is called
by spec in the GUI thread. Don't use "zero" in spec. git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/trunk@130 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
b124626138
commit
74c44596fd
@ -36,7 +36,7 @@ SRCS2F77 = wsjt1.f avesp2.f bzap.f spec441.f spec2d.f mtdecode.f \
|
||||
limit.f lpf1.f deep65.f morse.f nchar.f packcall.f packgrid.f \
|
||||
packmsg.f packtext.f setup65.f short65.f slope.f spec2d65.f \
|
||||
sync65.f unpackcall.f unpackgrid.f unpackmsg.f unpacktext.f \
|
||||
xcor.f xfft.f wsjt65.f astro.f azdist.f coord.f dcoord.f \
|
||||
xcor.f xfft.f xfft2.f wsjt65.f astro.f azdist.f coord.f dcoord.f \
|
||||
deg2grid.f dot.f ftsky.f geocentric.f GeoDist.f grid2deg.f \
|
||||
moon2.f MoonDop.f sun.f toxyz.f pfxdump.f
|
||||
|
||||
|
@ -36,7 +36,7 @@ subroutine horizspec(x,brightness,contrast,a)
|
||||
do i=1,nfft
|
||||
y(i)=1.4*x(i+i0)
|
||||
enddo
|
||||
call xfft(y,nfft)
|
||||
call xfft2(y,nfft)
|
||||
nq=nfft/4
|
||||
do i=1,nq
|
||||
ss(i)=real(c(i))**2 + imag(c(i))**2
|
||||
|
10
spec.f90
10
spec.f90
@ -36,7 +36,9 @@ subroutine spec(brightness,contrast,logmap,ngain,nspeed,a)
|
||||
save
|
||||
|
||||
if(first) then
|
||||
call zero(ss,nq)
|
||||
do i=1,nq
|
||||
ss(i)=0.
|
||||
enddo
|
||||
istep=2205
|
||||
nfft=4096
|
||||
nq=nfft/4
|
||||
@ -136,7 +138,7 @@ subroutine spec(brightness,contrast,logmap,ngain,nspeed,a)
|
||||
go to 900
|
||||
endif
|
||||
|
||||
call xfft(x,nfft)
|
||||
call xfft2(x,nfft)
|
||||
|
||||
do i=1,nq !Accumulate power spectrum
|
||||
ss(i)=ss(i) + real(c(i))**2 + imag(c(i))**2
|
||||
@ -167,7 +169,9 @@ subroutine spec(brightness,contrast,logmap,ngain,nspeed,a)
|
||||
enddo
|
||||
nsum=0
|
||||
newdat=1 !Flag for new spectrum available
|
||||
call zero(ss,nq) !Zero the accumulating array
|
||||
do i=1,nq !Zero the accumulating array
|
||||
ss(i)=0.
|
||||
enddo
|
||||
if(jz.lt.300) jz=jz+1
|
||||
endif
|
||||
|
||||
|
2
wsjt.py
2
wsjt.py
@ -1,4 +1,4 @@
|
||||
#---------------------------------------------------------------- WSJT
|
||||
#----------------------------------------------------------------- WSJT
|
||||
from Tkinter import *
|
||||
from tkFileDialog import *
|
||||
import Pmw
|
||||
|
184
xfft2.f
Normal file
184
xfft2.f
Normal file
@ -0,0 +1,184 @@
|
||||
SUBROUTINE xfft2(DATA,NB)
|
||||
c
|
||||
c the cooley-tukey fast fourier transform in usasi basic fortran
|
||||
c
|
||||
C .. Scalar Arguments ..
|
||||
INTEGER NB
|
||||
C ..
|
||||
C .. Array Arguments ..
|
||||
REAL DATA(NB+2)
|
||||
C ..
|
||||
C .. Local Scalars ..
|
||||
REAL DIFI,DIFR,RTHLF,SUMI,SUMR,T2I,T2R,T3I,T3R,T4I,
|
||||
+ T4R,TEMPI,TEMPR,THETA,TWOPI,U1I,U1R,U2I,U2R,U3I,U3R,
|
||||
+ U4I,U4R,W2I,W2R,W3I,W3R,WI,WR,WSTPI,WSTPR
|
||||
INTEGER I,I2,IPAR,J,K1,K2,K3,K4,KDIF,KMIN,
|
||||
+ KSTEP,L,LMAX,M,MMAX,NH
|
||||
C ..
|
||||
C .. Intrinsic Functions ..
|
||||
INTRINSIC COS,MAX0,REAL,SIN
|
||||
C ..
|
||||
C .. Data statements ..
|
||||
DATA TWOPI/6.2831853071796/,RTHLF/0.70710678118655/
|
||||
c
|
||||
c 1. real transform for the 1st dimension, n even. method--
|
||||
c transform a complex array of length n/2 whose real parts
|
||||
c are the even numbered real values and whose imaginary parts
|
||||
c are the odd numbered real values. separate and supply
|
||||
c the second half by conjugate symmetry.
|
||||
c
|
||||
|
||||
NH = NB/2
|
||||
c
|
||||
c shuffle data by bit reversal, since n=2**k.
|
||||
c
|
||||
J = 1
|
||||
DO 131 I2 = 1,NB,2
|
||||
IF (J-I2) 124,127,127
|
||||
124 TEMPR = DATA(I2)
|
||||
TEMPI = DATA(I2+1)
|
||||
DATA(I2) = DATA(J)
|
||||
DATA(I2+1) = DATA(J+1)
|
||||
DATA(J) = TEMPR
|
||||
DATA(J+1) = TEMPI
|
||||
127 M = NH
|
||||
128 IF (J-M) 130,130,129
|
||||
129 J = J - M
|
||||
M = M/2
|
||||
IF (M-2) 130,128,128
|
||||
130 J = J + M
|
||||
131 CONTINUE
|
||||
|
||||
c
|
||||
c main loop for factors of two. perform fourier transforms of
|
||||
c length four, with one of length two if needed. the twiddle factor
|
||||
c w=exp(-2*pi*sqrt(-1)*m/(4*mmax)). check for w=-sqrt(-1)
|
||||
c and repeat for w=w*(1-sqrt(-1))/sqrt(2).
|
||||
c
|
||||
IF (NB-2) 174,174,143
|
||||
143 IPAR = NH
|
||||
144 IF (IPAR-2) 149,146,145
|
||||
145 IPAR = IPAR/4
|
||||
GO TO 144
|
||||
|
||||
146 DO 147 K1 = 1,NB,4
|
||||
K2 = K1 + 2
|
||||
TEMPR = DATA(K2)
|
||||
TEMPI = DATA(K2+1)
|
||||
DATA(K2) = DATA(K1) - TEMPR
|
||||
DATA(K2+1) = DATA(K1+1) - TEMPI
|
||||
DATA(K1) = DATA(K1) + TEMPR
|
||||
DATA(K1+1) = DATA(K1+1) + TEMPI
|
||||
147 CONTINUE
|
||||
149 MMAX = 2
|
||||
150 IF (MMAX-NH) 151,174,174
|
||||
151 LMAX = MAX0(4,MMAX/2)
|
||||
DO 173 L = 2,LMAX,4
|
||||
M = L
|
||||
IF (MMAX-2) 156,156,152
|
||||
152 THETA = -TWOPI*REAL(L)/REAL(4*MMAX)
|
||||
WR = COS(THETA)
|
||||
WI = SIN(THETA)
|
||||
155 W2R = WR*WR - WI*WI
|
||||
W2I = 2.*WR*WI
|
||||
W3R = W2R*WR - W2I*WI
|
||||
W3I = W2R*WI + W2I*WR
|
||||
156 KMIN = 1 + IPAR*M
|
||||
IF (MMAX-2) 157,157,158
|
||||
157 KMIN = 1
|
||||
158 KDIF = IPAR*MMAX
|
||||
159 KSTEP = 4*KDIF
|
||||
IF (KSTEP-NB) 160,160,169
|
||||
160 DO 168 K1 = KMIN,NB,KSTEP
|
||||
K2 = K1 + KDIF
|
||||
K3 = K2 + KDIF
|
||||
K4 = K3 + KDIF
|
||||
IF (MMAX-2) 161,161,164
|
||||
161 U1R = DATA(K1) + DATA(K2)
|
||||
U1I = DATA(K1+1) + DATA(K2+1)
|
||||
U2R = DATA(K3) + DATA(K4)
|
||||
U2I = DATA(K3+1) + DATA(K4+1)
|
||||
U3R = DATA(K1) - DATA(K2)
|
||||
U3I = DATA(K1+1) - DATA(K2+1)
|
||||
U4R = DATA(K3+1) - DATA(K4+1)
|
||||
U4I = DATA(K4) - DATA(K3)
|
||||
GO TO 167
|
||||
|
||||
164 T2R = W2R*DATA(K2) - W2I*DATA(K2+1)
|
||||
T2I = W2R*DATA(K2+1) + W2I*DATA(K2)
|
||||
T3R = WR*DATA(K3) - WI*DATA(K3+1)
|
||||
T3I = WR*DATA(K3+1) + WI*DATA(K3)
|
||||
T4R = W3R*DATA(K4) - W3I*DATA(K4+1)
|
||||
T4I = W3R*DATA(K4+1) + W3I*DATA(K4)
|
||||
U1R = DATA(K1) + T2R
|
||||
U1I = DATA(K1+1) + T2I
|
||||
U2R = T3R + T4R
|
||||
U2I = T3I + T4I
|
||||
U3R = DATA(K1) - T2R
|
||||
U3I = DATA(K1+1) - T2I
|
||||
U4R = T3I - T4I
|
||||
U4I = T4R - T3R
|
||||
|
||||
167 DATA(K1) = U1R + U2R
|
||||
DATA(K1+1) = U1I + U2I
|
||||
DATA(K2) = U3R + U4R
|
||||
DATA(K2+1) = U3I + U4I
|
||||
DATA(K3) = U1R - U2R
|
||||
DATA(K3+1) = U1I - U2I
|
||||
DATA(K4) = U3R - U4R
|
||||
DATA(K4+1) = U3I - U4I
|
||||
168 CONTINUE
|
||||
KDIF = KSTEP
|
||||
KMIN = 4*KMIN - 3
|
||||
GO TO 159
|
||||
|
||||
169 M = M + LMAX
|
||||
IF (M-MMAX) 170,170,173
|
||||
170 TEMPR = WR
|
||||
WR = (WR+WI)*RTHLF
|
||||
WI = (WI-TEMPR)*RTHLF
|
||||
GO TO 155
|
||||
|
||||
173 CONTINUE
|
||||
IPAR = 3 - IPAR
|
||||
MMAX = MMAX + MMAX
|
||||
GO TO 150
|
||||
c
|
||||
c complete a real transform in the 1st dimension, n even, by con-
|
||||
c jugate symmetries.
|
||||
c
|
||||
174 THETA = -TWOPI/REAL(NB)
|
||||
WSTPR = COS(THETA)
|
||||
WSTPI = SIN(THETA)
|
||||
WR = WSTPR
|
||||
WI = WSTPI
|
||||
I = 3
|
||||
J = NB - 1
|
||||
GO TO 207
|
||||
|
||||
205 SUMR = (DATA(I)+DATA(J))/2.
|
||||
SUMI = (DATA(I+1)+DATA(J+1))/2.
|
||||
DIFR = (DATA(I)-DATA(J))/2.
|
||||
DIFI = (DATA(I+1)-DATA(J+1))/2.
|
||||
TEMPR = WR*SUMI + WI*DIFR
|
||||
TEMPI = WI*SUMI - WR*DIFR
|
||||
DATA(I) = SUMR + TEMPR
|
||||
DATA(I+1) = DIFI + TEMPI
|
||||
DATA(J) = SUMR - TEMPR
|
||||
DATA(J+1) = -DIFI + TEMPI
|
||||
I = I + 2
|
||||
J = J - 2
|
||||
TEMPR = WR
|
||||
WR = WR*WSTPR - WI*WSTPI
|
||||
WI = TEMPR*WSTPI + WI*WSTPR
|
||||
207 IF (I-J) 205,208,211
|
||||
208 DATA(I+1) = -DATA(I+1)
|
||||
|
||||
211 DATA(NB+1) = DATA(1) - DATA(2)
|
||||
DATA(NB+2) = 0.
|
||||
|
||||
DATA(1) = DATA(1) + DATA(2)
|
||||
DATA(2) = 0.
|
||||
|
||||
RETURN
|
||||
END
|
Loading…
Reference in New Issue
Block a user