mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	some more progress.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6319 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
		
							parent
							
								
									32ffb48139
								
							
						
					
					
						commit
						767758d15c
					
				| @ -3,7 +3,7 @@ snr psuccess 100000 trials r6315 | ||||
| -26.5 0.007 x | ||||
| -26.0 0.057  | ||||
| -25.5 0.207  | ||||
| -25.0 0.531   | ||||
| -25.0 0.531 0.67 | ||||
| -24.5 0.822  | ||||
| -24.0 0.953 | ||||
| -23.5 0.99423  | ||||
|  | ||||
| @ -122,7 +122,23 @@ Introduction and Motivation | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Standard | ||||
| To be written... | ||||
| The following paragraph may not belong here - feel free to get rid of it, | ||||
|  change it, whatever. | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Standard | ||||
| The Franke-Taylor (FT) decoder described herein is a probabilistic list-decoder | ||||
|  that has been optimized for use in the short block-length, low-rate Reed-Solomo | ||||
| n code used in JT65. | ||||
|  The particular approach that we have developed has a number of desirable | ||||
|  properties, not the least of which is its conceptual simplicity. | ||||
|  The decoding performance and complexity scale in a useful way, providing | ||||
|  steadily increasing soft-decision decoding gain as a tunable computational | ||||
|  complexity parameter is increased over more than 5 orders of magnitude. | ||||
|  The fact that the algorithm requires a large number of independent decoding | ||||
|  trials should also make it possible to obtain significant performance gains | ||||
|  through parallelization. | ||||
|   | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Section | ||||
| @ -341,18 +357,52 @@ Statistical Framework | ||||
| \begin_layout Standard | ||||
| The FT algorithm uses the estimated quality of received symbols to generate | ||||
|  lists of symbols considered likely to be in error, thus enabling decoding | ||||
|  of received words with more than 25 errors. | ||||
|   | ||||
|  of received words with more than 25 errors using the errors-and-erasures | ||||
|  capability of the BM decoder. | ||||
|  Algorithms of this type are generally called  | ||||
| \begin_inset Quotes eld | ||||
| \end_inset | ||||
| 
 | ||||
| reliability based | ||||
| \begin_inset Quotes erd | ||||
| \end_inset | ||||
| 
 | ||||
|  or  | ||||
| \begin_inset Quotes eld | ||||
| \end_inset | ||||
| 
 | ||||
| probabilistic | ||||
| \begin_inset Quotes erd | ||||
| \end_inset | ||||
| 
 | ||||
|  decoding methods  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-1" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| . | ||||
|  These algorithms generally involve some amount of educating guessing about | ||||
|  which received symbols are in error. | ||||
|  The guesses are informed by quality metrics, also known as  | ||||
| \begin_inset Quotes eld | ||||
| \end_inset | ||||
| 
 | ||||
| soft-symbol | ||||
| \begin_inset Quotes erd | ||||
| \end_inset | ||||
| 
 | ||||
|  metrics, associated with the received symbols. | ||||
|  To illustrate why it is absolutely essential to use such soft-symbol informatio | ||||
| n to identify symbols that are most likely to be in error it helps to consider | ||||
|  what would happen if we tried to use completely random guesses, ignoring | ||||
|  any available soft-symbol information. | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Standard | ||||
| (SF: provide brief overview of literature survey and discuss the inspiration | ||||
|  for the FT approach). | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Standard | ||||
| As a specific example, consider a received JT65 word with 23 correct symbols | ||||
|  and 40 errors. | ||||
| As a specific example, we will consider a received JT65 word with 23 correct | ||||
|  symbols and 40 errors. | ||||
|  We do not know which symbols are in error. | ||||
|  Suppose that the decoder randomly selects  | ||||
| \begin_inset Formula $s=40$ | ||||
| @ -398,7 +448,7 @@ tric probability distribution. | ||||
| \end_inset | ||||
| 
 | ||||
|  as the number of errors in the symbols actually erased. | ||||
|  In an ensemble of many received words,  | ||||
|  In an ensemble of many received words  | ||||
| \begin_inset Formula $X$ | ||||
| \end_inset | ||||
| 
 | ||||
| @ -406,7 +456,15 @@ tric probability distribution. | ||||
| \begin_inset Formula $x$ | ||||
| \end_inset | ||||
| 
 | ||||
|  will be random variables. | ||||
|  will be random variables but for this example we will assume that  | ||||
| \begin_inset Formula $X$ | ||||
| \end_inset | ||||
| 
 | ||||
|  is known and that only  | ||||
| \begin_inset Formula $x$ | ||||
| \end_inset | ||||
| 
 | ||||
|  is random. | ||||
|  The conditional probability mass function for  | ||||
| \begin_inset Formula $x$ | ||||
| \end_inset | ||||
| @ -1081,6 +1139,17 @@ Make independent stochastic decisions about whether to erase each symbol | ||||
| Attempt errors-and-erasures decoding by using the BM algorithm and the set | ||||
|  of erasures determined in step 2. | ||||
|  If the BM decoder produces a candidate codeword, go to step 5. | ||||
| \begin_inset Foot | ||||
| status open | ||||
| 
 | ||||
| \begin_layout Plain Layout | ||||
| Our implementation of the FT-algorithm is based on the excellent open-source | ||||
|  BM decoder written by Phil Karn, KA9Q. | ||||
| \end_layout | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| 
 | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Enumerate | ||||
| @ -1133,7 +1202,63 @@ An acceptable codeword with | ||||
| \end_inset | ||||
| 
 | ||||
|  has been found. | ||||
|  Declare a successful decode and return this codeword . | ||||
|  Declare a successful decode and return this codeword. | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Standard | ||||
| The inspiration for the FT decoding algorithm came from a number of sources, | ||||
|  particularly references  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-2" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
|  and  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-3" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
|  and the textbook by Lin and Costello  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-1" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| . | ||||
|  After developing this algorithm, we became aware that our approach is conceptua | ||||
| lly similar to a  | ||||
| \begin_inset Quotes eld | ||||
| \end_inset | ||||
| 
 | ||||
| stochastic erasures-only list decoding algorithm | ||||
| \begin_inset Quotes erd | ||||
| \end_inset | ||||
| 
 | ||||
| , described in reference  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-4" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| . | ||||
|  The algorithm in  | ||||
| \begin_inset CommandInset citation | ||||
| LatexCommand cite | ||||
| key "key-4" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
|  is applied to higher-rate Reed-Solomon codes on a binary-input channel | ||||
|  over which BPSK-modulated symbols are transmitted. | ||||
|  Our 64-ary input channel with 64-FSK modulation required us to develop | ||||
|  our own unique methods for assigning erasure probabilities and for defining | ||||
|  an acceptance criteria to select the best codeword from the list of candidates. | ||||
|   | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Section | ||||
| @ -1650,10 +1775,23 @@ Summary | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| label "1" | ||||
| key "key-1" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| Error Control Coding, 2nd edition, Shu Lin and Daniel J. | ||||
|  Costello, Pearson-Prentice Hall, 2004. | ||||
| \end_layout | ||||
| 
 | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| label "2" | ||||
| key "key-2" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| "Stochastic Chase Decoding of Reed-Solomon Codes", Camille Leroux, Saied | ||||
|  Hemati, Shie Mannor, Warren J. | ||||
|  Gross, IEEE Communications Letters, Vol. | ||||
| @ -1664,7 +1802,8 @@ key "key-1" | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| key "key-2" | ||||
| label "3" | ||||
| key "key-3" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| @ -1686,7 +1825,8 @@ GLOBECOM | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| key "key-3" | ||||
| label "4" | ||||
| key "key-4" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| @ -1707,7 +1847,8 @@ Stochastic Erasure-Only List Decoding Algorithms for Reed-Solomon Codes, | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| key "key-4" | ||||
| label "5" | ||||
| key "key-5" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
| @ -1723,7 +1864,8 @@ key "key-4" | ||||
| \begin_layout Bibliography | ||||
| \begin_inset CommandInset bibitem | ||||
| LatexCommand bibitem | ||||
| key "key-5" | ||||
| label "6" | ||||
| key "key-6" | ||||
| 
 | ||||
| \end_inset | ||||
| 
 | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user