Code cleanup involving ccf1, ccf2, and plotting thereof.

This commit is contained in:
Joe Taylor 2021-01-30 14:12:02 -05:00
parent 1e7c53e0e4
commit 7bd1249452
1 changed files with 32 additions and 26 deletions

View File

@ -148,39 +148,23 @@ subroutine q65_dec0(iavg,nutc,iwave,ntrperiod,nfqso,ntol,ndepth,lclearave, &
call timer('list_dec',0)
call q65_dec_q3(s1,iz,jz,s3,LL,ipk,jpk,snr2,dat4,idec,decoded)
call timer('list_dec',1)
if(idec.eq.3) then
ic=ia2/4;
base=(sum(ccf1(-ia2:-ia2+ic)) + sum(ccf1(ia2-ic:ia2)))/(2.0+2.0*ic);
ccf1=ccf1-base
smax=maxval(ccf1)
if(smax.gt.10.0) ccf1=10.0*ccf1/smax
base=(sum(ccf2(-ia2:-ia2+ic)) + sum(ccf2(ia2-ic:ia2)))/(2.0+2.0*ic);
ccf2=ccf2-base
smax=maxval(ccf2)
if(smax.gt.10.0) ccf2=10.0*ccf2/smax
endif
endif
! Get 2d CCF and ccf2 using sync symbols only
call q65_ccf_22(s1,iz,jz,nfqso,ia,ia2,ipk,jpk,f0a,xdta,ccf,ccf2)
call q65_ccf_22(s1,iz,jz,nfqso,ia2,ipk,jpk,f0a,xdta,ccf2)
if(idec.lt.0) then
f0=f0a
xdt=xdta
endif
! Estimate rms on ccf baseline
call pctile(ccf2(-ia2:ia2),2*ia2+1,40,base)
rms=0.6*base !Empirical constant 0.6
! Estimate rms on ccf2 baseline
call q65_sync_curve(ccf2,ia2,rms2)
smax=maxval(ccf2)
snr1=smax/rms
ccf2=ccf2/rms
if(snr1.gt.10.0) ccf2=(10.0/snr1)*ccf2
snr1=smax/rms2
if(idec.le.0) then
! The q3 decode attempt failed. Copy synchronied symbol energies from s1
! The q3 decode attempt failed. Copy synchronized symbol energies from s1
! into s3 and prepare to try a more general decode.
ccf1=ccf(:,jpk)/rms
if(snr1.gt.10.0) ccf1=(10.0/snr1)*ccf1
call q65_s1_to_s3(s1,iz,jz,ipk,jpk,LL,mode_q65,sync,s3)
endif
@ -399,16 +383,14 @@ subroutine q65_ccf_85(s1,iz,jz,nfqso,ia,ia2,ipk,jpk,f0,xdt,imsg_best,ccf,ccf1)
return
end subroutine q65_ccf_85
subroutine q65_ccf_22(s1,iz,jz,nfqso,ia,ia2,ipk,jpk,f0,xdt,ccf,ccf2)
subroutine q65_ccf_22(s1,iz,jz,nfqso,ia2,ipk,jpk,f0,xdt,ccf2)
! Attempt synchronization using only the 22 sync symbols. Return ccf2
! for the "orange sync curve".
real s1(iz,jz)
real ccf(-ia2:ia2,-53:214)
real ccf2(-ia2:ia2)
ccf=0.
ccfbest=0.
ibest=0
lagpk=0
@ -429,7 +411,6 @@ subroutine q65_ccf_22(s1,iz,jz,nfqso,ia,ia2,ipk,jpk,f0,xdt,ccf,ccf2)
ccfmax=ccft
lagpk=lag
endif
ccf(i,lag)=ccft
enddo
ccf2(i)=ccfmax
if(ccfmax.gt.ccfbest) then
@ -527,10 +508,14 @@ end subroutine q65_s1_to_s3
subroutine q65_write_red(ia2,nfqso,xdt,ccf1,ccf2)
! Write data for the red and orange sync curves to LU 17.
real ccf1(-ia2:ia2)
real ccf2(-ia2:ia2)
! Write data for the red and orange sync curves to LU 17.
call q65_sync_curve(ccf1,ia2,rms1)
call q65_sync_curve(ccf2,ia2,rms2)
rewind 17
do i=-ia2,ia2
freq=nfqso + i*df
@ -543,4 +528,25 @@ subroutine q65_write_red(ia2,nfqso,xdt,ccf1,ccf2)
return
end subroutine q65_write_red
subroutine q65_sync_curve(ccf1,ia2,rms1)
! Condition the red or orange sync curve for plotting.
real ccf1(-ia2:ia2)
ic=ia2/4;
nsum=2*(ic+1)
base1=(sum(ccf1(-ia2:-ia2+ic)) + sum(ccf1(ia2-ic:ia2)))/nsum
ccf1(-ia2:ia2)=ccf1(-ia2:ia2)-base1
sq=dot_product(ccf1(-ia2:-ia2+ic),ccf1(-ia2:-ia2+ic)) + &
dot_product(ccf1(ia2-ic:ia2),ccf1(ia2-ic:ia2))
rms1=sqrt(sq/nsum)
ccf1=2.0*ccf1/rms1
smax1=maxval(ccf1)
if(smax1.gt.10.0) ccf1=10.0*ccf1/smax1
return
end subroutine q65_sync_curve
end module q65