mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2025-02-20 12:42:21 -05:00
Add/update some experimental routines.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@7636 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
5ab9d183b3
commit
a62da5972f
@ -329,12 +329,12 @@ set (wsjt_FSRCS
|
||||
lib/ccf2.f90
|
||||
lib/ccf65.f90
|
||||
lib/fsk4hf/chkcrc10.f90
|
||||
lib/fsk4hf/chkcrc12.f90
|
||||
lib/chkhist.f90
|
||||
lib/chkmsg.f90
|
||||
lib/chkss2.f90
|
||||
lib/coord.f90
|
||||
lib/db.f90
|
||||
lib/fsk4hf/dbpsksim.f90
|
||||
lib/decode4.f90
|
||||
lib/decode65a.f90
|
||||
lib/decode65b.f90
|
||||
@ -385,10 +385,10 @@ set (wsjt_FSRCS
|
||||
lib/gen4.f90
|
||||
lib/gen65.f90
|
||||
lib/gen9.f90
|
||||
lib/fsk4hf/genbpsk.f90
|
||||
lib/geniscat.f90
|
||||
lib/genmsk144.f90
|
||||
lib/genmsk40.f90
|
||||
lib/fsk4hf/genmskhf.f90
|
||||
lib/genqra64.f90
|
||||
lib/genwspr.f90
|
||||
lib/geodist.f90
|
||||
@ -435,11 +435,13 @@ set (wsjt_FSRCS
|
||||
lib/mskrtd.f90
|
||||
lib/msk144signalquality.f90
|
||||
lib/msk144sim.f90
|
||||
lib/fsk4hf/mskhfsim.f90
|
||||
lib/mskrtd.f90
|
||||
lib/pctile.f90
|
||||
lib/peakdt9.f90
|
||||
lib/peakup.f90
|
||||
lib/polyfit.f90
|
||||
lib/fsk4hf/polyfit4.f90
|
||||
lib/prog_args.f90
|
||||
lib/ps4.f90
|
||||
lib/qra64a.f90
|
||||
@ -476,6 +478,7 @@ set (wsjt_FSRCS
|
||||
lib/timf2.f90
|
||||
lib/tweak1.f90
|
||||
lib/twkfreq.f90
|
||||
lib/fsk4hf/twkfreq1.f90
|
||||
lib/twkfreq65.f90
|
||||
lib/unpackmsg144.f90
|
||||
lib/update_recent_calls.f90
|
||||
@ -1115,6 +1118,9 @@ target_link_libraries (ldpcsim144 wsjt_fort wsjt_cxx)
|
||||
add_executable (ldpcsim168 lib/fsk4hf/ldpcsim168.f90 wsjtx.rc)
|
||||
target_link_libraries (ldpcsim168 wsjt_fort wsjt_cxx)
|
||||
|
||||
add_executable (mskhfsim lib/fsk4hf/mskhfsim.f90 wsjtx.rc)
|
||||
target_link_libraries (mskhfsim wsjt_fort wsjt_cxx)
|
||||
|
||||
add_executable (msk144sim lib/msk144sim.f90 wsjtx.rc)
|
||||
target_link_libraries (msk144sim wsjt_fort wsjt_cxx)
|
||||
|
||||
|
@ -58,6 +58,26 @@ OBJS8 = dbpsksim.o four2a.o gran.o genbpsk.o watterson.o db.o \
|
||||
dbpsksim.exe: $(OBJS8)
|
||||
$(FC) -o dbpsksim.exe $(OBJS8) C:\JTSDK\fftw3f\libfftw3f-3.dll
|
||||
|
||||
OBJS9 = fsk4a.o four2a.o gran.o genfsk4a.o spec4.o \
|
||||
watterson.o db.o
|
||||
fsk4a.exe: $(OBJS9)
|
||||
$(FC) -o fsk4a.exe $(OBJS9) C:\JTSDK\fftw3f\libfftw3f-3.dll
|
||||
|
||||
OBJS10 = gmsk8.o gaussfilt.o four2a.o
|
||||
gmsk8.exe: $(OBJS10)
|
||||
$(FC) -o gmsk8.exe $(OBJS10) C:\JTSDK\fftw3f\libfftw3f-3.dll
|
||||
|
||||
OBJS11 = gmsksim.o four2a.o gran.o gengmsk.o genbpsk.o watterson.o db.o \
|
||||
encode168.o bpdecode168.o platanh.o gaussfilt.o tweak1.o smo121.o
|
||||
gmsksim.exe: $(OBJS11)
|
||||
$(FC) -o gmsksim.exe $(OBJS11) C:\JTSDK\fftw3f\libfftw3f-3.dll
|
||||
|
||||
OBJS12 = mskhfsim.o four2a.o gran.o genmskhf.o watterson.o db.o \
|
||||
encode168.o bpdecode168.o platanh.o twkfreq1.o smo121.o \
|
||||
polyfit4.o
|
||||
mskhfsim.exe: $(OBJS12)
|
||||
$(FC) -o mskhfsim.exe $(OBJS12) C:\JTSDK\fftw3f\libfftw3f-3.dll
|
||||
|
||||
.PHONY : clean
|
||||
|
||||
clean:
|
||||
|
@ -5,14 +5,17 @@ program dbpsksim
|
||||
parameter (NSPS=28800) !Samples per symbol at 12000 sps
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform (3484800)
|
||||
parameter (NFFT1=65536,NH1=NFFT1/2)
|
||||
parameter (NFFT2=128,NH2=NFFT2/2)
|
||||
|
||||
character*8 arg
|
||||
complex c(0:NZ-1) !Complex waveform
|
||||
complex c2(0:NFFT1-1) !Short spectra
|
||||
complex cr(0:NZ-1)
|
||||
complex ct(0:NZ-1)
|
||||
complex cz(0:NFFT2-1)
|
||||
complex z0,z,zp
|
||||
real s(-NH1+1:NH1)
|
||||
real s2(-NH2+1:NH2)
|
||||
real xnoise(0:NZ-1) !Generated random noise
|
||||
real ynoise(0:NZ-1) !Generated random noise
|
||||
real rxdata(120),llr(120)
|
||||
@ -26,8 +29,8 @@ program dbpsksim
|
||||
|
||||
nnn=0
|
||||
nargs=iargc()
|
||||
if(nargs.ne.5) then
|
||||
print*,'Usage: dbpsksim f0(Hz) delay(ms) fspread(Hz) iters snr(dB)'
|
||||
if(nargs.ne.6) then
|
||||
print*,'Usage: dbpsksim f0(Hz) delay(ms) fspread(Hz) ndiff iters snr(dB)'
|
||||
print*,'Example: dbpsksim 1500 0 0 10 -35'
|
||||
print*,'Set snr=0 to cycle through a range'
|
||||
go to 999
|
||||
@ -39,8 +42,10 @@ program dbpsksim
|
||||
call getarg(3,arg)
|
||||
read(arg,*) fspread
|
||||
call getarg(4,arg)
|
||||
read(arg,*) iters
|
||||
read(arg,*) ndiff
|
||||
call getarg(5,arg)
|
||||
read(arg,*) iters
|
||||
call getarg(6,arg)
|
||||
read(arg,*) snrdb
|
||||
|
||||
twopi=8.d0*atan(1.d0)
|
||||
@ -50,13 +55,12 @@ program dbpsksim
|
||||
baud=1.d0/ts
|
||||
txt=NZ*dt
|
||||
bandwidth_ratio=2500.0/6000.0
|
||||
ndiff=1 !Encode/decode differentially
|
||||
write(*,1000) baud,5*baud,txt,delay,fspread
|
||||
write(*,1000) baud,5*baud,txt,delay,fspread,ndiff
|
||||
1000 format('Baud:',f6.3,' BW:',f4.1,' TxT:',f6.1,' Delay:',f5.2, &
|
||||
' fSpread:',f5.2/)
|
||||
' fSpread:',f5.2,' ndiff:',i2/)
|
||||
|
||||
write(*,1004)
|
||||
1004 format(' SNR e1 e2 ber1 ber2 fer1 fer2 fsigma'/55('-'))
|
||||
1004 format(' SNR err ber fer fsigma'/35('-'))
|
||||
|
||||
call encode120(msgbits,codeword) !Encode the test message
|
||||
isna=-28
|
||||
@ -69,8 +73,8 @@ program dbpsksim
|
||||
snrdb=isnr
|
||||
sig=sqrt(bandwidth_ratio) * 10.0**(0.05*snrdb)
|
||||
if(snrdb.gt.90.0) sig=1.0
|
||||
nhard1=0
|
||||
nhard2=0
|
||||
nhard=0
|
||||
nhardc=0
|
||||
nfe1=0
|
||||
nfe2=0
|
||||
sqf=0.
|
||||
@ -89,7 +93,7 @@ program dbpsksim
|
||||
c=c + cmplx(xnoise,ynoise) !Add noise to signal
|
||||
endif
|
||||
|
||||
! First attempt at finding carrier frequency fc
|
||||
! First attempt at finding carrier frequency fc: 64k FFTs ==> avg power spectra
|
||||
nspec=NZ/NFFT1
|
||||
df1=12000.0/NFFT1
|
||||
s=0.
|
||||
@ -121,7 +125,7 @@ program dbpsksim
|
||||
a=(s(ipk+1)-s(ipk-1))/2.0
|
||||
b=(s(ipk+1)+s(ipk-1)-2.0*s(ipk))/2.0
|
||||
dx=-a/(2.0*b)
|
||||
fc=fc + df1*dx
|
||||
fc=fc + df1*dx !Estimated carrier frequency
|
||||
sqf=sqf + (fc-f0)**2
|
||||
|
||||
! The following is for testing SNR calibration:
|
||||
@ -132,29 +136,21 @@ program dbpsksim
|
||||
! xsnrdb=db(psig/pnoise)
|
||||
|
||||
call genbpsk(id,fc,ndiff,1,cr) !Generate reference carrier
|
||||
c=c*conjg(cr) !Mix to baseband
|
||||
c=c*conjg(cr) !Mix signal to baseband
|
||||
|
||||
z0=1.0
|
||||
ie0=1
|
||||
do j=1,NN !Demodulate
|
||||
ia=(j-1)*NSPS
|
||||
ib=ia+NSPS-1
|
||||
z=sum(c(ia:ib))
|
||||
cz(j-1)=z
|
||||
zp=z*conjg(z0)
|
||||
p=1.e-4*real(zp)
|
||||
id1(j)=-1
|
||||
if(p.ge.0.0) id1(j)=1
|
||||
if(j.ge.2) rxdata(j-1)=p
|
||||
z0=z
|
||||
|
||||
! For testing, treat every 3rd symbol as having a known value (i.e., as Sync):
|
||||
! ie=id(j)*ie0
|
||||
! if(mod(j,3).eq.0) write(12,1010) j,ie,1.e-3*ie*z, &
|
||||
! atan2(aimag(ie*z),real(ie*z))
|
||||
!1010 format(2i4,3f10.3)
|
||||
! ie0=ie
|
||||
enddo
|
||||
nhard1=nhard1 + count(id1.ne.id) !Count hard errors
|
||||
|
||||
rxav=sum(rxdata)/120
|
||||
rx2av=sum(rxdata*rxdata)/120
|
||||
@ -166,42 +162,30 @@ program dbpsksim
|
||||
max_iterations=10
|
||||
call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
|
||||
|
||||
! Count the hard errors in id1() and icw()
|
||||
! icw(1)=1
|
||||
! icw(2:NN)=2*cw-1
|
||||
! nid1=0
|
||||
! ncw=0
|
||||
! ie0=1
|
||||
! do j=2,NN
|
||||
! ib=(id(j)+1)/2
|
||||
! ib1=(id1(j)+1)/2
|
||||
! if(ib1.ne.ib) nid1=nid1+1
|
||||
! if(cw(j-1).ne.ib) ncw=ncw+1
|
||||
! enddo
|
||||
! print*,niterations,nid1,ncw
|
||||
|
||||
! Count frame errors
|
||||
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0) nfe1=nfe1+1
|
||||
|
||||
! Generate a new reference carrier, using first-pass hard bits
|
||||
call genbpsk(id1,0.0,ndiff,0,cr)
|
||||
ct=c*conjg(cr)
|
||||
call four2a(ct,NZ,1,-1,1)
|
||||
df2=12000.0/NZ
|
||||
pmax=0.
|
||||
do i=0,NZ-1
|
||||
f=i*df2
|
||||
if(i.gt.NZ/2) f=(i-NZ)*df2
|
||||
if(abs(f).lt.1.0) then
|
||||
p=real(ct(i))**2 + aimag(ct(i))**2
|
||||
if(p.gt.pmax) then
|
||||
pmax=p
|
||||
fc2=f
|
||||
ipk=i
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Find carrier frequency from squared cz array.
|
||||
cz(121:)=0.
|
||||
cz=cz*cz
|
||||
call four2a(cz,NFFT2,1,-1,1)
|
||||
s2max=0.
|
||||
do i=0,NFFT2-1
|
||||
j=i
|
||||
if(i.gt.NH2) j=j-NFFT2
|
||||
s2(j)=real(cz(i))**2 + aimag(cz(i))**2
|
||||
if(s2(j).gt.s2max) then
|
||||
s2max=s2(j)
|
||||
jpk=j
|
||||
endif
|
||||
! write(16,1200) j*baud/NFFT2,1.e-12*s2(j)
|
||||
!1200 format(2f12.3)
|
||||
enddo
|
||||
a=(s2(jpk+1)-s2(jpk-1))/2.0
|
||||
b=(s2(jpk+1)+s2(jpk-1)-2.0*s2(jpk))/2.0
|
||||
dx=-a/(2.0*b)
|
||||
fc2=0.5*(jpk+dx)*baud/NFFT2
|
||||
|
||||
call genbpsk(id,fc2,ndiff,1,cr) !Generate new ref carrier at fc2
|
||||
c=c*conjg(cr)
|
||||
z0=1.0
|
||||
@ -209,14 +193,21 @@ program dbpsksim
|
||||
ia=(j-1)*NSPS
|
||||
ib=ia+NSPS-1
|
||||
z=sum(c(ia:ib))
|
||||
if(j.eq.1) z0=z
|
||||
zp=z*conjg(z0)
|
||||
p=1.e-4*real(zp)
|
||||
id2(j)=-1
|
||||
if(p.ge.0.0) id2(j)=1
|
||||
if(j.ge.2) rxdata(j-1)=p
|
||||
ierr=0
|
||||
if(id2(j).ne.id(j)) ierr=1
|
||||
id3=-1
|
||||
if(real(z).ge.0.0) id3=1
|
||||
if(j.ge.2 .and. id3.ne.id(j)) nhardc=nhardc+1
|
||||
if(j.ge.2 .and. ndiff.eq.0) rxdata(j-1)=real(z)
|
||||
z0=z
|
||||
enddo
|
||||
nhard2=nhard2 + count(id2.ne.id) !Count hard errors
|
||||
nhard=nhard + count(id2.ne.id) !Count hard errors
|
||||
|
||||
rxav=sum(rxdata)/120
|
||||
rx2av=sum(rxdata*rxdata)/120
|
||||
@ -226,20 +217,25 @@ program dbpsksim
|
||||
llr=2.0*rxdata/(ss*ss) !Soft symbols
|
||||
apmask=0
|
||||
max_iterations=10
|
||||
decoded=0
|
||||
call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
|
||||
! if(niterations.lt.0) then
|
||||
! llr=-llr
|
||||
! call bpdecode120(llr,apmask,max_iterations,decoded,niterations,cw)
|
||||
! if(niterations.ge.0) nhard=NN*iters-nhard
|
||||
! endif
|
||||
if(niterations.ge.0) call chkcrc10(decoded,nbadcrc)
|
||||
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0 .or. &
|
||||
nbadcrc.ne.0) nfe2=nfe2+1
|
||||
enddo
|
||||
|
||||
if(ndiff.eq.0) nhard=nhardc
|
||||
fsigma=sqrt(sqf/iters)
|
||||
ber1=float(nhard1)/(NN*iters)
|
||||
ber2=float(nhard2)/(NN*iters)
|
||||
fer1=float(nfe1)/iters
|
||||
fer2=float(nfe2)/iters
|
||||
write(*,1050) snrdb,nhard1,nhard2,ber1,ber2,fer1,fer2,fsigma
|
||||
write(14,1050) snrdb,nhard1,nhard2,ber1,ber2,fer1,fer2,fsigma
|
||||
1050 format(f6.1,2i5,2f8.4,2f7.3,f8.2,3i5)
|
||||
ber=float(nhard)/(NN*iters)
|
||||
fer=float(nfe2)/iters
|
||||
write(*,1050) snrdb,nhard,ber,fer,fsigma
|
||||
write(14,1050) snrdb,nhard,ber,fer,fsigma
|
||||
1050 format(f6.1,i5,f8.4,f7.3,f8.2)
|
||||
enddo
|
||||
|
||||
999 end program dbpsksim
|
||||
|
@ -1,100 +1,62 @@
|
||||
program fsk4sim
|
||||
|
||||
use wavhdr
|
||||
parameter (NR=4) !Ramp up, ramp down
|
||||
parameter (NS=12) !Sync symbols (2 @ Costas 4x4)
|
||||
parameter (ND=84) !Data symbols: LDPC (168,84), r=1/2
|
||||
parameter (NN=NR+NS+ND) !Total symbols (100)
|
||||
parameter (NSPS=2688) !Samples per symbol at 12000 sps
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform (268800)
|
||||
parameter (NSYNC=NS*NSPS) !Samples in sync waveform (32256)
|
||||
parameter (NFFT=512*1024)
|
||||
parameter (NDOWN=84) !Downsample factor
|
||||
parameter (NFFT2=NZ/NDOWN,NH2=NFFT2/2) !3200
|
||||
parameter (NSPSD=NFFT2/NN) !Samples per symbol after downsample
|
||||
parameter (ND=60) !Data symbols: LDPC (120,60), r=1/2
|
||||
parameter (NN=ND) !Total symbols (60)
|
||||
parameter (NSPS=57600) !Samples per symbol at 12000 sps
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform (3456000)
|
||||
|
||||
type(hdr) header !Header for .wav file
|
||||
character*8 arg
|
||||
complex c(0:NFFT-1) !Complex waveform
|
||||
complex cf(0:NFFT-1)
|
||||
complex cs(0:NSYNC-1)
|
||||
complex ct(0:NSPS-1)
|
||||
complex csync(0:NSYNC-1)
|
||||
complex c2(0:NFFT2-1)
|
||||
complex c2a(0:NSPSD-1)
|
||||
complex cf2(0:NFFT2-1)
|
||||
complex cx(0:3,NN)
|
||||
complex z,zpk
|
||||
logical snrtest
|
||||
real*8 twopi,dt,fs,baud,f0,dphi,phi
|
||||
complex c(0:NZ-1) !Complex waveform
|
||||
complex cr(0:NZ-1)
|
||||
complex cs(NSPS,NN)
|
||||
complex cps(0:3)
|
||||
complex ct(0:2*NN-1)
|
||||
complex z,w,zsum
|
||||
real r(0:NZ-1)
|
||||
real s(NSPS,NN)
|
||||
real savg(NSPS)
|
||||
real tmp(NN) !For generating random data
|
||||
real xnoise(0:NZ-1) !Generated random noise
|
||||
real s(NSYNC/2)
|
||||
real ps(0:3)
|
||||
! integer*2 iwave(NZ) !Generated waveform
|
||||
integer id(NN) !Encoded 2-bit data (values 0-3)
|
||||
integer id2(NN) !Decoded after downsampling
|
||||
integer icos4(4) !4x4 Costas array
|
||||
data icos4/0,1,3,2/,eps/1.e-8/
|
||||
integer id(NN) !Encoded 2-bit data (values 0-3)
|
||||
integer id2(NN) !Recovered data
|
||||
equivalence (r,cr)
|
||||
|
||||
nnn=0
|
||||
nargs=iargc()
|
||||
if(nargs.ne.4) then
|
||||
print*,'Usage: fsk8sim f0 fspread iters snr'
|
||||
if(nargs.ne.6) then
|
||||
print*,'Usage: fsk8sim f0 delay(ms) fspread(Hz) nts iters snr(dB)'
|
||||
go to 999
|
||||
endif
|
||||
call getarg(1,arg)
|
||||
read(arg,*) f0 !Low tone frequency
|
||||
call getarg(2,arg)
|
||||
read(arg,*) fspread
|
||||
read(arg,*) delay
|
||||
call getarg(3,arg)
|
||||
read(arg,*) iters
|
||||
read(arg,*) fspread
|
||||
call getarg(4,arg)
|
||||
read(arg,*) nts
|
||||
call getarg(5,arg)
|
||||
read(arg,*) iters
|
||||
call getarg(6,arg)
|
||||
read(arg,*) snrdb
|
||||
|
||||
snrtest=.false.
|
||||
if(iters.lt.0) then
|
||||
snrtest=.true.
|
||||
iters=abs(iters)
|
||||
endif
|
||||
|
||||
twopi=8.d0*atan(1.d0)
|
||||
fs=12000.d0
|
||||
dt=1.0/fs
|
||||
ts=NSPS*dt
|
||||
baud=1.d0/ts
|
||||
txt=NZ*dt
|
||||
|
||||
! Generate sync waveform
|
||||
phi=0.d0
|
||||
k=-1
|
||||
do j=1,12
|
||||
n=mod(j-1,4) + 1
|
||||
dphi=twopi*(icos4(n)*baud)*dt
|
||||
do i=1,NSPS
|
||||
k=k+1
|
||||
phi=phi+dphi
|
||||
if(phi.gt.twopi) phi=phi-twopi
|
||||
xphi=phi
|
||||
csync(k)=cmplx(cos(xphi),-sin(xphi))
|
||||
enddo
|
||||
enddo
|
||||
bandwidth_ratio=2500.0/6000.0
|
||||
header=default_header(12000,NZ)
|
||||
write(*,1000) baud,5*baud,txt,delay,fspread,nts
|
||||
1000 format('Baud:',f6.3,' BW:',f5.1,' TxT:',f5.1,' Delay:',f5.2, &
|
||||
' fSpread:',f5.2,' nts:',i3/)
|
||||
|
||||
write(*,1000) 2*ND,ND,NS,NN,NSPS,baud,txt,fspread
|
||||
1000 format('LDPC('i3,',',i2,') SyncSym:',i2,' ChanSym:',i3,' NSPS:',i4, &
|
||||
' Baud:',f6.3,' TxT:',f5.1,' fDop:',f5.2/)
|
||||
if(snrtest) then
|
||||
write(*,1002)
|
||||
1002 format(5x,'SNR test'/'Requested Measured Difference')
|
||||
else
|
||||
write(*,1004)
|
||||
1004 format(' SNR Sync Sym1 Sym2 Bits SyncErr Sym1Err BER'/ &
|
||||
60('-'))
|
||||
endif
|
||||
write(*,1004)
|
||||
1004 format(' SNR Sym Bit SER BER Sym Bit SER BER'/59('-'))
|
||||
|
||||
isna=-15
|
||||
isnb=-27
|
||||
isna=-25
|
||||
isnb=-40
|
||||
if(snrdb.ne.0.0) then
|
||||
isna=nint(snrdb)
|
||||
isnb=isna
|
||||
@ -103,204 +65,121 @@ program fsk4sim
|
||||
snrdb=isnr
|
||||
sig=sqrt(2*bandwidth_ratio) * 10.0**(0.05*snrdb)
|
||||
if(snrdb.gt.90.0) sig=1.0
|
||||
! open(10,file='000000_0001.wav',access='stream',status='unknown')
|
||||
|
||||
nsyncerr=0
|
||||
nharderr=0
|
||||
nherr=0
|
||||
nbiterr=0
|
||||
nhard1=0
|
||||
nhard2=0
|
||||
nbit1=0
|
||||
nbit2=0
|
||||
nh2=0
|
||||
nb2=0
|
||||
do iter=1,iters
|
||||
nnn=nnn+1
|
||||
id=0
|
||||
if(.not.snrtest) then
|
||||
! Generate random data
|
||||
call random_number(tmp)
|
||||
where(tmp.ge.0.25 .and. tmp.lt.0.50) id=1
|
||||
where(tmp.ge.0.50 .and. tmp.lt.0.75) id=2
|
||||
where(tmp.ge.0.75) id=3
|
||||
id(1:2)=icos4(3:4) !Ramp up
|
||||
id(45:48)=icos4 !Costas sync
|
||||
id(49:52)=icos4 !Costas sync
|
||||
id(53:56)=icos4 !Costas sync
|
||||
id(NN-1:NN)=icos4(1:2) !Ramp down
|
||||
endif
|
||||
call random_number(tmp)
|
||||
where(tmp.ge.0.25 .and. tmp.lt.0.50) id=1
|
||||
where(tmp.ge.0.50 .and. tmp.lt.0.75) id=2
|
||||
where(tmp.ge.0.75) id=3
|
||||
|
||||
call genfsk4(id,f0,c) !Generate the 4-FSK waveform
|
||||
call genfsk4(id,f0,nts,c) !Generate the 4-FSK waveform
|
||||
call watterson(c,delay,fspread)
|
||||
if(sig.ne.1.0) c=sig*c !Scale to requested SNR
|
||||
|
||||
if(snrdb.lt.90) then
|
||||
do i=0,NZ-1 !Generate gaussian noise
|
||||
xnoise(i)=gran()
|
||||
enddo
|
||||
endif
|
||||
if(fspread.gt.0.0) call dopspread(c,fspread)
|
||||
c(0:NZ-1)=real(c(0:NZ-1)) + xnoise !Add noise to signal
|
||||
|
||||
! fac=32767.0
|
||||
! rms=100.0
|
||||
! if(snrdb.ge.90.0) iwave(1:NZ)=nint(fac*aimag(c(0:NZ-1)))
|
||||
! if(snrdb.lt.90.0) iwave(1:NZ)=nint(rms*aimag(c(0:NZ-1)))
|
||||
! call set_wsjtx_wav_params(14.0,'JT65 ',1,30,iwave)
|
||||
! write(10) header,iwave !Save the .wav file
|
||||
|
||||
ppmax=0.
|
||||
fpk=-99.
|
||||
xdt=-99.
|
||||
df1=12000.0/NSYNC
|
||||
iaa=nint(250.0/df1)
|
||||
ibb=nint(2750.0/df1)
|
||||
if(.not.snrtest) then
|
||||
do j4=-40,40
|
||||
ia=(44+0.25*j4)*NSPS
|
||||
ib=ia+NSYNC-1
|
||||
cs=csync*c(ia:ib)
|
||||
call four2a(cs,NSYNC,1,-1,1) !Transform to frequency domain
|
||||
s=0.
|
||||
do i=iaa,ibb
|
||||
s(i)=1.e-6*(real(cs(i))**2 + aimag(cs(i))**2)
|
||||
enddo
|
||||
|
||||
if(j4.eq.0) then
|
||||
do i=iaa,ibb
|
||||
write(66,3301) i*df1,s(i)
|
||||
3301 format(f10.3,2f12.6)
|
||||
enddo
|
||||
endif
|
||||
|
||||
call smo121(s,NSYNC/2)
|
||||
|
||||
if(j4.eq.0) then
|
||||
do i=iaa,ibb
|
||||
write(67,3301) i*df1,s(i)
|
||||
enddo
|
||||
endif
|
||||
|
||||
do i=iaa,ibb
|
||||
if(s(i).gt.ppmax) then
|
||||
fpk=i*df1
|
||||
xdt=0.25*j4*ts
|
||||
ppmax=s(i)
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo
|
||||
endif
|
||||
if(xdt.ne.0.0 .or. fpk.ne.1500.0) nsyncerr=nsyncerr+1
|
||||
|
||||
! Compute spectrum again
|
||||
cf=c
|
||||
df2=12000.0/NZ
|
||||
call four2a(cf,NZ,1,-1,1) !Transform to frequency domain
|
||||
|
||||
if(snrtest) then
|
||||
width=5.0*df2 + fspread
|
||||
iz=nint(2500.0/df2) + 2
|
||||
if(iter.eq.1) then
|
||||
pnoise=0.
|
||||
psig=0.
|
||||
n=0
|
||||
endif
|
||||
do i=0,iz !Remove spectral sidelobes
|
||||
f=i*df2
|
||||
if(i.gt.NZ/2) f=(i-NZ)*df2
|
||||
p=1.e-6*(real(cf(i))**2 + aimag(cf(i))**2)
|
||||
if(abs(f-f0).lt.width) then
|
||||
psig=psig+p
|
||||
n=n+1
|
||||
else
|
||||
pnoise=pnoise + p
|
||||
endif
|
||||
enddo
|
||||
if(iter.eq.iters) then
|
||||
db=10.0*log10(psig/pnoise)
|
||||
write(*,1010) snrdb,db,db-snrdb
|
||||
1010 format(f7.1,2f9.1)
|
||||
endif
|
||||
go to 40
|
||||
endif
|
||||
|
||||
! Select a small frequency slice around fpk.
|
||||
cf=cf/NZ
|
||||
ib=nint(fpk/df2)+NH2
|
||||
ia=ib-NFFT2+1
|
||||
cf2=cshift(cf(ia:ib),NH2-1)
|
||||
flo=-baud
|
||||
fhi=4*baud
|
||||
do i=0,NFFT2-1
|
||||
f=i*df2
|
||||
if(i.gt.NH2) f=(i-NFFT2)*df2
|
||||
if(f.le.flo .or. f.ge.fhi) cf2(i)=0.
|
||||
s2=real(cf2(i))**2 + aimag(cf2(i))**2
|
||||
write(15,3001) f,s2,10*log10(s2+eps)
|
||||
3001 format(f10.3,2f15.6)
|
||||
enddo
|
||||
r(0:NZ-1)=real(c(0:NZ-1)) + xnoise !Add noise to signal
|
||||
|
||||
c2=cf2
|
||||
call four2a(c2,NFFT2,1,1,1) !Back to time domain
|
||||
call snr2_wsprlf(r,freq,snr2500,width,1)
|
||||
write(*,3001) freq,snr2500,width
|
||||
3001 format(40x,3f10.3)
|
||||
|
||||
df=12000.0/(2*NSPS)
|
||||
! i0=nint(f0/df)
|
||||
! i0=nint((1500.0+freq)/df)
|
||||
i0=nint((f0+freq)/df)
|
||||
call spec4(r,cs,s,savg)
|
||||
|
||||
fshift=NSPS*baud/NSPSD
|
||||
dt2=dt*NDOWN
|
||||
do j=1,NN
|
||||
ia=(j-1)*NSPSD
|
||||
ib=ia+NSPSD-1
|
||||
c2a=c2(ia:ib)
|
||||
call four2a(c2a,NSPSD,1,-1,1) !To freq domain
|
||||
cx(0:3,j)=c2a(0:3)
|
||||
ipk=-1
|
||||
zpk=0.
|
||||
pmax=0.0
|
||||
do i=0,3
|
||||
if(abs(cx(i,j)).gt.pmax) then
|
||||
ipk=i
|
||||
zpk=cx(i,j)
|
||||
pmax=abs(zpk)
|
||||
endif
|
||||
enddo
|
||||
id2(j)=ipk
|
||||
if(ipk.ne.id(j)) nherr=nherr+1
|
||||
write(16,3003) j,id(j),ipk,ipk-id(j),abs(zpk), &
|
||||
atan2(aimag(zpk),real(zpk)),abs(cx(0:3,j))
|
||||
3003 format(3i3,i4,6f9.3)
|
||||
enddo
|
||||
|
||||
ipk=0
|
||||
do j=1,NN
|
||||
ia=(j-1)*NSPS + 1
|
||||
ib=ia+NSPS
|
||||
pmax=0.
|
||||
do i=0,3
|
||||
f=fpk + i*baud
|
||||
call tweak1(c(ia:ib),NSPS,-f,ct)
|
||||
z=sum(ct)
|
||||
ps(i)=1.e-3*(real(z)**2 + aimag(z)**2)
|
||||
if(ps(i).gt.pmax) then
|
||||
ipk=i
|
||||
pmax=ps(i)
|
||||
endif
|
||||
enddo
|
||||
|
||||
nlo=0
|
||||
nhi=0
|
||||
ps=s(i0:i0+6*nts:2*nts,j)
|
||||
cps=cs(i0:i0+6*nts:2*nts,j)
|
||||
if(max(ps(1),ps(3)).ge.max(ps(0),ps(2))) nlo=1
|
||||
if(max(ps(2),ps(3)).ge.max(ps(0),ps(1))) nhi=1
|
||||
if(nlo.ne.iand(id(j),1)) nbiterr=nbiterr+1
|
||||
if(nhi.ne.iand(id(j)/2,1)) nbiterr=nbiterr+1
|
||||
if(ipk.ne.id(j)) nharderr=nharderr+1
|
||||
write(17,1040) j,ps,ipk,id(j),id2(j),2*nhi+nlo,nhi,nlo,nbiterr
|
||||
1040 format(i3,4f12.1,7i4)
|
||||
id2(j)=2*nhi+nlo
|
||||
z=cps(id2(j))
|
||||
ct(j-1)=z
|
||||
enddo
|
||||
nh1=count(id.ne.id2)
|
||||
nb1=count(iand(id,1).ne.iand(id2,1)) + count(iand(id,2).ne.iand(id2,2))
|
||||
|
||||
ct(NN:)=0.
|
||||
call four2a(ct,2*NN,1,-1,1)
|
||||
df2=baud/(2*NN)
|
||||
ct=cshift(ct,NN)
|
||||
ppmax=0.
|
||||
dfpk=0.
|
||||
do i=0,2*NN-1
|
||||
f=(i-NN)*df2
|
||||
pp=real(ct(i))**2 + aimag(ct(i))**2
|
||||
if(pp.gt.ppmax) then
|
||||
ppmax=pp
|
||||
dfpk=f
|
||||
endif
|
||||
enddo
|
||||
|
||||
zsum=0.
|
||||
do j=1,NN
|
||||
phi=(j-1)*twopi*dfpk*ts
|
||||
w=cmplx(cos(phi),sin(phi))
|
||||
cps=cs(i0:i0+6*nts:2*nts,j)*conjg(w)
|
||||
z=cps(id2(j))
|
||||
ct(j)=z
|
||||
zsum=zsum+z
|
||||
write(12,1042) j,id(j),id2(j),20*ps,atan2(aimag(z),real(z)), &
|
||||
atan2(aimag(zsum),real(zsum)),zsum
|
||||
1042 format(3i2,6f8.3,2f8.1)
|
||||
enddo
|
||||
|
||||
phi0=atan2(aimag(zsum),real(zsum))
|
||||
zsum=0.
|
||||
do j=1,NN
|
||||
phi=(j-1)*twopi*dfpk*ts + phi0
|
||||
w=cmplx(cos(phi),sin(phi))
|
||||
nlo=0
|
||||
nhi=0
|
||||
cps=cs(i0:i0+6*nts:2*nts,j)*conjg(w)
|
||||
ps=real(cps)
|
||||
if(max(ps(1),ps(3)).ge.max(ps(0),ps(2))) nlo=1
|
||||
if(max(ps(2),ps(3)).ge.max(ps(0),ps(1))) nhi=1
|
||||
id2(j)=2*nhi+nlo
|
||||
z=cps(id2(j))
|
||||
ct(j)=z
|
||||
zsum=zsum+z
|
||||
enddo
|
||||
|
||||
nh2=count(id.ne.id2)
|
||||
nb2=count(iand(id,1).ne.iand(id2,1)) + count(iand(id,2).ne.iand(id2,2))
|
||||
nhard1=nhard1+nh1
|
||||
nhard2=nhard2+nh2
|
||||
nbit1=nbit1+nb1
|
||||
nbit2=nbit2+nb2
|
||||
|
||||
fdiff=1500.0+freq - f0
|
||||
write(13,1040) snrdb,snr2500,f0,fdiff,width,nh1,nb1,nh2,nb2
|
||||
1040 format(2f7.1,f9.2,f7.2,f6.1,2(i8,i6))
|
||||
40 continue
|
||||
enddo
|
||||
|
||||
if(.not.snrtest) then
|
||||
fsyncerr=float(nsyncerr)/iters
|
||||
ser=float(nharderr)/(NN*iters)
|
||||
ber=float(nbiterr)/(2*NN*iters)
|
||||
write(*,1050) snrdb,nsyncerr,nharderr,nherr,nbiterr,fsyncerr,ser,ber
|
||||
write(18,1050) snrdb,nsyncerr,nharderr,nherr,nbiterr,fsyncerr,ser,ber
|
||||
1050 format(f6.1,4i6,3f10.6)
|
||||
endif
|
||||
ser1=float(nhard1)/(NN*iters)
|
||||
ser2=float(nhard2)/(NN*iters)
|
||||
ber1=float(nbit1)/(2*NN*iters)
|
||||
ber2=float(nbit2)/(2*NN*iters)
|
||||
write(*,1050) snrdb,nhard1,nbit1,ser1,ber1,nhard2,nbit2,ser2,ber2
|
||||
write(14,1050) snrdb,nhard1,nbit1,ser1,ber1,nhard2,nbit2,ser2,ber2
|
||||
1050 format(f6.1,2(2i5,2f8.4))
|
||||
enddo
|
||||
if(.not.snrtest) write(*,1060) iters,100*iters,100*iters,200*iters
|
||||
1060 format(60('-')/'Max: ',4i6)
|
||||
write(*,1060) NN*iters,2*NN*iters
|
||||
1060 format(59('-')/'Max: ',2i5)
|
||||
|
||||
999 end program fsk4sim
|
||||
|
@ -16,10 +16,12 @@ subroutine genbpsk(id,f00,ndiff,nref,c)
|
||||
dt=1.0/fs
|
||||
baud=1.d0/(NSPS*dt)
|
||||
|
||||
ie(1)=1 !First bit is always 1
|
||||
do i=2,NN !Differentially encode
|
||||
ie(i)=id(i)*ie(i-1)
|
||||
enddo
|
||||
if(ndiff.ne.0) then
|
||||
ie(1)=1 !First bit is always 1
|
||||
do i=2,NN !Differentially encode
|
||||
ie(i)=id(i)*ie(i-1)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Generate the BPSK waveform
|
||||
phi=0.d0
|
||||
|
@ -1,24 +1,16 @@
|
||||
subroutine genfsk4(id,f0,c)
|
||||
subroutine genfsk4(id,f00,nts,c)
|
||||
|
||||
parameter (NR=4) !Ramp up, ramp down
|
||||
parameter (NS=12) !Sync symbols (2 @ Costas 4x4)
|
||||
parameter (ND=84) !Data symbols: LDPC (168,84), r=1/2
|
||||
parameter (NN=NR+NS+ND) !Total symbols (100)
|
||||
parameter (NSPS=2688) !Samples per symbol at 12000 sps
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform (268800)
|
||||
parameter (NFFT=512*1024)
|
||||
parameter (NSYNC=NS*NSPS)
|
||||
parameter (NDOWN=168)
|
||||
parameter (NFFT2=NZ/NDOWN,NH2=NFFT2/2) !3200
|
||||
parameter (NSPSD=NFFT2/NN)
|
||||
parameter (ND=60) !Data symbols: LDPC (120,60), r=1/2
|
||||
parameter (NN=ND) !Total symbols (60)
|
||||
parameter (NSPS=57600) !Samples per symbol at 12000 sps
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform (3456000)
|
||||
parameter (NFFT=NZ) !Full length FFT
|
||||
|
||||
complex c(0:NFFT-1) !Complex waveform
|
||||
complex cf(0:NFFT-1)
|
||||
complex c(0:NFFT-1) !Complex waveform
|
||||
real*8 twopi,dt,fs,baud,f0,dphi,phi
|
||||
integer id(NN) !Encoded 2-bit data (values 0-3)
|
||||
integer icos4(4) !4x4 Costas array
|
||||
data icos4/0,1,3,2/
|
||||
integer id(NN) !Encoded 2-bit data (values 0-3)
|
||||
|
||||
f0=f00
|
||||
twopi=8.d0*atan(1.d0)
|
||||
fs=12000.d0
|
||||
dt=1.0/fs
|
||||
@ -30,7 +22,7 @@ subroutine genfsk4(id,f0,c)
|
||||
phi=0.d0
|
||||
k=-1
|
||||
do j=1,NN
|
||||
dphi=twopi*(f0 + id(j)*baud)*dt
|
||||
dphi=twopi*(f0 + nts*id(j)*baud)*dt
|
||||
do i=1,NSPS
|
||||
k=k+1
|
||||
phi=phi+dphi
|
||||
@ -40,24 +32,5 @@ subroutine genfsk4(id,f0,c)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
nh=NFFT/2
|
||||
df=12000.0/NFFT
|
||||
cf=c
|
||||
call four2a(cf,NFFT,1,-1,1) !Transform to frequency domain
|
||||
|
||||
if(sum(id).ne.0) then
|
||||
flo=f0-baud
|
||||
fhi=f0+4*baud
|
||||
do i=0,NFFT-1 !Remove spectral sidelobes
|
||||
f=i*df
|
||||
if(i.gt.nh) f=(i-nfft)*df
|
||||
if(f.le.flo .or. f.ge.fhi) cf(i)=0.
|
||||
enddo
|
||||
endif
|
||||
|
||||
c=cf
|
||||
call four2a(c,NFFT,1,1,1) !Transform back to time domain
|
||||
c=c/nfft
|
||||
|
||||
return
|
||||
end subroutine genfsk4
|
||||
|
129
lib/fsk4hf/genmskhf.f90
Normal file
129
lib/fsk4hf/genmskhf.f90
Normal file
@ -0,0 +1,129 @@
|
||||
subroutine genmskhf(msgbits,id,icw,cbb,csync)
|
||||
|
||||
!Encode an MSK-HF message, produce baseband waveform and sync vector.
|
||||
|
||||
parameter (KK=84) !Information bits (72 + CRC12)
|
||||
parameter (ND=168) !Data symbols: LDPC (168,84), r=1/2
|
||||
parameter (NS=65) !Sync symbols (2 x 26 + Barker 13)
|
||||
parameter (NR=3) !Ramp up/down
|
||||
parameter (NN=NR+NS+ND) !Total symbols (236)
|
||||
parameter (NSPS=16) !Samples per MSK symbol (16)
|
||||
parameter (N2=2*NSPS) !Samples per OQPSK symbol (32)
|
||||
parameter (NZ=NSPS*NN) !Samples in baseband waveform (3760)
|
||||
|
||||
complex cbb(0:NZ-1)
|
||||
complex csync(0:NZ-1)
|
||||
real x(0:NZ-1)
|
||||
real y(0:NZ-1)
|
||||
real pp(N2)
|
||||
logical first
|
||||
integer*1 msgbits(KK),codeword(ND)
|
||||
integer icw(ND)
|
||||
integer id(NS+ND)
|
||||
integer isync(26) !Long sync vector
|
||||
integer ib13(13) !Barker 13 code
|
||||
data ib13/1,1,1,1,1,-1,-1,1,1,-1,1,-1,1/
|
||||
data first/.true./
|
||||
save first,isync,twopi,pp
|
||||
|
||||
if(first) then
|
||||
n=z'2c1aeb1'
|
||||
do i=1,26
|
||||
isync(i)=-1
|
||||
if(iand(n,1).eq.1) isync(i)=1
|
||||
n=n/2
|
||||
enddo
|
||||
|
||||
twopi=8.0*atan(1.0)
|
||||
do i=1,N2 !Half-sine shaped pulse
|
||||
pp(i)=sin(0.5*(i-1)*twopi/N2)
|
||||
enddo
|
||||
first=.false.
|
||||
endif
|
||||
|
||||
call random_number(x)
|
||||
codeword=0
|
||||
where(x(1:ND).ge.0.5) codeword=1
|
||||
call encode168(msgbits,codeword) !Encode the test message
|
||||
icw=2*codeword - 1
|
||||
|
||||
! Message structure: R1 26*(S1+D1) S13 26*(D1+S1) R1
|
||||
! Generate QPSK without any offset; then shift the y array to get OQPSK.
|
||||
|
||||
! Do the I channel first: results in array x
|
||||
n=0
|
||||
k=0
|
||||
ia=0
|
||||
ib=NSPS-1
|
||||
x(ia:ib)=0. !Ramp up (half-symbol; shape TBD)
|
||||
do j=1,26 !Insert group of 26*(S1+D1)
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
n=n+1
|
||||
id(n)=2*isync(j)
|
||||
x(ia:ib)=isync(j)*pp !Insert Sync bit
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
k=k+1
|
||||
n=n+1
|
||||
id(n)=icw(k)
|
||||
x(ia:ib)=id(n)*pp !Insert data bit
|
||||
enddo
|
||||
|
||||
do j=1,13 !Insert Barker 13 code
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
n=n+1
|
||||
id(n)=2*ib13(j)
|
||||
x(ia:ib)=ib13(j)*pp
|
||||
enddo
|
||||
|
||||
do j=1,26 !Insert group of 26*(S1+D1)
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
k=k+1
|
||||
n=n+1
|
||||
id(n)=icw(k)
|
||||
x(ia:ib)=id(n)*pp !Insert data bit
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
n=n+1
|
||||
id(n)=2*isync(j)
|
||||
x(ia:ib)=isync(j)*pp !Insert Sync bit
|
||||
enddo
|
||||
ia=ib+1
|
||||
ib=ia+NSPS-1
|
||||
x(ia:ib)=0. !Ramp down (half-symbol; shape TBD)
|
||||
|
||||
! Now do the Q channel: results in array y
|
||||
ia=0
|
||||
ib=NSPS-1
|
||||
y(ia:ib)=0. !Ramp up (half-symbol; shape TBD)
|
||||
do j=1,116
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
k=k+1
|
||||
n=n+1
|
||||
id(n)=icw(k)
|
||||
y(ia:ib)=id(n)*pp
|
||||
enddo
|
||||
ia=ib+1
|
||||
ib=ia+NSPS-1
|
||||
y(ia:ib)=0. !Ramp down (half-symbol; shape TBD)
|
||||
y=cshift(y,-NSPS) !Shift Q array to get OQPSK
|
||||
cbb=cmplx(x,y) !Complex baseband waveform
|
||||
|
||||
ib=NSPS-1
|
||||
ib2=NSPS-1+64*N2
|
||||
do j=1,26 !Zero all data symbols in x
|
||||
ia=ib+1+N2
|
||||
ib=ia+N2-1
|
||||
x(ia:ib)=0.
|
||||
ia2=ib2+1+N2
|
||||
ib2=ia2+N2-1
|
||||
x(ia2:ib2)=0.
|
||||
enddo
|
||||
csync=x
|
||||
|
||||
return
|
||||
end subroutine genmskhf
|
347
lib/fsk4hf/mskhfsim.f90
Normal file
347
lib/fsk4hf/mskhfsim.f90
Normal file
@ -0,0 +1,347 @@
|
||||
program msksim
|
||||
|
||||
! Simulate characteristics of a potential "MSK10" mode using LDPC (168,84)
|
||||
! code, OQPDK modulation, and 30 s T/R sequences.
|
||||
|
||||
! Reception and Demodulation algorithm:
|
||||
! 1. Compute coarse spectrum; find fc1 = approx carrier freq
|
||||
! 2. Mix from fc1 to 0; LPF at +/- 0.75*R
|
||||
! 3. Square, FFT; find peaks near -R/2 and +R/2 to get fc2
|
||||
! 4. Mix from fc2 to 0
|
||||
! 5. Fit cb13 (central part of csync) to c -> lag, phase
|
||||
! 6. Fit complex ploynomial for channel equalization
|
||||
! 7. Get soft bits from equalized data
|
||||
|
||||
parameter (KK=84) !Information bits (72 + CRC12)
|
||||
parameter (ND=168) !Data symbols: LDPC (168,84), r=1/2
|
||||
parameter (NS=65) !Sync symbols (2 x 26 + Barker 13)
|
||||
parameter (NR=3) !Ramp up/down
|
||||
parameter (NN=NR+NS+ND) !Total symbols (236)
|
||||
parameter (NSPS=16) !Samples per MSK symbol (16)
|
||||
parameter (N2=2*NSPS) !Samples per OQPSK symbol (32)
|
||||
parameter (N13=13*N2) !Samples in central sync vector (416)
|
||||
parameter (NZ=NSPS*NN) !Samples in baseband waveform (3760)
|
||||
parameter (NFFT1=4*NSPS,NH1=NFFT1/2)
|
||||
|
||||
character*8 arg
|
||||
complex cbb(0:NZ-1) !Complex baseband waveform
|
||||
complex csync(0:NZ-1) !Sync symbols only, from cbb
|
||||
complex cb13(0:N13-1) !Barker 13 waveform
|
||||
complex c(0:NZ-1) !Complex waveform
|
||||
complex cs(0:NZ-1) !For computing spectrum
|
||||
complex c2(0:NFFT1-1) !Short spectra
|
||||
complex zz(NS+ND) !Complex symbol values (intermediate)
|
||||
complex z,z0
|
||||
real s(-NH1+1:NH1) !Coarse spectrum
|
||||
real xnoise(0:NZ-1) !Generated random noise
|
||||
real ynoise(0:NZ-1) !Generated random noise
|
||||
real x(NS),yi(NS),yq(NS) !For complex polyfit
|
||||
real rxdata(ND),llr(ND) !Soft symbols
|
||||
real pp(2*NSPS) !Shaped pulse for OQPSK
|
||||
real a(5) !For twkfreq1
|
||||
real aa(20),bb(20) !Fitted polyco's
|
||||
integer id(NS+ND) !NRZ values (+/-1) for Sync and Data
|
||||
integer icw(NN)
|
||||
integer*1 msgbits(KK),decoded(KK),apmask(ND),cw(ND)
|
||||
! integer*1 codeword(ND)
|
||||
data msgbits/0,0,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1, &
|
||||
1,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,1, &
|
||||
1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0/
|
||||
|
||||
nargs=iargc()
|
||||
if(nargs.ne.6) then
|
||||
print*,'Usage: msksim f0(Hz) delay(ms) fspread(Hz) maxn iters snr(dB)'
|
||||
print*,'Example: msksim 20 0 0 5 10 -20'
|
||||
print*,'Set snr=0 to cycle through a range'
|
||||
go to 999
|
||||
endif
|
||||
call getarg(1,arg)
|
||||
read(arg,*) f0 !Generated carrier frequency
|
||||
call getarg(2,arg)
|
||||
read(arg,*) delay !Delta_t (ms) for Watterson model
|
||||
call getarg(3,arg)
|
||||
read(arg,*) fspread !Fspread (Hz) for Watterson model
|
||||
call getarg(4,arg)
|
||||
read(arg,*) maxn !Max nterms for polyfit
|
||||
call getarg(5,arg)
|
||||
read(arg,*) iters !Iterations at each SNR
|
||||
call getarg(6,arg)
|
||||
read(arg,*) snrdb !Specified SNR_2500
|
||||
|
||||
twopi=8.0*atan(1.0)
|
||||
fs=12000.0/72.0 !Sample rate = 166.6666667 Hz
|
||||
dt=1.0/fs !Sample interval (s)
|
||||
tt=NSPS*dt !Duration of "itone" symbols (s)
|
||||
ts=2*NSPS*dt !Duration of OQPSK symbols (s)
|
||||
baud=1.0/tt !Keying rate for "itone" symbols (baud)
|
||||
txt=NZ*dt !Transmission length (s)
|
||||
bandwidth_ratio=2500.0/(fs/2.0)
|
||||
write(*,1000) f0,delay,fspread,maxn,iters,baud,1.5*baud,txt
|
||||
1000 format('f0:',f5.1,' Delay:',f4.1,' fSpread:',f5.2,' maxn:',i3, &
|
||||
' Iters:',i6/'Baud:',f7.3,' BW:',f5.1,' TxT:',f5.1,f5.2/)
|
||||
write(*,1004)
|
||||
1004 format(/' SNR err ber fer fsigma'/37('-'))
|
||||
|
||||
do i=1,N2 !Half-sine pulse shape
|
||||
pp(i)=sin(0.5*(i-1)*twopi/(2*NSPS))
|
||||
enddo
|
||||
|
||||
call genmskhf(msgbits,id,icw,cbb,csync) !Generate baseband waveform and csync
|
||||
cb13=csync(1680:2095) !Copy the Barker 13 waveform
|
||||
|
||||
a=0.
|
||||
a(1)=f0
|
||||
call twkfreq1(cbb,NZ,fs,a,cbb) !Mix to specified frequency
|
||||
|
||||
isna=-10
|
||||
isnb=-30
|
||||
if(snrdb.ne.0.0) then
|
||||
isna=nint(snrdb)
|
||||
isnb=isna
|
||||
endif
|
||||
do isnr=isna,isnb,-1 !Loop over SNR range
|
||||
snrdb=isnr
|
||||
sig=sqrt(bandwidth_ratio) * 10.0**(0.05*snrdb)
|
||||
if(snrdb.gt.90.0) sig=1.0
|
||||
nhard=0
|
||||
nhardsync=0
|
||||
nfe=0
|
||||
sqf=0.
|
||||
do iter=1,iters !Loop over requested iterations
|
||||
nhard0=0
|
||||
nhardsync0=0
|
||||
c=cbb
|
||||
if(delay.ne.0.0 .or. fspread.ne.0.0) call watterson(c,fs,delay,fspread)
|
||||
c=sig*c !Scale to requested SNR
|
||||
if(snrdb.lt.90) then
|
||||
do i=0,NZ-1 !Generate gaussian noise
|
||||
xnoise(i)=gran()
|
||||
ynoise(i)=gran()
|
||||
enddo
|
||||
c=c + cmplx(xnoise,ynoise) !Add AWGN noise
|
||||
endif
|
||||
|
||||
!----------------------------------------------------------------- fc1
|
||||
! First attempt at finding carrier frequency, fc1: low-resolution power spectra
|
||||
nspec=NZ/NFFT1
|
||||
df1=fs/NFFT1
|
||||
s=0.
|
||||
do k=1,nspec
|
||||
ia=(k-1)*N2
|
||||
ib=ia+N2-1
|
||||
c2(0:N2-1)=c(ia:ib)
|
||||
c2(N2:)=0.
|
||||
call four2a(c2,NFFT1,1,-1,1)
|
||||
do i=0,NFFT1-1
|
||||
j=i
|
||||
if(j.gt.NH1) j=j-NFFT1
|
||||
s(j)=s(j) + real(c2(i))**2 + aimag(c2(i))**2
|
||||
enddo
|
||||
enddo
|
||||
! call smo121(s,NFFT1)
|
||||
smax=0.
|
||||
ipk=0
|
||||
fc1=0.
|
||||
ia=nint(40.0/df1)
|
||||
do i=-ia,ia
|
||||
f=i*df1
|
||||
if(s(i).gt.smax) then
|
||||
smax=s(i)
|
||||
ipk=i
|
||||
fc1=f
|
||||
endif
|
||||
! write(51,3001) f,s(i),db(s(i))
|
||||
! 3001 format(f10.3,e12.3,f10.3)
|
||||
enddo
|
||||
|
||||
! The following is for testing SNR calibration:
|
||||
! sp3n=(s(ipk-1)+s(ipk)+s(ipk+1)) !Sig + 3*noise
|
||||
! base=(sum(s)-sp3n)/(NFFT1-3.0) !Noise per bin
|
||||
! psig=sp3n-3*base !Sig only
|
||||
! pnoise=(2500.0/df1)*base !Noise in 2500 Hz
|
||||
! xsnrdb=db(psig/pnoise)
|
||||
|
||||
a(1)=-fc1
|
||||
a(2:5)=0.
|
||||
call twkfreq1(c,NZ,fs,a,cs) !Mix down by fc1
|
||||
|
||||
!----------------------------------------------------------------- fc2
|
||||
! Filter, square, then FFT to get refined carrier frequency fc2.
|
||||
call four2a(cs,NZ,1,-1,1) !To freq domain
|
||||
df=fs/NZ
|
||||
ia=nint(0.75*baud/df)
|
||||
cs(ia:NZ-1-ia)=0. !Save only freqs around fc1
|
||||
call four2a(cs,NZ,1,1,1) !Back to time domain
|
||||
cs=cs/NZ
|
||||
cs=cs*cs !Square the data
|
||||
call four2a(cs,NZ,1,-1,1) !Compute squared spectrum
|
||||
|
||||
! Find two peaks separated by baud
|
||||
pmax=0.
|
||||
fc2=0.
|
||||
ic=nint(baud/df)
|
||||
ja=nint(0.5*baud/df)
|
||||
do j=-ja,ja
|
||||
f2=j*df
|
||||
ia=nint((f2-0.5*baud)/df)
|
||||
if(ia.lt.0) ia=ia+NZ
|
||||
ib=nint((f2+0.5*baud)/df)
|
||||
p=real(cs(ia))**2 + aimag(cs(ia))**2 + &
|
||||
real(cs(ib))**2 + aimag(cs(ib))**2
|
||||
if(p.gt.pmax) then
|
||||
pmax=p
|
||||
fc2=0.5*f2
|
||||
endif
|
||||
! write(52,1200) f2,p,db(p)
|
||||
!1200 format(f10.3,2f15.3)
|
||||
enddo
|
||||
sqf=sqf + (fc1+fc2-f0)**2
|
||||
a(1)=-(fc1+fc2)
|
||||
a(2:5)=0.
|
||||
call twkfreq1(c,NZ,fs,a,c) !Mix c down by fc1+fc2
|
||||
|
||||
! z=sum(c(1680:2095)*cb13)/208.0 !Get phase from Barker 13 vector
|
||||
! z0=z/abs(z)
|
||||
! c=c*conjg(z0)
|
||||
|
||||
!---------------------------------------------------------------- DT
|
||||
amax=0.
|
||||
jpk=0
|
||||
do j=-20*NSPS,20*NSPS !Get jpk
|
||||
z=sum(c(1680+j:2095+j)*cb13)/208.0
|
||||
if(abs(z).gt.amax) then
|
||||
amax=abs(z)
|
||||
jpk=j
|
||||
endif
|
||||
! write(53,1220) j,j*dt,z
|
||||
!1220 format(i6,3f10.4)
|
||||
enddo
|
||||
xdt=jpk/fs
|
||||
|
||||
!------------------------------------------------------------------ cpolyfit
|
||||
ib=NSPS-1
|
||||
ib2=N2-1
|
||||
n=0
|
||||
do j=1,117 !First-pass demodulation
|
||||
ia=ib+1
|
||||
ib=ia+N2-1
|
||||
zz(j)=sum(pp*c(ia:ib))/NSPS
|
||||
if(abs(id(j)).eq.2) then !Save all sync symbols
|
||||
n=n+1
|
||||
x(n)=float(ia+ib)/NZ - 1.0
|
||||
yi(n)=real(zz(j))*0.5*id(j)
|
||||
yq(n)=aimag(zz(j))*0.5*id(j)
|
||||
! write(54,1225) n,x(n),yi(n),yq(n)
|
||||
!1225 format(i5,3f12.4)
|
||||
endif
|
||||
if(j.le.116) then
|
||||
zz(j+117)=sum(pp*c(ia+NSPS:ib+NSPS))/NSPS
|
||||
endif
|
||||
enddo
|
||||
|
||||
aa=0.
|
||||
bb=0.
|
||||
nterms=0
|
||||
if(maxn.gt.0) then
|
||||
! Fit sync info with a complex polynomial
|
||||
npts=n
|
||||
mode=0
|
||||
chisqa0=1.e30
|
||||
chisqb0=1.e30
|
||||
do nterms=1,maxn
|
||||
call polyfit4(x,yi,yi,npts,nterms,mode,aa,chisqa)
|
||||
call polyfit4(x,yq,yq,npts,nterms,mode,bb,chisqb)
|
||||
if(chisqa/chisqa0.ge.0.98 .and. chisqb/chisqb0.ge.0.98) exit
|
||||
chisqa0=chisqa
|
||||
chisqb0=chisqb
|
||||
enddo
|
||||
endif
|
||||
|
||||
!-------------------------------------------------------------- Soft Symbols
|
||||
n=0
|
||||
do j=1,117
|
||||
xx=j*2.0/117.0 - 1.0
|
||||
yii=1.
|
||||
yqq=0.
|
||||
if(nterms.gt.0) then
|
||||
yii=aa(1)
|
||||
yqq=bb(1)
|
||||
do i=2,nterms
|
||||
yii=yii + aa(i)*xx**(i-1)
|
||||
yqq=yqq + bb(i)*xx**(i-1)
|
||||
enddo
|
||||
endif
|
||||
z0=cmplx(yii,yqq)
|
||||
z=zz(j)*conjg(z0)
|
||||
if(abs(id(j)).eq.2) then
|
||||
if(real(z)*id(j).lt.0) then
|
||||
nhardsync=nhardsync+1
|
||||
nhardsync0=nhardsync0+1
|
||||
endif
|
||||
! write(55,2002) j,id(j)/2,xx,z*id(j)/2 !Sync bit
|
||||
!2002 format(2i5,3f10.3)
|
||||
else
|
||||
p=real(z) !Data bit
|
||||
n=n+1
|
||||
rxdata(n)=p
|
||||
ierr=0
|
||||
if(id(j)*p.lt.0) ierr=1
|
||||
nhard0=nhard0+ierr
|
||||
nhard=nhard+ierr
|
||||
! write(56,2003) j,id(j),n,ierr,nhard,xx,p*id(j),z
|
||||
!2003 format(5i6,4f10.3)
|
||||
endif
|
||||
enddo
|
||||
|
||||
do j=118,233
|
||||
xx=(j-116.5)*2.0/117.0 - 1.0
|
||||
yii=1.
|
||||
yqq=0.
|
||||
if(nterms.gt.0) then
|
||||
yii=aa(1)
|
||||
yqq=bb(1)
|
||||
do i=2,nterms
|
||||
yii=yii + aa(i)*xx**(i-1)
|
||||
yqq=yqq + bb(i)*xx**(i-1)
|
||||
enddo
|
||||
endif
|
||||
z0=cmplx(yii,yqq)
|
||||
z=zz(j)*conjg(z0)
|
||||
p=aimag(z)
|
||||
n=n+1
|
||||
rxdata(n)=p
|
||||
ierr=0
|
||||
if(id(j)*p.lt.0) ierr=1
|
||||
nhard=nhard+ierr
|
||||
enddo
|
||||
|
||||
rxav=sum(rxdata)/ND
|
||||
rx2av=sum(rxdata*rxdata)/ND
|
||||
rxsig=sqrt(rx2av-rxav*rxav)
|
||||
rxdata=rxdata/rxsig
|
||||
ss=0.84
|
||||
llr=2.0*rxdata/(ss*ss)
|
||||
apmask=0
|
||||
max_iterations=40
|
||||
call bpdecode168(llr,apmask,max_iterations,decoded,niterations,cw)
|
||||
nbadcrc=0
|
||||
ifer=0
|
||||
if(niterations.ge.0) call chkcrc12(decoded,nbadcrc)
|
||||
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0 .or. &
|
||||
nbadcrc.ne.0) ifer=1
|
||||
nfe=nfe+ifer
|
||||
write(58,1045) snrdb,nhard0,nhardsync0,niterations,nbadcrc,ifer, &
|
||||
nterms,fc1+fc2-f0,xdt
|
||||
if(ifer.eq.1) write(59,1045) snrdb,nhard0,nhardsync0,niterations, &
|
||||
nbadcrc,ifer,nterms,fc1+fc2-f0,xdt
|
||||
1045 format(f6.1,6i5,2f8.3)
|
||||
enddo
|
||||
fsigma=sqrt(sqf/iters)
|
||||
ber=float(nhard)/((NS+ND)*iters)
|
||||
fer=float(nfe)/iters
|
||||
write(*,1050) snrdb,nhard,ber,fer,fsigma
|
||||
write(60,1050) snrdb,nhard,ber,fer,fsigma
|
||||
1050 format(f6.1,i7,f8.4,f7.3,f8.2)
|
||||
enddo
|
||||
|
||||
999 end program msksim
|
109
lib/fsk4hf/polyfit4.f90
Normal file
109
lib/fsk4hf/polyfit4.f90
Normal file
@ -0,0 +1,109 @@
|
||||
subroutine polyfit4(x,y,sigmay,npts,nterms,mode,a,chisqr)
|
||||
|
||||
parameter (MAXN=20)
|
||||
implicit real*8 (a-h,o-z)
|
||||
real x(npts), y(npts), sigmay(npts), a(nterms),chisqr
|
||||
real*8 sumx(2*MAXN-1), sumy(MAXN), array(MAXN,MAXN)
|
||||
|
||||
! Accumulate weighted sums
|
||||
nmax = 2*nterms-1
|
||||
sumx=0.
|
||||
sumy=0.
|
||||
chisq=0.
|
||||
do i=1,npts
|
||||
xi=x(i)
|
||||
yi=y(i)
|
||||
if(mode.lt.0) then
|
||||
weight=1./abs(yi)
|
||||
else if(mode.eq.0) then
|
||||
weight=1
|
||||
else
|
||||
weight=1./sigmay(i)**2
|
||||
end if
|
||||
xterm=weight
|
||||
do n=1,nmax
|
||||
sumx(n)=sumx(n)+xterm
|
||||
xterm=xterm*xi
|
||||
enddo
|
||||
yterm=weight*yi
|
||||
do n=1,nterms
|
||||
sumy(n)=sumy(n)+yterm
|
||||
yterm=yterm*xi
|
||||
enddo
|
||||
chisq=chisq+weight*yi**2
|
||||
enddo
|
||||
|
||||
! Construct matrices and calculate coefficients
|
||||
do j=1,nterms
|
||||
do k=1,nterms
|
||||
n=j+k-1
|
||||
array(j,k)=sumx(n)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
delta=determ4(array,nterms)
|
||||
if(delta.eq.0) then
|
||||
chisqr=0.
|
||||
a=0.
|
||||
else
|
||||
do l=1,nterms
|
||||
do j=1,nterms
|
||||
do k=1,nterms
|
||||
n=j+k-1
|
||||
array(j,k)=sumx(n)
|
||||
enddo
|
||||
array(j,l)=sumy(j)
|
||||
enddo
|
||||
a(l)=determ4(array,nterms)/delta
|
||||
enddo
|
||||
|
||||
! Calculate chi square
|
||||
|
||||
do j=1,nterms
|
||||
chisq=chisq-2*a(j)*sumy(j)
|
||||
do k=1,nterms
|
||||
n=j+k-1
|
||||
chisq=chisq+a(j)*a(k)*sumx(n)
|
||||
enddo
|
||||
enddo
|
||||
free=npts-nterms
|
||||
chisqr=chisq/free
|
||||
end if
|
||||
|
||||
return
|
||||
end subroutine polyfit4
|
||||
|
||||
real*8 function determ4(array,norder)
|
||||
|
||||
parameter (MAXN=20)
|
||||
implicit real*8 (a-h,o-z)
|
||||
real*8 array(MAXN,MAXN)
|
||||
|
||||
determ4=1.
|
||||
do k=1,norder
|
||||
if (array(k,k).ne.0) go to 41
|
||||
do j=k,norder
|
||||
if(array(k,j).ne.0) go to 31
|
||||
enddo
|
||||
determ4=0.
|
||||
go to 60
|
||||
|
||||
31 do i=k,norder
|
||||
s8=array(i,j)
|
||||
array(i,j)=array(i,k)
|
||||
array(i,k)=s8
|
||||
enddo
|
||||
determ4=-1.*determ4
|
||||
41 determ4=determ4*array(k,k)
|
||||
if(k.lt.norder) then
|
||||
k1=k+1
|
||||
do i=k1,norder
|
||||
do j=k1,norder
|
||||
array(i,j)=array(i,j)-array(i,k)*array(k,j)/array(k,k)
|
||||
enddo
|
||||
enddo
|
||||
end if
|
||||
enddo
|
||||
|
||||
60 return
|
||||
end function determ4
|
26
lib/fsk4hf/twkfreq1.f90
Normal file
26
lib/fsk4hf/twkfreq1.f90
Normal file
@ -0,0 +1,26 @@
|
||||
subroutine twkfreq1(ca,npts,fsample,a,cb)
|
||||
|
||||
complex ca(npts)
|
||||
complex cb(npts)
|
||||
complex w,wstep
|
||||
real a(5)
|
||||
data twopi/6.283185307/
|
||||
|
||||
! Mix the complex signal
|
||||
w=1.0
|
||||
wstep=1.0
|
||||
x0=0.5*(npts+1)
|
||||
s=2.0/npts
|
||||
do i=1,npts
|
||||
x=s*(i-x0)
|
||||
p2=1.5*x*x - 0.5
|
||||
p3=2.5*(x**3) - 1.5*x
|
||||
p4=4.375*(x**4) - 3.75*(x**2) + 0.375
|
||||
dphi=(a(1) + x*a(2) + p2*a(3) + p3*a(4) + p4*a(5)) * (twopi/fsample)
|
||||
wstep=cmplx(cos(dphi),sin(dphi))
|
||||
w=w*wstep
|
||||
cb(i)=w*ca(i)
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine twkfreq1
|
@ -1,39 +1,41 @@
|
||||
subroutine watterson(c,delay,fspread)
|
||||
subroutine watterson(c,fs,delay,fspread)
|
||||
|
||||
parameter (NZ=3456000)
|
||||
parameter (NZ=3840)
|
||||
complex c(0:NZ-1)
|
||||
complex c2(0:NZ-1)
|
||||
complex cs1(0:NZ-1)
|
||||
complex cs2(0:NZ-1)
|
||||
|
||||
df=12000.0/NZ
|
||||
nonzero=0
|
||||
df=fs/NZ
|
||||
if(fspread.gt.0.0) then
|
||||
do i=0,NZ-1
|
||||
xx=gran()
|
||||
yy=gran()
|
||||
cs1(i)=cmplx(xx,yy)
|
||||
cs1(i)=0.707*cmplx(xx,yy)
|
||||
xx=gran()
|
||||
yy=gran()
|
||||
cs2(i)=cmplx(xx,yy)
|
||||
cs2(i)=0.707*cmplx(xx,yy)
|
||||
enddo
|
||||
call four2a(cs1,NZ,1,-1,1) !To freq domain
|
||||
call four2a(cs2,NZ,1,-1,1)
|
||||
do i=0,NZ-1
|
||||
f=i*df
|
||||
if(i.gt.NZ/2) f=(i-NZ)*df
|
||||
x=(f/fspread)**2
|
||||
x=(f/(0.5*fspread))**2
|
||||
a=0.
|
||||
if(x.le.50.0) then
|
||||
a=exp(-x)
|
||||
endif
|
||||
cs1(i)=a*cs1(i)
|
||||
cs2(i)=a*cs2(i)
|
||||
! if(abs(f).lt.10.0) then
|
||||
! p1=real(cs1(i))**2 + aimag(cs1(i))**2
|
||||
! p2=real(cs2(i))**2 + aimag(cs2(i))**2
|
||||
! write(62,3101) f,db(p1+1.e-12)-60,db(p2+1.e-12)-60
|
||||
!3101 format(3f10.3)
|
||||
! endif
|
||||
if(abs(f).lt.10.0) then
|
||||
p1=real(cs1(i))**2 + aimag(cs1(i))**2
|
||||
p2=real(cs2(i))**2 + aimag(cs2(i))**2
|
||||
if(p1.gt.0.0) nonzero=nonzero+1
|
||||
! write(62,3101) f,p1,p2,db(p1+1.e-12)-60,db(p2+1.e-12)-60
|
||||
!3101 format(f10.3,2f12.3,2f10.3)
|
||||
endif
|
||||
enddo
|
||||
call four2a(cs1,NZ,1,1,1) !Back to time domain
|
||||
call four2a(cs2,NZ,1,1,1)
|
||||
@ -43,11 +45,13 @@ subroutine watterson(c,delay,fspread)
|
||||
|
||||
nshift=0.001*delay*12000.0
|
||||
c2=cshift(c,nshift)
|
||||
|
||||
sq=0.
|
||||
do i=0,NZ-1
|
||||
if(fspread.eq.0.0) c(i)=0.5*(c(i) + c2(i))
|
||||
if(fspread.gt.0.0) c(i)=0.5*(cs1(i)*c(i) + cs2(i)*c2(i))
|
||||
if(nonzero.gt.1) then
|
||||
c(i)=0.5*(cs1(i)*c(i) + cs2(i)*c2(i))
|
||||
else
|
||||
c(i)=0.5*(c(i) + c2(i))
|
||||
endif
|
||||
sq=sq + real(c(i))**2 + aimag(c(i))**2
|
||||
! write(61,3001) i/12000.0,c(i)
|
||||
!3001 format(3f12.6)
|
||||
|
@ -1,41 +1,45 @@
|
||||
program wsprlf
|
||||
|
||||
parameter (NN=121) !Total symbols
|
||||
! parameter (NSPS=28672) !Samples per symbol
|
||||
parameter (NSPS=28800) !Samples per symbol
|
||||
parameter (NSPS=28800) !Samples per symbol @ fs=12000 Hz
|
||||
parameter (NZ=NSPS*NN) !Samples in waveform
|
||||
parameter (NFFT=11*NSPS)
|
||||
|
||||
|
||||
character*8 arg
|
||||
complex c(0:NZ-1)
|
||||
complex ct(0:NFFT-1)
|
||||
real*8 twopi,f0,dt,phi,dphi
|
||||
real s(0:NZ-1)
|
||||
real h0(0:NSPS/2)
|
||||
real h1(0:NSPS/2)
|
||||
real p(0:NFFT-1)
|
||||
real*8 twopi,fs,f0,dt,phi,dphi
|
||||
real x(0:NZ-1)
|
||||
real p(0:NZ/2)
|
||||
real h0(0:NSPS/2) !Pulse shape, rising edge
|
||||
real h1(0:NSPS/2) !Pulse shape, trailing edge
|
||||
real tmp(NN)
|
||||
integer id(NN)
|
||||
integer id(NN) !Generated data
|
||||
integer ie(NN) !Differentially encoded data
|
||||
data fs/12000.d0/
|
||||
|
||||
nargs=iargc()
|
||||
if(nargs.ne.2) then
|
||||
print*,'Usage: wsprlf f0 t1'
|
||||
if(nargs.ne.3) then
|
||||
print*,'Usage: wsprlf f0 t1 snr'
|
||||
goto 999
|
||||
endif
|
||||
call getarg(1,arg)
|
||||
read(arg,*) f0
|
||||
call getarg(2,arg)
|
||||
read(arg,*) t1
|
||||
call getarg(3,arg)
|
||||
read(arg,*) snrdb
|
||||
|
||||
call random_number(tmp) !Generate random data
|
||||
id=0
|
||||
where(tmp.ge.0.5) id=1
|
||||
id(1)=0
|
||||
call random_number(tmp) !Generate random bipolar data
|
||||
id=1
|
||||
where(tmp.lt.0.5) id=-1
|
||||
ie(1)=1
|
||||
do i=2,NN !Differentially encode
|
||||
ie(i)=id(i)*ie(i-1)
|
||||
enddo
|
||||
|
||||
n1=nint(t1*NSPS)
|
||||
twopi=8.d0*atan(1.d0)
|
||||
|
||||
do i=0,2*n1-1
|
||||
do i=0,2*n1-1 !Define the shape functions
|
||||
if(i.le.n1-1) then
|
||||
h0(i)=0.5*(1.0-cos(0.5*i*twopi/n1))
|
||||
else
|
||||
@ -45,67 +49,62 @@ program wsprlf
|
||||
if(t1.eq.0.0) h0=1
|
||||
if(t1.eq.0.0) h1=1
|
||||
|
||||
s=1.
|
||||
s(0:n1-1)=h0(0:n1-1) !Leading edge of 1st pulse
|
||||
! Shape the channel pulses
|
||||
x=1.
|
||||
x(0:n1-1)=h0(0:n1-1) !Leading edge of 1st pulse
|
||||
do j=2,NN !Leading edges
|
||||
if(id(j).ne.id(j-1)) then
|
||||
if(ie(j).ne.ie(j-1)) then
|
||||
ia=(j-1)*NSPS + 1
|
||||
ib=ia+n1-1
|
||||
s(ia:ib)=h0(0:n1-1)
|
||||
x(ia:ib)=h0(0:n1-1)
|
||||
endif
|
||||
enddo
|
||||
do j=1,NN-1 !Trailing edges
|
||||
if(id(j+1).ne.id(j)) then
|
||||
if(ie(j+1).ne.ie(j)) then
|
||||
ib=j*NSPS
|
||||
ia=ib-n1+1
|
||||
s(ia:ib)=h1(0:n1-1)
|
||||
x(ia:ib)=h1(0:n1-1)
|
||||
endif
|
||||
enddo
|
||||
ib=NN*NSPS-1
|
||||
ia=ib-n1+1
|
||||
s(ia:ib)=h1(0:n1-1) !Trailing edge of last pulse
|
||||
x(ia:ib)=h1(0:n1-1) !Trailing edge of last pulse
|
||||
|
||||
dt=1.d0/12000.d0
|
||||
dt=1.d0/fs
|
||||
ts=dt*NSPS
|
||||
baud=12000.0/NSPS
|
||||
baud=fs/NSPS
|
||||
write(*,1000) baud,ts
|
||||
1000 format('Baud:',f6.3,' Tsym:',f6.3)
|
||||
phi=0.
|
||||
|
||||
dphi=twopi*f0*dt
|
||||
phi=0.d0
|
||||
i=-1
|
||||
do j=1,NN
|
||||
x=1.
|
||||
if(id(j).eq.1) x=-1.
|
||||
do j=1,NN !Generate the baseband waveform
|
||||
a=ie(j)
|
||||
do k=1,NSPS
|
||||
i=i+1
|
||||
x(i)=a*x(i)
|
||||
phi=phi+dphi
|
||||
if(phi.gt.twopi) phi=phi-twopi
|
||||
c(i)=x*s(i)*cmplx(cos(phi),sin(phi))
|
||||
t=i*dt
|
||||
sym=t/ts
|
||||
if(sym.ge.10.0 .and. sym.le.20.0) write(13,3001) t, &
|
||||
sym,s(i),c(i)
|
||||
3001 format(5f12.6,i10)
|
||||
xphi=phi
|
||||
c(i)=x(i)*cmplx(cos(xphi),sin(xphi))
|
||||
sym=i*dt/ts
|
||||
if(j.le.20) write(13,1010) sym,x(i),c(i)
|
||||
1010 format(4f12.6)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
p=0.
|
||||
do iblk=1,11
|
||||
ia=(iblk-1)*NFFT
|
||||
ib=ia+NFFT-1
|
||||
ct=c(ia:ib)
|
||||
call four2a(ct,NFFT,1,-1,1)
|
||||
do i=0,NFFT-1
|
||||
p(i)=p(i) + real(ct(i))**2 + aimag(ct(i))**2
|
||||
enddo
|
||||
call four2a(c,NZ,1,-1,1) !To freq domain
|
||||
df=fs/NZ
|
||||
nh=NZ/2
|
||||
do i=0,nh
|
||||
f=i*df
|
||||
p(i)=real(c(i))**2 + aimag(c(i))**2
|
||||
enddo
|
||||
|
||||
p=cshift(p,NFFT/2)/maxval(p)
|
||||
df=12000.0/NFFT
|
||||
do i=0,NFFT-1
|
||||
f=i*df - 6000.0
|
||||
write(14,1020) f,p(i),10.0*log10(p(i)+1.e-12)
|
||||
1020 format(f12.4,2e12.3)
|
||||
p=p/maxval(p)
|
||||
do i=0,nh !Save spectrum for plotting
|
||||
write(14,1020) i*df,p(i),10.0*log10(p(i)+1.e-8)
|
||||
1020 format(f10.3,2e12.3)
|
||||
enddo
|
||||
|
||||
999 end program wsprlf
|
||||
|
Loading…
Reference in New Issue
Block a user