mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-18 01:52:05 -05:00
More refinements to section 7 and figs.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6317 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
f838755ae6
commit
b12290871d
@ -2,9 +2,9 @@
|
||||
# run: gnuplot fig_bodide.gnuplot
|
||||
# then: pdflatex fig_bodide.tex
|
||||
#
|
||||
set term epslatex standalone size 6in,4in
|
||||
set term epslatex standalone size 6in,2*6/3in
|
||||
set output "fig_bodide.tex"
|
||||
set xlabel "$E_s/N_0$ (dB)"
|
||||
set xlabel "$E_b/N_0$ (dB)"
|
||||
set ylabel "Word Error Rate"
|
||||
set style func linespoints
|
||||
set key off
|
||||
@ -13,8 +13,9 @@ set mxtics 2
|
||||
set mytics 10
|
||||
set grid
|
||||
set logscale y
|
||||
plot [3:9] [1e-4:1] "bmdata.dat" using ($1+29.66):(1-$2) with linespoints pt 4 title 'BM', \
|
||||
"bmtheory25.dat" using 1:3 with linespoints pt 5 title 'theory25', \
|
||||
"bmtheory40.dat" using 1:3 with linespoints pt 5 title 'theory40', \
|
||||
"bmtheory43.dat" using 1:3 with linespoints pt 5 title 'theory43', \
|
||||
"ftdata-100000.dat" using ($1+29.66):(1-$2) every ::1 with linespoints pt 4 title 'FT'
|
||||
plot [3:9] [1e-4:1] "bmdata.dat" using ($1+29.1):(1-$2) with linespoints lt 1 pt 4 title 'BM', \
|
||||
"bmtheory25.dat" using ($1-0.6):3 with linespoints lt 2 pt 5 title 'theory25', \
|
||||
"ftdata-100000.dat" using ($1+29.1):(1-$2) every ::1 with linespoints lt 1 pt 4 title 'FT', \
|
||||
"kvasd-15.dat" using ($1+29.1):(1-$2) every ::1 with linespoints lt 1 pt 4 title 'KV', \
|
||||
"bodide.lab" with labels
|
||||
|
||||
|
@ -2,15 +2,14 @@
|
||||
# run: gnuplot fig_ntrials_vs_nhard.gnuplot
|
||||
# then: pdflatex fig_ntrials_vs_nhard.tex
|
||||
#
|
||||
set term epslatex standalone size 12cm,8cm
|
||||
set term epslatex standalone size 6in,2*6/3in
|
||||
set output "fig_ntrials_vs_nhard.tex"
|
||||
set xlabel "Errors in received word ($X$)"
|
||||
set ylabel "Number of trials"
|
||||
set title "AWGN, $\\frac{E_s}{N_o}=5.7$ dB"
|
||||
set title "AWGN, $\\frac{E_b}{N_o}=5.1$ dB"
|
||||
set tics in
|
||||
set mxtics 5
|
||||
set mytics 10
|
||||
#set grid
|
||||
set logscale y
|
||||
plot "stats-100000-24db-3.dat" using 1:4 pt 12 notitle
|
||||
#plot "stats-100000-24db-3.dat" using 1:4 pt 13 notitle
|
||||
|
Binary file not shown.
@ -2,7 +2,7 @@
|
||||
# run: gnuplot fig_wer2.gnuplot
|
||||
# then: pdflatex fig_wer2.tex
|
||||
#
|
||||
set term epslatex standalone size 5in,5*2/3in
|
||||
set term epslatex standalone size 6in,6*2/3in
|
||||
set output "fig_wer2.tex"
|
||||
set xlabel "SNR in 2500 Hz Bandwidth (dB)"
|
||||
set ylabel "Percent Copy"
|
||||
@ -17,8 +17,6 @@ plot [-27:-22] [0:110] \
|
||||
"ftdata-10000.dat" using 1:(100*$2) with linespoints lt 1 pt 7 title 'FT-10K', \
|
||||
"ftdata-1000.dat" using 1:(100*$2) with linespoints lt 1 pt 7 title 'FT-1K', \
|
||||
"ftdata-100.dat" using 1:(100*$2) with linespoints lt 1 pt 7 title 'FT-100', \
|
||||
"kvasd-8.dat" using 1:(100*$2) with linespoints lt 2 pt 8 title 'KV-8', \
|
||||
"kvasd-12.dat" using 1:(100*$2) with linespoints lt 2 pt 8 title 'KV-12', \
|
||||
"kvasd-15.dat" using 1:(100*$2) with linespoints lt 2 pt 8 title 'KV-15', \
|
||||
"bmdata.dat" using 1:(100*$2) with linespoints pt 11 title 'BM', \
|
||||
"wer2.lab" with labels
|
||||
|
@ -2,7 +2,7 @@
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\textclass paper
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language english
|
||||
@ -84,6 +84,15 @@ Steven J.
|
||||
Taylor, K1JT
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset toc
|
||||
LatexCommand tableofcontents
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
The JT65 protocol has revolutionized amateur-radio weak-signal communication
|
||||
by enabling amateur radio operators with small antennas and relatively
|
||||
@ -333,7 +342,16 @@ Statistical Framework
|
||||
The FT algorithm uses the estimated quality of received symbols to generate
|
||||
lists of symbols considered likely to be in error, thus enabling decoding
|
||||
of received words with more than 25 errors.
|
||||
As a specific example, consider a received JT65 word with 23 correct symbols
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
(SF: provide brief overview of literature survey and discuss the inspiration
|
||||
for the FT approach).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As a specific example, consider a received JT65 word with 23 correct symbols
|
||||
and 40 errors.
|
||||
We do not know which symbols are in error.
|
||||
Suppose that the decoder randomly selects
|
||||
@ -738,7 +756,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
||||
\begin_inset Formula $p_{1}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
and
|
||||
\begin_inset Formula $p_{2}$
|
||||
\end_inset
|
||||
|
||||
@ -1129,7 +1147,7 @@ Hinted Decoding
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Write this...
|
||||
To be written...
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
@ -1143,7 +1161,7 @@ Implementation in WSJT-X
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Write this...
|
||||
To be written...
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
@ -1153,75 +1171,84 @@ name "sec:Theory,-Simulation,-and"
|
||||
|
||||
\end_inset
|
||||
|
||||
Decoder Performance Evaluation: Simulations and Real Data
|
||||
Decoder Performance Evaluation
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Simulated results on the AWGN channel
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The fraction of time that
|
||||
\begin_inset Formula $X$
|
||||
Comparisons of decoding performance are usually presented in the professional
|
||||
literature as plots of word error-rate versus
|
||||
\begin_inset Formula $E_{b}/N_{0}$
|
||||
\end_inset
|
||||
|
||||
, the number of symbols received incorrectly, is expected to be less than
|
||||
some number
|
||||
\begin_inset Formula $D$
|
||||
, the ratio of the energy collected per information bit to the one-sided
|
||||
noise power spectral density,
|
||||
\begin_inset Formula $N_{0}$
|
||||
\end_inset
|
||||
|
||||
depends on signal-to-noise ratio.
|
||||
For the case of additive white Gaussian noise (AWGN) and noncoherent 64-FSK
|
||||
demodulation this probability is easy to calculate.
|
||||
Representative examples for
|
||||
\begin_inset Formula $D=25,$
|
||||
.
|
||||
In amateur radio circles performance is usually plotted as the probability
|
||||
of successfully decoding a received word vs signal-to-noise ratio in a
|
||||
2.5 kHz reference bandwidth,
|
||||
\begin_inset Formula $\mathrm{SNR}{}_{2.5\,\mathrm{kHz}}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $D=40$
|
||||
.
|
||||
The relationship between
|
||||
\begin_inset Formula $E_{b}/N_{o}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
, and
|
||||
\begin_inset Formula $D=43$
|
||||
and
|
||||
\begin_inset Formula $\mathrm{SNR}{}_{2.5\,\mathrm{kHz}}$
|
||||
\end_inset
|
||||
|
||||
are plotted in Figure
|
||||
is described in Appendix
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Appendix:SNR"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Results of simulations using the BM, FT, and KV decoding algorithms on the
|
||||
JT65 (63,12) code are presented in terms of word error-rate vs
|
||||
\begin_inset Formula $E_{b}/N_{o}$
|
||||
\end_inset
|
||||
|
||||
in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:bodide"
|
||||
|
||||
\end_inset
|
||||
|
||||
for a range of SNRs as filled squares with connecting lines.
|
||||
The rightmost such curve shows that on the AWGN channel the hard-decision
|
||||
BM decoder should succeed about 90% of the time at
|
||||
\begin_inset Formula $E_{s}/N_{0}=7.5$
|
||||
.
|
||||
For these tests we generated at least 1000 signals at each signal-to-noise
|
||||
ratio, assuming the additive white gaussian noise (AWGN) channel, and processed
|
||||
the data using each algorithm.
|
||||
For word error-rates less than 0.1 it was necessary to process 10,000 or
|
||||
even 100,000 simulated signals in order to capture enough errors to make
|
||||
the estimates of word-error-rate statistically meaningful.
|
||||
As a test of the fidelity of our numerical simulations, Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:bodide"
|
||||
|
||||
\end_inset
|
||||
|
||||
dB, 99% of the time at 8 dB, and 99.98% at 8.5 dB.
|
||||
For comparison, the righmost curve with open squares shows that simulated
|
||||
results agree with theory to within less than 0.2 dB.
|
||||
|
||||
also shows theoretical results (filled squares) for comparison with the
|
||||
BM results.
|
||||
The simulated BM results agree with theory to within about 0.1 dB.
|
||||
As expected, the soft-decision algorithms FT and KV are about 2 dB better
|
||||
than the hard-decision BM algorithm.
|
||||
In addition, FT has a slight edge (about 0.2 dB) over KV.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -1248,56 +1275,33 @@ name "fig:bodide"
|
||||
\end_inset
|
||||
|
||||
Word error rates as a function of
|
||||
\begin_inset Formula $E_{s}/N_{0},$
|
||||
\begin_inset Formula $E_{b}/N_{0},$
|
||||
\end_inset
|
||||
|
||||
the signal-to-noise ratio in bandwidth equal to the symbol rate.
|
||||
Filled squares illustrate theoretical values for
|
||||
\begin_inset Formula $D=25,$
|
||||
\end_inset
|
||||
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $D=40$
|
||||
\end_inset
|
||||
|
||||
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\strikeout default
|
||||
\uuline default
|
||||
\uwave default
|
||||
\noun default
|
||||
\color inherit
|
||||
, and
|
||||
\begin_inset Formula $D=43$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Open squares illustrate measured results for the BM and FT (
|
||||
the signal-to-noise ratio per bit.
|
||||
The single curve marked with filled squares shows a theoretical prediction
|
||||
for the BM decoder.
|
||||
Open squares illustrate simulation results for an AWGN channel with the
|
||||
BM, FT (
|
||||
\begin_inset Formula $T=10^{5}$
|
||||
\end_inset
|
||||
|
||||
) decoders in program
|
||||
) and KV (
|
||||
\begin_inset Formula $\lambda=15$
|
||||
\end_inset
|
||||
|
||||
) decoders used in program
|
||||
\emph on
|
||||
WSJT-X
|
||||
\emph default
|
||||
.
|
||||
The KV results are for decoding complexity coefficient
|
||||
\begin_inset Formula $\lambda=15$
|
||||
\end_inset
|
||||
|
||||
, the most aggressive setting that has historically been used in earlier
|
||||
versions of the WSJT programs.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
@ -1311,38 +1315,170 @@ WSJT-X
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Received JT65 words with more than 25 incorrect symbols can be decoded if
|
||||
sufficient information on individual symbol reliabilities is available.
|
||||
Using values of
|
||||
Because of the importance of error-free transmission in commercial applications,
|
||||
plots like that in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:bodide"
|
||||
|
||||
\end_inset
|
||||
|
||||
often extend downward to much smaller error rates, say
|
||||
\begin_inset Formula $10^{-6}$
|
||||
\end_inset
|
||||
|
||||
or less.
|
||||
The circumstances for minimal amateur-radio QSOs are very different, however.
|
||||
Error rates of order 0.1 or higher may be acceptable.
|
||||
In this case the essential information is better presented in a plot showing
|
||||
the percentage of transmissions copied correctly as a function of signal-to-noi
|
||||
se ratio.
|
||||
Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:WER2"
|
||||
|
||||
\end_inset
|
||||
|
||||
shows the FT results for
|
||||
\begin_inset Formula $T=10^{5}$
|
||||
\end_inset
|
||||
|
||||
and the KV results that were shown in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:bodide"
|
||||
|
||||
\end_inset
|
||||
|
||||
in this format along with additional FT results for
|
||||
\begin_inset Formula $T=10^{4},10^{3},$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $10^{2}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The KV results are plotted with open triangles.
|
||||
It is apparent that the FT algorithm produces more decodes than KV when
|
||||
|
||||
\begin_inset Formula $T=10^{4}$
|
||||
\end_inset
|
||||
|
||||
or larger.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename fig_wer2.pdf
|
||||
lyxscale 120
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:WER2"
|
||||
|
||||
\end_inset
|
||||
|
||||
Percent of JT65 messages copied as a function of SNR in 2.5 kHz bandwidth.
|
||||
Solid lines with filled round circles are results from the FT decoder with
|
||||
|
||||
\begin_inset Formula $T=10^{5},10^{4},10^{3},$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $10^{2}$
|
||||
\end_inset
|
||||
|
||||
, respectively, from left to right.
|
||||
The dashed line with open triangles is the KV decoder with complexity coefficie
|
||||
nt
|
||||
\begin_inset Formula $\lambda=15$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Results from the BM algorithm are also shown with filled triangles.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The timeout parameter
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
that are practical with today's personal computers and the soft-symbol
|
||||
information described above, we find that the FT algorithm nearly always
|
||||
produces correct decodes up to
|
||||
\begin_inset Formula $X=40$
|
||||
\end_inset
|
||||
|
||||
, and some additional decodes are found in the range 41 to 43.
|
||||
As an example, Figure
|
||||
employed in the FT algorithm is the maximum number of symbol-erasure trials
|
||||
allowed for a particular attempt at decoding a received word.
|
||||
Most successful decodes take only a small fraction of the maximum allowed
|
||||
number of trials.
|
||||
Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:N_vs_X"
|
||||
|
||||
\end_inset
|
||||
|
||||
plots the number of stochastic erasure trials required to find the correct
|
||||
codeword versus the number of hard-decision errors for a run with 1000
|
||||
simulated transmissions at
|
||||
\begin_inset Formula $SNR=-24$
|
||||
shows the number of stochastic erasure trials required to find the correct
|
||||
codeword versus the number of hard-decision errors in the received word
|
||||
for a run with 1000 simulated transmissions at
|
||||
\begin_inset Formula $\mathrm{SNR}=-24$
|
||||
\end_inset
|
||||
|
||||
dB, just slightly above the decoding threshold.
|
||||
Note that both mean and variance of the required number of trials increase
|
||||
steeply with the number of errors in the received word.
|
||||
Execution time of the FT algorithm is roughly proportional to the number
|
||||
of required trials.
|
||||
The timeout parameter was
|
||||
\begin_inset Formula $T=10^{5}$
|
||||
\end_inset
|
||||
|
||||
for this run.
|
||||
No points are shown for
|
||||
\begin_inset Formula $X\le25$
|
||||
\end_inset
|
||||
|
||||
because all such words were successfully decoded by the BM algorithm.
|
||||
Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:N_vs_X"
|
||||
|
||||
\end_inset
|
||||
|
||||
shows that the FT algorithm decoded received words with as many as
|
||||
\begin_inset Formula $X=43$
|
||||
\end_inset
|
||||
|
||||
symbol errors.
|
||||
The results also show that, on average, the number of trials increases
|
||||
with the number of errors in the received word.
|
||||
The variability of the decoding time also increases dramatically with the
|
||||
number of errors in the received word.
|
||||
These results also provide insight into the mean and variance of the execution
|
||||
time for the FT algorithm, as execution time will be roughly proportional
|
||||
to the number of required trials.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -1356,7 +1492,6 @@ status open
|
||||
\begin_inset Graphics
|
||||
filename fig_ntrials_vs_nhard.pdf
|
||||
lyxscale 120
|
||||
scale 120
|
||||
|
||||
\end_inset
|
||||
|
||||
@ -1377,7 +1512,7 @@ Number of trials needed to decode a received word versus Hamming distance
|
||||
between the received word and the decoded codeword, for 1000 simulated
|
||||
frames on an AWGN channel with no fading.
|
||||
The SNR in 2500 Hz bandwidth is -24 dB (
|
||||
\begin_inset Formula $E_{s}/N_{o}=5.7$
|
||||
\begin_inset Formula $E_{b}/N_{o}=5.1$
|
||||
\end_inset
|
||||
|
||||
dB).
|
||||
@ -1395,101 +1530,7 @@ Number of trials needed to decode a received word versus Hamming distance
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Comparison with Berlekamp-Massey and Koetter-Vardy
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Comparisons of decoding performance are usually presented in the professional
|
||||
literature as plots of word error rate versus
|
||||
\begin_inset Formula $E_{b}/N_{0}$
|
||||
\end_inset
|
||||
|
||||
, the signal-to-noise ratio per information bit.
|
||||
Results of simulations using the Berlekamp-Massey, Koetter-Vardy, and Franke-Ta
|
||||
ylor decoding algorithms on the (63,12) code are presented in this way in
|
||||
Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:WER"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For these tests we generated 1000 signals at each signal-to-noise ratio,
|
||||
assuming the additive white gaussian noise (AWGN) channel, and processed
|
||||
the data using each algorithm.
|
||||
As expected, the soft-decision algorithms FT and KV are about 2 dB better
|
||||
than the hard-decision BM algorithm.
|
||||
FT has a slight edge (about 0.2 dB) over KV with the default settings for
|
||||
each algorithm, as implemented in our JT65 decoders.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename fig_wer.pdf
|
||||
lyxscale 120
|
||||
scale 120
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:WER"
|
||||
|
||||
\end_inset
|
||||
|
||||
Word error rate (WER) as a function of
|
||||
\begin_inset Formula $E_{b}/N_{0}$
|
||||
\end_inset
|
||||
|
||||
for non-fading signals in AWGN.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Because of the importance of error-free transmission in commercial applications,
|
||||
plots like that in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:WER"
|
||||
|
||||
\end_inset
|
||||
|
||||
often extend downward to much smaller error rates, say
|
||||
\begin_inset Formula $10^{-6}$
|
||||
\end_inset
|
||||
|
||||
or less, .
|
||||
The circumstances for minimal amateur-radio QSOs are very different, however.
|
||||
Error rates of order 0.1, or ever higher, may be acceptable.
|
||||
In this case the essential information is better presented in a plot showing
|
||||
the percentage of transmissions copied correctly as a function of signal-to-noi
|
||||
se ratio.
|
||||
|
||||
Simulated results for hinted decoding and Rayleigh fading
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -1529,7 +1570,6 @@ status open
|
||||
\begin_inset Graphics
|
||||
filename fig_psuccess.pdf
|
||||
lyxscale 90
|
||||
scale 90
|
||||
|
||||
\end_inset
|
||||
|
||||
@ -1665,7 +1705,13 @@ Berlekamp-Massey decoder written by Phil Karn, http://www.ka9q.net/code/fec/
|
||||
|
||||
\begin_layout Section
|
||||
\start_of_appendix
|
||||
Signal to Noise Ratios
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Appendix:SNR"
|
||||
|
||||
\end_inset
|
||||
|
||||
Appendix: Signal to Noise Ratios
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -1676,7 +1722,7 @@ The signal to noise ratio in a bandwidth,
|
||||
, that is at least as large as the bandwidth occupied by the signal is:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
SNR_{B}=\frac{P_{s}}{N_{o}B}\label{eq:SNR}
|
||||
\mathrm{SNR}_{B}=\frac{P_{s}}{N_{o}B}\label{eq:SNR}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -1685,18 +1731,18 @@ where
|
||||
\begin_inset Formula $P_{s}$
|
||||
\end_inset
|
||||
|
||||
is the signal power,
|
||||
is the signal power (W),
|
||||
\begin_inset Formula $N_{o}$
|
||||
\end_inset
|
||||
|
||||
is one-sided noise power spectral density, and
|
||||
is one-sided noise power spectral density (W/Hz), and
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
is the bandwidth in Hz.
|
||||
In amateur radio applications, digital modes are often compared based on
|
||||
the SNR defined in a 2.5 kHz reference bandwidth,
|
||||
\begin_inset Formula $SNR_{2.5\,\mathrm{kHz}}$
|
||||
\begin_inset Formula $\mathrm{SNR}_{2.5\,\mathrm{kHz}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
@ -1717,32 +1763,20 @@ In the professional literature, decoder performance is characterized in
|
||||
\begin_inset Formula $N_{o}$
|
||||
\end_inset
|
||||
|
||||
, or in terms of
|
||||
\begin_inset Formula $E_{s}/N_{o}$
|
||||
\end_inset
|
||||
|
||||
, the ratio of the energy collected per received symbol,
|
||||
\begin_inset Formula $E_{s}$
|
||||
\end_inset
|
||||
|
||||
, and
|
||||
\begin_inset Formula $N_{o}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Denote the duration of a channel symbol by
|
||||
\begin_inset Formula $\tau_{s}$
|
||||
\end_inset
|
||||
|
||||
(for JT65,
|
||||
\begin_inset Formula $\tau_{s}=0.375\,\mathrm{s}$
|
||||
\begin_inset Formula $\tau_{s}=0.3715\,\mathrm{s}$
|
||||
\end_inset
|
||||
|
||||
).
|
||||
Signal power is related to the energy per symbol by
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P_{s}=E_{s}/\tau_{s},\label{eq:signal_power}
|
||||
P_{s}=E_{s}/\tau_{s}.\label{eq:signal_power}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -1780,36 +1814,28 @@ reference "eq:Eb_Es"
|
||||
\end_inset
|
||||
|
||||
),
|
||||
\begin_inset Formula $SNR_{2.5\,\mathrm{kHz}}$
|
||||
\begin_inset Formula $\mathrm{SNR}_{2.5\,\mathrm{kHz}}$
|
||||
\end_inset
|
||||
|
||||
can be written in terms of
|
||||
\begin_inset Formula $E_{b}/N_{o}$
|
||||
\end_inset
|
||||
|
||||
or
|
||||
\begin_inset Formula $E_{s}/N_{o}$
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
SNR_{2.5\,\mathrm{kHz}}=1.08\times10^{-3}\frac{E_{s}}{N_{o}}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.
|
||||
\mathrm{SNR}_{2.5\,\mathrm{kHz}}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If all quantities are expressed in dB, then:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
SNR_{2.5\,\mathrm{kHz}}=(E_{b}/N_{o})_{\mathrm{dB}}-29.66\,\mathrm{dB}=(E_{s}/N_{o})_{\mathrm{dB}}-29.10\,\mathrm{dB}.
|
||||
SNR_{2.5\,\mathrm{kHz}}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
Loading…
Reference in New Issue
Block a user