git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/map65@337 ab8295b8-cf94-4d9e-aec4-7959e3be5d79

This commit is contained in:
Joe Taylor 2007-01-11 21:49:01 +00:00
parent 99f206ff42
commit bbe950c76a
2 changed files with 186 additions and 0 deletions

114
ccf65.f Normal file
View File

@ -0,0 +1,114 @@
subroutine ccf65(ss,sync1,ipol1,dt1,flipk,syncshort,
+ snr2,ipol2,dt2)
parameter (NFFT=512,NH=NFFT/2)
real ss(4,322) !Input: half-symbol powers, 4 pol'ns
real s(NFFT) !CCF = ss*pr
complex cs(0:NH) !Complex FT of s
real s2(NFFT) !CCF = ss*pr2
complex cs2(0:NH) !Complex FT of s2
real pr(NFFT) !JT65 pseudo-random sync pattern
complex cpr(0:NH) !Complex FT of pr
real pr2(NFFT) !JT65 shorthand pattern
complex cpr2(0:NH) !Complex FT of pr2
real tmp1(322)
real tmp2(322)
real ccf(-27:27,4)
logical first
integer npr(126)
data first/.true./
equivalence (s,cs),(pr,cpr),(s2,cs2),(pr2,cpr2)
save
C The JT65 pseudo-random sync pattern:
data npr/
+ 1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0,
+ 0,1,0,1,1,0,0,1,0,0,0,1,1,1,0,0,1,1,1,1,
+ 0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1,
+ 0,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,1,
+ 1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,0,1,
+ 0,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,
+ 1,1,1,1,1,1/
if(first) then
C Initialize pr, pr2; compute cpr, cpr2.
fac=1.0/NFFT
do i=1,NFFT
pr(i)=0.
k=2*mod((i-1)/8,2)-1
pr2(i)=fac*k
enddo
do i=1,126
j=2*i
pr(j)=fac*(2*npr(i)-1)
enddo
call four2a(pr,NFFT,1,-1,0)
call four2a(pr2,NFFT,1,-1,0)
first=.false.
endif
C Look for JT65 sync pattern and shorthand square-wave pattern.
ccfbest=0.
ccfbest2=0.
do ip=1,4 !Do all four pol'ns
do i=1,321
s(i)=min(4.0,ss(ip,i)+ss(ip,i+1))
enddo
do i=322,NFFT
s(i)=0.
enddo
call four2a(s,NFFT,1,-1,0) !Real-to-complex FFT
do i=0,NH
cs2(i)=cs(i)*conjg(cpr2(i)) !Mult by complex FFT of pr2
cs(i)=cs(i)*conjg(cpr(i)) !Mult by complex FFT of pr
enddo
call four2a(cs,NFFT,1,1,-1) !Complex-to-real inv-FFT
call four2a(cs2,NFFT,1,1,-1) !Complex-to-real inv-FFT
do lag=-27,27 !Check for best JT65 sync
ccf(lag,ip)=s(lag+28)
if(abs(ccf(lag,ip)).gt.ccfbest) then
ccfbest=abs(ccf(lag,ip))
lagpk=lag
ipol1=ip
flipk=1.0
if(ccf(lag,ip).lt.0.0) flipk=-1.0
endif
enddo
do lag=-8,7 !Check for best shorthand
ccf2=s2(lag+28)
if(ccf2.gt.ccfbest2) then
ccfbest2=ccf2
lagpk2=lag
ipol2=ip
endif
enddo
enddo
C Find rms level on baseline of "ccfblue", for normalization.
sum=0.
do lag=-26,26
if(abs(lag-lagpk).gt.1) sum=sum + ccf(lag,ipol1)
enddo
base=sum/50.0
sq=0.
do lag=-26,26
if(abs(lag-lagpk).gt.1) sq=sq + (ccf(lag,ipol1)-base)**2
enddo
rms=sqrt(sq/49.0)
sync1=ccfbest/rms - 4.0
dt1=2.5 + lagpk*(2048.0/11025.0)
C Find base level for normalizing snr2.
do i=1,322
tmp1(i)=ss(ipol2,i)
enddo
call pctile(tmp1,tmp2,322,40,base)
snr2=0.398107*ccfbest2/base !### empirical
syncshort=0.5*ccfbest2/rms - 4.0 !### better normalizer than rms?
dt2=2.5 + lagpk2*(2048.0/11025.0)
return
end

72
fchisq.f Normal file
View File

@ -0,0 +1,72 @@
real function fchisq(cx,cy,npts,fsample,nflip,a,ccfmax,dtmax)
parameter (NMAX=60*96000) !Samples per 60 s
complex cx(npts),cy(npts)
real a(5)
complex w,wstep,za,zb,z
real ss(2600)
complex csx(0:NMAX/64),csy(0:NMAX/64)
data twopi/6.283185307/a1,a2,a3/99.,99.,99./
save
baud=11025.0/4096.0
if(a(1).ne.a1 .or. a(2).ne.a2 .or. a(3).ne.a3) then
a1=a(1)
a2=a(2)
a3=a(3)
C Mix and integrate the complex X and Y signals
csx(0)=0.
csy(0)=0.
w=1.0
x0=0.5*(npts+1)
s=2.0/npts
do i=1,npts
x=s*(i-x0)
if(mod(i,100).eq.1) then
p2=1.5*x*x - 0.5
! p3=2.5*(x**3) - 1.5*x
! p4=4.375*(x**4) - 3.75*(x**2) + 0.375
dphi=(a(1) + x*a(2) + p2*a(3)) * (twopi/fsample)
wstep=cmplx(cos(dphi),sin(dphi))
endif
w=w*wstep
csx(i)=csx(i-1) + w*cx(i)
csy(i)=csy(i-1) + w*cy(i)
enddo
endif
C Compute 1/2-symbol powers at 1/16-symbol steps.
fac=1.e-4
pol=a(4)/57.2957795
aa=cos(pol)
bb=sin(pol)
nsps=nint(fsample/baud) !Samples per symbol
nsph=nsps/2 !Samples per half-symbol
ndiv=16 !Output ss() steps per symbol
nout=ndiv*npts/nsps
dtstep=1.0/(ndiv*baud) !Time per output step
do i=1,nout
j=i*nsps/ndiv
k=j-nsph
ss(i)=0.
if(k.ge.1) then
za=csx(j)-csx(k)
zb=csy(j)-csy(k)
z=aa*za + bb*zb
ss(i)=fac*(real(z)**2 + aimag(z)**2)
endif
enddo
ccfmax=0.
call ccf2(ss,nout,nflip,ccf,lagpk)
if(ccf.gt.ccfmax) then
ccfmax=ccf
dtmax=lagpk*dtstep
endif
fchisq=-ccfmax
return
end