mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-22 04:11:16 -05:00
Reduce gain on 2d cumulative spectrum, to be more consistent with others.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6289 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
a263657ba1
commit
bd38074f6b
@ -125,6 +125,18 @@ on with a Reed-Solomon code.
|
||||
\begin_inset Formula $(n,k)$
|
||||
\end_inset
|
||||
|
||||
, and the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
rate
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
of the code is
|
||||
\begin_inset Formula $k/n$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
JT65 uses a (63,12) Reed-Solomon code with 64 possible values for each
|
||||
symbol.
|
||||
@ -427,7 +439,7 @@ nchoosek(
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
in the interpreted language GNU Octave.
|
||||
in the interpreted language GNU Octave, as well as many free online calculators.
|
||||
The hypergeometric probability mass function defined in Eq.
|
||||
(
|
||||
\begin_inset CommandInset ref
|
||||
@ -485,7 +497,7 @@ Example 1:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Suppose a codeword contains
|
||||
Suppose a received word contains
|
||||
\begin_inset Formula $X=40$
|
||||
\end_inset
|
||||
|
||||
@ -556,7 +568,8 @@ How might we best choose the number of symbols to erase, in order to maximize
|
||||
|
||||
symbols.
|
||||
Decoding will then be assured if the set of erased symbols contains at
|
||||
least 37 errors, and with
|
||||
least 37 errors.
|
||||
With
|
||||
\begin_inset Formula $N=63$
|
||||
\end_inset
|
||||
|
||||
@ -689,8 +702,9 @@ Example 3 shows how reliable information about symbol quality should make
|
||||
\begin_layout Standard
|
||||
The FT algorithm uses two quality indices made available by a noncoherent
|
||||
64-FSK demodulator.
|
||||
The demodulator identifies the most likely value for each symbol based
|
||||
on the largest signal-plus-noise power in 64 frequency bins.
|
||||
The demodulator The demodulator computes the power spectrum for each symbol
|
||||
and identifies the most likely symbol value based on the largest signal-plus-no
|
||||
ise power in 64 frequency bins.
|
||||
The fractions of total power in the two bins containing the largest and
|
||||
second-largest powers (denoted by
|
||||
\begin_inset Formula $p_{1}$
|
||||
@ -848,8 +862,12 @@ Technically the FT algorithm is a list decoder, potentially generating a
|
||||
\end_inset
|
||||
|
||||
.
|
||||
A timeout is used to limit the algorithm's execution time if no codewords
|
||||
within soft distance
|
||||
A timeout criterion
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
is used to limit the algorithm's execution time if no codewords within
|
||||
soft distance
|
||||
\begin_inset Formula $d_{a}$
|
||||
\end_inset
|
||||
|
||||
@ -867,7 +885,7 @@ For each received symbol, define the erasure probability as 1.3 times the
|
||||
a priori
|
||||
\emph default
|
||||
symbol-error probability determined from soft-symbol information
|
||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$
|
||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
@ -912,7 +930,11 @@ If
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
If the number of trials is less than the maximum allowed number, go to 2.
|
||||
If the number of trials is less than
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
, the maximum allowed number, go to 2.
|
||||
Otherwise, declare decoding failure and exit.
|
||||
\end_layout
|
||||
|
||||
@ -930,45 +952,124 @@ best
|
||||
\end_inset
|
||||
|
||||
has been found.
|
||||
Declare a successful decode and return this codeword .
|
||||
Declare a successful decode and return this codeword.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Results and Comparison with KVASD
|
||||
\begin_layout Paragraph
|
||||
Experience-Based Lists of Candidate Codewords
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Possible figures:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
histogram of
|
||||
\begin_inset Formula $s$
|
||||
\end_inset
|
||||
|
||||
(number of erasures) for successful decodes with HF and EME data
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
histogram of
|
||||
JT65 was designed and developed to facilitate amateur communication via
|
||||
the Moon as a passive reflector.
|
||||
Signals propagating over the Earth-Moon-Earth (EME, or
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
ntrials
|
||||
moonbounce
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
(or execution time)
|
||||
) path suffer attenuation of order 240 dB or more, so received signals are
|
||||
always weak.
|
||||
To be EME-capable an amateur station must have a very sensitive receiver,
|
||||
reasonably high power, and a reasonably large antenna on a VHF, UHF, or
|
||||
microwave band.
|
||||
At a given time the number of stations engaging in this specialized activity
|
||||
is probably
|
||||
\begin_inset Formula $M<1000$
|
||||
\end_inset
|
||||
|
||||
, world-wide.
|
||||
EME communications often consist of little more than an exchange of callsigns,
|
||||
signal reports, and acknowledgments, so most messages being exchanged are
|
||||
likely to appear in a list no more than a few times
|
||||
\begin_inset Formula $M^{2}$
|
||||
\end_inset
|
||||
|
||||
in length.
|
||||
Such lists (and subsets thereof) offer potential alternatives to the stochastic
|
||||
method described above for selecting candidate codewords.
|
||||
A list of active callsigns can be built up cumulatively from previously
|
||||
decoded messages.
|
||||
Candidate codewords derived from the list can be injected into the FT algorithm
|
||||
at step 5, where the soft distance between the set of received symbols
|
||||
and the codeword is computed.
|
||||
A decoder taking advantage of this experience-based approach will have
|
||||
significant speed and performance advantages over a purely probabilistic
|
||||
algorithm.
|
||||
However, it must accept the limitation that these advantages apply only
|
||||
to messages appearing in the candidate list.
|
||||
In the open-source program
|
||||
\shape italic
|
||||
WSJT-X
|
||||
\shape default
|
||||
we generate candidate message lists of several different lengths.
|
||||
List lengths range from a few times
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\strikeout off
|
||||
\uuline off
|
||||
\uwave off
|
||||
\noun off
|
||||
\color none
|
||||
|
||||
\begin_inset Formula $M$
|
||||
\end_inset
|
||||
|
||||
up to about
|
||||
\begin_inset Formula $M^{2}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Number of decodes vs.
|
||||
ntrials
|
||||
\begin_layout Section
|
||||
Results and Comparisons
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Probability of successful decode vs.
|
||||
Es/No or S/N in 2500 Hz BW
|
||||
\begin_layout Standard
|
||||
We measured performance of the Franke-Taylor soft-decision decoder using
|
||||
simulations with many thousands of signal realizations at a range of calibrated
|
||||
signal-to-noise ratios (SNRs).
|
||||
Our first series of tests assumed an ideal additive white Gaussian noise
|
||||
(AWGN) channel.
|
||||
The dotted curve in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:Psuccess"
|
||||
|
||||
\end_inset
|
||||
|
||||
shows the fraction of raw symbols expected to be received incorrectly over
|
||||
such a channel.
|
||||
Filled circles and the short-dashed curve illustrate performance of the
|
||||
hard-decision Berlekamp-Massey algorithm, while filled squares and a solid
|
||||
curve give results for the FT algorithm with conservative settings for
|
||||
the timeout parameter
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
and maximum acceptable soft distance
|
||||
\begin_inset Formula $d_{a}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Note that sensitivity with soft-decision decoding is about 2 dB better
|
||||
than with hard decisions.
|
||||
For comparison, open squares and a long-dashed curve show somewhat looser
|
||||
settings for timeout and soft distance parameters can gain roughly another
|
||||
0.4 dB.
|
||||
At this setting the rate of false decodes is no doubt slightly higher,
|
||||
though in our simulations it was still found to be
|
||||
\begin_inset Formula $<10^{-4}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -981,8 +1082,8 @@ status open
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename fig_psuccess.pdf
|
||||
lyxscale 120
|
||||
scale 120
|
||||
lyxscale 150
|
||||
scale 150
|
||||
|
||||
\end_inset
|
||||
|
||||
@ -999,7 +1100,7 @@ name "fig:Psuccess"
|
||||
|
||||
\end_inset
|
||||
|
||||
Percentage of JT65 messages (
|
||||
Fraction of JT65 messages (
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
@ -1007,38 +1108,36 @@ words
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
) successfully decoded as a function of SNR in 2.5 kHz bandwidth.
|
||||
These results are for the idealized situation of a non-fading signal in
|
||||
additive white Gaussian noise (AWGN).
|
||||
Results are shown for the hard-decision Berlekamp-Massey (BM) and soft-decision
|
||||
Franke-Taylor (FT) decoding algorithms.
|
||||
Results for the FT algorithm are shown for two different sets of time-out
|
||||
and acceptance criteria.
|
||||
FT-1 was obtained with a limit of
|
||||
\begin_inset Formula $10^{4}$
|
||||
\end_inset
|
||||
|
||||
erasure vectors and with acceptance criteria
|
||||
\begin_inset Formula $d_{a}<72$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $n_{hard}<42$
|
||||
\end_inset
|
||||
|
||||
, and FT-2 corresponds to
|
||||
\begin_inset Formula $10^{5}$
|
||||
\end_inset
|
||||
|
||||
erasure vectors and
|
||||
\begin_inset Formula $d_{a}<76$
|
||||
) successfully decoded as a function of SNR in 2.5 kHz bandwidth, for a non-fadin
|
||||
g signal in additive white Gaussian noise (AWGN).
|
||||
BM: hard-decision Berlekamp-Massey decoder; FT-1: soft-decision Franke-Taylor
|
||||
decoder with
|
||||
\begin_inset Formula $T=10^{4}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $n_{hard}<44$
|
||||
\begin_inset Formula $d_{a}=72$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $h_{max}=42$
|
||||
\end_inset
|
||||
|
||||
; FT-2: soft-decision decoder with
|
||||
\begin_inset Formula $T=10^{5}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $d_{a}=76$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $h_{max}=44$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
algorithms.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -147,10 +147,10 @@ subroutine jt65a(dd0,npts,newdat,nutc,nf1,nf2,nfqso,ntol,nsubmode, &
|
||||
1012 format(i4.4,i4,i5,f6.1,f8.0,i4,3x,a22,' JT65',i4)
|
||||
call flush(6)
|
||||
call flush(13)
|
||||
! write(79,3001) nutc,nint(sync1),nsnr,dtx-1.0,nfreq,ncandidates, &
|
||||
! nhard_min,ntotal_min,ntry,naggressive,nft,nqual,decoded
|
||||
!3001 format(i4.4,i3,i4,f6.2,i5,i7,i3,i4,i8,i3,i2,i5,1x,a22)
|
||||
! flush(79)
|
||||
write(79,3001) nutc,nint(sync1),nsnr,dtx-1.0,nfreq,ncandidates, &
|
||||
nhard_min,ntotal_min,ntry,naggressive,nft,nqual,decoded
|
||||
3001 format(i4.4,i3,i4,f6.2,i5,i7,i3,i4,i8,i3,i2,i5,1x,a22)
|
||||
flush(79)
|
||||
endif
|
||||
decoded0=decoded
|
||||
freq0=freq
|
||||
|
@ -161,7 +161,7 @@ void CPlotter::draw(float swide[], bool bScroll) //dr
|
||||
}
|
||||
m_sum[i]=sum;
|
||||
}
|
||||
if(m_bCumulative) y2=2.5*gain2d*(m_sum[i]/m_binsPerPixel + m_plot2dZero);
|
||||
if(m_bCumulative) y2=gain2d*(m_sum[i]/m_binsPerPixel + m_plot2dZero);
|
||||
if(m_Flatten==0) y2 += 15; //### could do better! ###
|
||||
|
||||
if(m_bLinearAvg) { //Linear Avg (yellow)
|
||||
|
Loading…
Reference in New Issue
Block a user