jt9 now working up to sync detection.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@2627 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
Joe Taylor 2012-10-02 15:56:18 +00:00
parent 99c925bc51
commit c85ab5027c
6 changed files with 97 additions and 84 deletions

View File

@ -3,6 +3,8 @@ program jt9
! Decoder for JT9. Can run stand-alone, reading data from *.wav files;
! or as the back end of wsjt-x, with data placed in a shared memory region.
! NB: For unknown reason, ***MUST*** be compiled by g95 with -O0 !!!
character*80 arg,infile
parameter (NMAX=1800*12000) !Total sample intervals per 30 minutes
parameter (NDMAX=1800*1500) !Sample intervals at 1500 Hz rate
@ -12,7 +14,8 @@ program jt9
logical*1 lstrong(0:1023)
integer*2 id2
complex c0
common/jt8com/id2(NMAX),ss(184,NSMAX),savg(NSMAX),c0(NDMAX),nutc,junk(20)
common/jt8com/id2(NMAX),ss(184,NSMAX),savg(NSMAX),c0(NDMAX), &
nutc,npts8,junk(20)
common/tracer/limtrace,lu
nargs=iargc()
@ -31,6 +34,7 @@ program jt9
go to 999
endif
read(arg,*) ntrperiod
ifile1=2
limtrace=0
lu=12
@ -64,6 +68,7 @@ program jt9
if(nsps.eq.0) stop 'Error: bad TRprtiod'
kstep=nsps/2
tstep=kstep/12000.0
k=0
nhsym0=-999
npts=(60*ntrperiod-6)*12000
@ -82,8 +87,8 @@ program jt9
if(nhsym.ge.1 .and. nhsym.ne.nhsym0) then
! Emit signal readyForFFT
call timer('symspec ',0)
call symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,df3, &
ihsym,nzap,slimit,lstrong)
call symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb, &
s,f0a,df3,ihsym,nzap,slimit,lstrong)
call timer('symspec ',1)
nhsym0=nhsym
if(ihsym.ge.184) go to 10
@ -92,9 +97,21 @@ program jt9
10 continue
do i=0,512
if(lstrong(i)) print*,'Strong signal at ',12000.0*i/1024.0
enddo
nz=1000.0/df3
do i=1,nz
freq=f0a + (i-1)*df3
write(78,3001) i,freq,savg(i)
3001 format(i8,2f12.3)
enddo
print*,npts8,npts8/1500.0
nutc=nutc0
nstandalone=1
call sync9(ss,df3)
call sync9(ss,tstep,f0a,df3)
! call decode0(dd,ss,savg,nstandalone,nfsample)
enddo

View File

@ -7,7 +7,7 @@ program jt9sim
integer*2 iwave !Generated waveform (no noise)
real*8 f0,f,dt,twopi,phi,dphi,baud,fspan
character msg*22,msg0*22,message*22,msgsent*22,arg*8,fname*11
integer*4 d6(85)
integer*4 itone(85)
integer*4 mettab(0:255,0:1)
integer*4 t0(13) !72-bit message as 6-bit words
@ -64,15 +64,15 @@ program jt9sim
if(minutes.eq.2) nsps=15360
if(minutes.eq.5) nsps=40960
if(minutes.eq.10) nsps=82944
if(minutes.eq.30) nsps=250880
if(minutes.eq.30) nsps=252000
if(nsps.eq.0) stop 'Bad value for minutes.'
ihdr=0 !Temporary ###
open(12,file='msgs.txt',status='old')
! Get the metric table
bias=0.37
scale=10 !Optimize?
bias=0.37 !To be optimized, in decoder program
scale=10 ! ... ditto ...
open(19,file='met8.21',status='old')
do i=0,255
@ -87,7 +87,7 @@ program jt9sim
'---------------------------------------------------')
do ifile=1,nfiles
nmin=(ifile-1)*minutes
nmin=(ifile-1)*2*minutes
ihr=nmin/60
imin=mod(nmin,60)
write(fname,1002) ihr,imin !Create the output filenames
@ -103,7 +103,7 @@ program jt9sim
endif
if(msg0.ne.' ') then
call genjt9(message,minutes,msgsent,d6)
call genjt9(message,minutes,msgsent,itone)
endif
rewind 12
@ -112,14 +112,14 @@ program jt9sim
if(msg0.eq.' ') then
read(12,1004) message
1004 format(a22)
call genjt9(message,minutes,msgsent,d6)
call genjt9(message,minutes,msgsent,itone)
endif
f=f0
if(nsigs.gt.1) f=f0 - 0.5d0*fspan + fspan*(isig-1.d0)/(nsigs-1.d0)
snrdbx=snrdb
! if(snrdb.ge.-1.0) snrdbx=-15.0 - 15.0*(isig-1.0)/nsigs
sig=sqrt(2500.0/12000.0) * 10.0**(0.05*snrdbx)
sig=sqrt(2500.0/6000.0) * 10.0**(0.05*snrdbx)
write(*,1020) ifile,isig,f,snrdbx,msgsent
1020 format(i3,i4,f10.3,f7.1,2x,a22)
@ -127,7 +127,7 @@ program jt9sim
baud=12000.0/nsps
k=12000 !Start at t = 1 s
do isym=1,85
freq=f + d6(isym)*baud
freq=f + itone(isym)*baud
dphi=twopi*freq*dt
do i=1,nsps
phi=phi + dphi
@ -135,7 +135,7 @@ program jt9sim
if(phi.gt.twopi) phi=phi-twopi
xphi=phi
k=k+1
dat(k)=dat(k) + sig*sin(xphi)
dat(k)=dat(k) + sig*sin(xphi) !Use lookup table for i*2 sin(x) ?
enddo
enddo
enddo
@ -147,12 +147,12 @@ program jt9sim
write(10) ihdr,iwave(1:npts)
close(10)
! We're done! Now decode the data in d6, as a test.
! We're done! Now decode the data in itone, as a test.
j=0
do i=1,85
if(isync(i).eq.1) cycle
j=j+1
t5(j)=d6(i)-1
t5(j)=itone(i)-1
enddo
call graycode(t5,69,-1,t4)

View File

@ -1,4 +1,4 @@
subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,df3, &
subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,f0a,df3, &
ihsym,nzap,slimit,lstrong)
! Input:
@ -34,10 +34,11 @@ subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,df3, &
complex cx(MAXFFT3)
complex cx00(NFFT1)
complex cx0(0:1023),cx1(0:1023)
logical*1 lstrong(0:1023)
logical*1 lstrong(0:1023) !Should be (0:512)
integer*2 id2
complex c0
common/jt8com/id2(NMAX),ss(184,NSMAX),savg(NSMAX),c0(NDMAX),nutc,junk(20)
common/jt8com/id2(NMAX),ss(184,NSMAX),savg(NSMAX),c0(NDMAX), &
nutc,npts8,junk(20)
equivalence (x2,cx2)
data rms/999.0/,k0/99999999/,ntrperiod0/0/,nfft3z/0/
save
@ -90,18 +91,20 @@ subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,df3, &
do i=1,NFFT1
x0(i)=fac*id2(k1+i)
enddo
! call timf2x(k,NFFT1,nwindow,nb,peaklimit,faclim,x0,x1, &
! slimit,lstrong,px,nzap)
x1=x0 !###
call timf2x(x0,k,NFFT1,nwindow,nb,peaklimit,faclim,x1, &
slimit,lstrong,px,nzap)
! x1=x0
x2=x1
call four2a(x2,NFFT2,1,-1,0) !Second forward FFT, r2c
i0=nint(1000.0/df2) + 1
i0=nint(1000.0/df2)
f0a=i0*df2
cx2a(1:NFFT2A/2)=cx2(i0:NFFT2A/2+i0-1)
cx2a(NFFT2A/2+1:NFFT2A)=cx2(i0-1-NFFT2A/2:i0-1)
call four2a(cx2a,NFFT2A,1,1,1)
c0(k8+1:k8+NFFT2A)=cx2a
npts8=k8+NFFT2A
!### Test for gliches at multiples of 128
! if(k8.lt.1000) then
@ -139,19 +142,5 @@ subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,df3, &
s(i)=sx
enddo
if(ihsym.eq.168) then
do i=1,iz
write(71,3001) i,i*df3,savg(i),10.0*log10(savg(i))
3001 format(i8,3f12.3)
enddo
i0=673
do j=1,ihsym
write(72,3002) j,(ss(j,i),i=i0,i0+8)
3002 format(i3,9f8.3)
enddo
endif
999 return
end subroutine symspecx

View File

@ -1,4 +1,4 @@
subroutine sync9(ss,df3)
subroutine sync9(ss,tstep,f0a,df3)
parameter (NSMAX=22000) !Max length of saved spectra
real ss(184,NSMAX)
@ -24,7 +24,7 @@ subroutine sync9(ss,df3)
nz=1000.0/df3
smax=0.
lagmax=10
lagmax=2.5/tstep + 0.9999
do n=1,nz
do lag=-lagmax,lagmax
sum=0.
@ -35,21 +35,25 @@ subroutine sync9(ss,df3)
if(sum.gt.smax) then
smax=sum
npk=n
lagpk=lag
endif
enddo
enddo
print*,'npk:',npk
n=npk
freq=f0a + (npk-1)*df3
write(*,1010) lagpk,npk,freq
1010 format('lagpk:',i4,' npk:',i6,' freq:',f8.2)
do lag=-lagmax,lagmax
sum=0.
do i=1,16
k=ii(i) + lag
if(k.ge.1) sum=sum + ss(k,n)
if(k.ge.1) sum=sum + ss(k,npk)
enddo
write(*,3000) lag,sum
3000 format(i3,f12.3)
! write(73,3000) lag,sum
!3000 format(i3,f12.3)
enddo
flush(73)
return
end subroutine sync9

View File

@ -1,13 +1,15 @@
subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
subroutine timf2x(x0,k,nfft,nwindow,nb,peaklimit,faclim,x1, &
slimit,lstrong,px,nzap)
! Sequential processing of time-domain I/Q data, using Linrad-like
! "first FFT" and "first backward FFT".
! "first FFT" and "first backward FFT", treating frequencies with
! strong signals differently. Noise blanking is applied to weak
! signals only.
! cx0 - complex input data
! x0 - real input data
! nfft - length of FFTs
! nwindow - 0 for no window, 2 for sin^2 window
! cx1 - output data
! x1 - real output data
! Non-windowed processing means no overlap, so kstep=nfft.
! Sin^2 window has 50% overlap, kstep=nfft/2.
@ -19,19 +21,21 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
parameter (MAXFFT=1024,MAXNH=MAXFFT/2)
parameter (MAXSIGS=100)
complex cx0(0:nfft-1),cx1(0:nfft-1)
real x0(0:nfft-1),x1(0:nfft-1)
real x(0:MAXFFT-1),xw(0:MAXFFT-1),xs(0:MAXFFT-1)
real xwov(0:MAXNH-1),xsov(0:MAXNH-1)
complex cx(0:MAXFFT-1),cxt(0:MAXFFT-1)
complex cxs(0:MAXFFT-1),covxs(0:MAXNH-1) !Strong X signals
complex cxw(0:MAXFFT-1),covxw(0:MAXNH-1) !Weak X signals
complex cxs(0:MAXFFT-1) !Strong signals
complex cxw(0:MAXFFT-1) !Weak signals
real*4 w(0:MAXFFT-1)
real*4 s(0:MAXFFT-1),stmp(0:MAXFFT-1)
logical*1 lstrong(0:MAXFFT-1),lprev
real*4 s(0:MAXNH),stmp(0:MAXNH)
logical*1 lstrong(0:MAXNH),lprev
integer ia(MAXSIGS),ib(MAXSIGS)
complex h,u,v
logical first
equivalence (x,cx),(xw,cxw),(xs,cxs)
data first/.true./
data k0/99999999/
save w,covxs,covxw,s,ntc,ntot,nh,kstep,fac,first,k0
save w,xsov,xwov,s,ntc,ntot,nh,kstep,fac,first,k0
if(first) then
pi=4.0*atan(1.0)
@ -50,30 +54,28 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
endif
if(k.lt.k0) then
covxs=0.
covxw=0.
xsov=0.
xwov=0.
endif
k0=k
cx(0:nfft-1)=cx0
if(nwindow.eq.2) cx(0:nfft-1)=w(0:nfft-1)*cx(0:nfft-1)
call four2a(cx,nfft,1,1,1) !First forward FFT
x(0:nfft-1)=x0
if(nwindow.eq.2) x(0:nfft-1)=w(0:nfft-1)*x(0:nfft-1)
call four2a(x,nfft,1,-1,0) !First forward FFT, r2c
cxt(0:nh)=cx(0:nh)
cxt(0:nfft-1)=cx(0:nfft-1)
! Identify frequencies with strong signals, copy frequency-domain
! data into array cs (strong) or cw (weak).
! Identify frequencies with strong signals.
ntot=ntot+1
if(mod(ntot,128).eq.5) then
call pctile(s,stmp,1024,50,xmedian)
call pctile(s,stmp,nh,50,xmedian)
slimit=faclim*xmedian
endif
if(ntc.lt.96000/nfft) ntc=ntc+1
if(ntc.lt.12000/nfft) ntc=ntc+1
uu=1.0/ntc
smax=0.
do i=0,nfft-1
do i=0,nh
p=real(cxt(i))**2 + aimag(cxt(i))**2
s(i)=(1.0-uu)*s(i) + uu*p
lstrong(i)=(s(i).gt.slimit)
@ -84,7 +86,7 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
lprev=.false.
iwid=1
ib=-99
do i=0,nfft-1
do i=0,nh
if(lstrong(i) .and. (.not.lprev)) then
if(nsigs.lt.MAXSIGS) nsigs=nsigs+1
ia(nsigs)=i-iwid
@ -92,7 +94,7 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
endif
if(.not.lstrong(i) .and. lprev) then
ib(nsigs)=i-1+iwid
if(ib(nsigs).gt.nfft-1) ib(nsigs)=nfft-1
if(ib(nsigs).gt.nh) ib(nsigs)=nh
endif
lprev=lstrong(i)
enddo
@ -101,15 +103,16 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
do i=1,nsigs
ja=ia(i)
jb=ib(i)
if(ja.lt.0 .or. ja.gt.nfft-1 .or. jb.lt.0 .or. jb.gt.nfft-1) then
if(ja.lt.0 .or. ja.gt.nh .or. jb.lt.0 .or. jb.gt.nh) then
cycle
endif
if(jb.eq.-99) jb=ja + min(2*iwid,nfft-1)
if(jb.eq.-99) jb=ja + min(2*iwid,nh)
lstrong(ja:jb)=.true.
enddo
endif
do i=0,nfft-1
! Copy frequency-domain data into array cs (strong) or cw (weak).
do i=0,nh
if(lstrong(i)) then
cxs(i)=fac*cxt(i)
cxw(i)=0.
@ -119,22 +122,22 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
endif
enddo
call four2a(cxw,nfft,1,-1,1) !Transform weak and strong X
call four2a(cxs,nfft,1,-1,1) !back to time domain, separately
call four2a(cxw,nfft,1,1,-1) !Transform weak and strong back
call four2a(cxs,nfft,1,1,-1) !to time domain, separately (c2r)
if(nwindow.eq.2) then
cxw(0:nh-1)=cxw(0:nh-1)+covxw(0:nh-1) !Add previous segment's 2nd half
covxw(0:nh-1)=cxw(nh:nfft-1) !Save 2nd half
cxs(0:nh-1)=cxs(0:nh-1)+covxs(0:nh-1) !Ditto for strong signals
covxs(0:nh-1)=cxs(nh:nfft-1)
xw(0:nh-1)=xw(0:nh-1)+xwov(0:nh-1) !Add previous segment's 2nd half
xwov(0:nh-1)=xw(nh:nfft-1) !Save 2nd half
xs(0:nh-1)=xs(0:nh-1)+xsov(0:nh-1) !Ditto for strong signals
xsov(0:nh-1)=xs(nh:nfft-1)
endif
! Apply noise blanking to weak data
if(nb.ne.0) then
do i=0,kstep-1
peak=abs(cxw(i))
peak=abs(xw(i))
if(peak.gt.peaklimit) then
cxw(i)=0.
xw(i)=0.
nzap=nzap+1
endif
enddo
@ -142,10 +145,10 @@ subroutine timf2(k,nfft,nwindow,nb,peaklimit,faclim,cx0,cx1, &
! Compute power levels from weak data only
do i=0,kstep-1
px=px + real(cxw(i))**2 + aimag(cxw(i))**2
px=px + xw(i)*xw(i)
enddo
cx1(0:kstep-1)=cxw(0:kstep-1) + cxs(0:kstep-1) !Recombine weak + strong
x1(0:kstep-1)=xw(0:kstep-1) + xs(0:kstep-1) !Recombine weak + strong
return
end subroutine timf2
end subroutine timf2x

View File

@ -1,4 +1,4 @@
//------------------------------------------------------------ MainWindow
//------------------------------------------------------------- MainWindow
#include "mainwindow.h"
#include "ui_mainwindow.h"
#include "devsetup.h"