mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-16 09:01:59 -05:00
Another incremental draft of the FTRSD paper. Expect more changes fairly soon!
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6350 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
6595c329a8
commit
ccef778b02
Binary file not shown.
@ -93,24 +93,6 @@ LatexCommand tableofcontents
|
|||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Abstract
|
|
||||||
The JT65 protocol has revolutionized amateur-radio weak-signal communication
|
|
||||||
by enabling amateur radio operators with small antennas and relatively
|
|
||||||
low-power transmitters to communicate over propagation paths not usable
|
|
||||||
with traditional technologies.
|
|
||||||
A major reason for the success and popularity of JT65 is its use of a strong
|
|
||||||
error-correction code: a short block-length, low-rate Reed-Solomon code
|
|
||||||
based on a 64-symbol alphabet.
|
|
||||||
Since 2004, most programs implementing JT65 have used the patented Koetter-Vard
|
|
||||||
y (KV) algebraic soft-decision decoder, licensed to K1JT and implemented
|
|
||||||
in a closed-source program for use in amateur radio applications.
|
|
||||||
We describe here a new open-source alternative called the Franke-Taylor
|
|
||||||
(FT, or K9AN-K1JT) algorithm.
|
|
||||||
It is conceptually simple, built around the well-known Berlekamp-Massey
|
|
||||||
errors-and-erasures algorithm, and in this application it performs even
|
|
||||||
better than the KV decoder.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
\begin_inset CommandInset label
|
\begin_inset CommandInset label
|
||||||
LatexCommand label
|
LatexCommand label
|
||||||
@ -122,32 +104,78 @@ Introduction and Motivation
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The following paragraph may not belong here - feel free to get rid of it,
|
The JT65 protocol has revolutionized amateur-radio weak-signal communication
|
||||||
change it, whatever.
|
by enabling operators with small or compromise antennas and relatively
|
||||||
|
low-power transmitters to communicate over propagation paths not usable
|
||||||
|
with traditional technologies.
|
||||||
|
The protocol was developed in 2003 for Earth-Moon-Earth (EME, or
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
moonbounce
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) communication, where the scattered return signals are always weak.
|
||||||
|
It was soon found that JT65 also facilitates worldwide communication on
|
||||||
|
the HF bands with low power, modest antennas, and efficient spectral usage.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The Franke-Taylor (FT) decoder is a probabilistic list-decoder that we have
|
A major reason for the success and popularity of JT65 is its use of a strong
|
||||||
developed for use in the short block-length, low-rate Reed-Solomon code
|
error-correction code: a short block-length, low-rate Reed-Solomon code
|
||||||
used in JT65.
|
based on a 64-symbol alphabet.
|
||||||
JT65 provides a unique sandbox for playing with decoding algorithms.
|
Until now, nearly all programs implementing JT65 have used the patented
|
||||||
Several seconds are available for decoding a single 63-symbol message.
|
Koetter-Vardy (KV) algebraic soft-decision decoder
|
||||||
This is a long time! The luxury of essentially unlimited time allows us
|
\begin_inset CommandInset citation
|
||||||
to experiment with decoders that have high computational complexity.
|
LatexCommand cite
|
||||||
The payoff is that we can extend the decoding threshold by many dB over
|
key "kv2001"
|
||||||
the hard-decision, Berlekamp-Massey decoder on a typical fading channel,
|
|
||||||
and by a meaningful amount over the KV decoder, long considered to be the
|
\end_inset
|
||||||
best available soft-decision decoder.
|
|
||||||
In addition to its excellent performance, the FT algorithm has other desirable
|
, as licensed to K1JT and implemented in a closed-source program for use
|
||||||
properties, not the least of which is its conceptual simplicity.
|
only in amateur radio applications.
|
||||||
Decoding performance and complexity scale in a useful way, providing steadily
|
Since 2001 the KV decoder has been considered the best available soft-decision
|
||||||
increasing soft-decision decoding gain as a tunable computational complexity
|
decoder for Reed Solomon codes.
|
||||||
parameter is increased over more than 5 orders of magnitude.
|
\end_layout
|
||||||
This means that appreciable gain should be available from our decoder even
|
|
||||||
on very simple (and slow) computers.
|
\begin_layout Standard
|
||||||
On the other hand, because the algorithm requires a large number of independent
|
We describe here a new open-source alternative called the Franke-Taylor
|
||||||
decoding trials, it should be possible to obtain significant performance
|
(FT, or K9AN-K1JT) algorithm.
|
||||||
gains through parallelization on high-performance computers.
|
It is conceptually simple, built around the well-known Berlekamp-Massey
|
||||||
|
errors-and-erasures algorithm, and in this application it performs even
|
||||||
|
better than the KV decoder.
|
||||||
|
The FT algorithm is implemented in the popular program
|
||||||
|
\emph on
|
||||||
|
WSJT-X
|
||||||
|
\emph default
|
||||||
|
, widely used for amateur weak-signal communication with JT65 and several
|
||||||
|
other specialized digital modes.
|
||||||
|
The program is freely available and licensed under the GNU General Public
|
||||||
|
License.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The JT65 protocol specifies transmissions that normally start one second
|
||||||
|
into a UTC minute and last for 46.8 seconds.
|
||||||
|
Receiving software therefore has up to several seconds to decode a message,
|
||||||
|
before the operator sends a reply at the start of the next minute.
|
||||||
|
With today's personal computers, this relatively long time for decoding
|
||||||
|
a short message encourages experimentation with decoders of high computational
|
||||||
|
complexity.
|
||||||
|
As a result, on a typical fading channel the FT algorithm extends the decoding
|
||||||
|
threshold by many dB over the hard-decision Berlekamp-Massey decoder, and
|
||||||
|
by a meaningful amount over the KV decoder.
|
||||||
|
In addition to its excellent performance, the new algorithm has other desirable
|
||||||
|
properties---not the least of which is its conceptual simplicity.
|
||||||
|
Decoding performance and complexity scale in a convenient way, providing
|
||||||
|
steadily increasing soft-decision decoding gain as a tunable computational
|
||||||
|
complexity parameter is increased over more than 5 orders of magnitude.
|
||||||
|
This means that appreciable gain is available from our decoder even on
|
||||||
|
very simple (and relatively slow) computers.
|
||||||
|
On the other hand, because the algorithm benefits from a large number of
|
||||||
|
independent decoding trials, it should be possible to obtain further performanc
|
||||||
|
e gains through parallelization on high-performance computers.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
@ -195,7 +223,8 @@ on with a Reed-Solomon code.
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The concept of Hamming distance is used as a measure of
|
In coding theory the concept of Hamming distance is used as a measure of
|
||||||
|
|
||||||
\begin_inset Quotes eld
|
\begin_inset Quotes eld
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -412,8 +441,8 @@ n.
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
As a specific example, we will consider a received JT65 word with 23 correct
|
As a specific example, consider a received JT65 word with 23 correct symbols
|
||||||
symbols and 40 errors.
|
and 40 errors.
|
||||||
We do not know which symbols are in error.
|
We do not know which symbols are in error.
|
||||||
Suppose that the decoder randomly selects
|
Suppose that the decoder randomly selects
|
||||||
\begin_inset Formula $s=40$
|
\begin_inset Formula $s=40$
|
||||||
@ -509,17 +538,9 @@ where
|
|||||||
|
|
||||||
is the binomial coefficient.
|
is the binomial coefficient.
|
||||||
The binomial coefficient can be calculated using the function
|
The binomial coefficient can be calculated using the function
|
||||||
\begin_inset Quotes eld
|
\family typewriter
|
||||||
\end_inset
|
nchoosek(n,k)
|
||||||
|
\family default
|
||||||
nchoosek(
|
|
||||||
\begin_inset Formula $n,k$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
)
|
|
||||||
\begin_inset Quotes erd
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
in the interpreted language GNU Octave, or with one of many free online
|
in the interpreted language GNU Octave, or with one of many free online
|
||||||
calculators.
|
calculators.
|
||||||
The hypergeometric probability mass function defined in Eq.
|
The hypergeometric probability mass function defined in Eq.
|
||||||
@ -531,18 +552,10 @@ reference "eq:hypergeometric_pdf"
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
) is available in GNU Octave as function
|
) is available in GNU Octave as function
|
||||||
\begin_inset Quotes eld
|
\family typewriter
|
||||||
\end_inset
|
hygepdf
|
||||||
|
\family default
|
||||||
hygepdf(
|
(x,N,X,s).
|
||||||
\begin_inset Formula $x,N,X,s$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
)
|
|
||||||
\begin_inset Quotes erd
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
The cumulative probability that at least
|
The cumulative probability that at least
|
||||||
\begin_inset Formula $\epsilon$
|
\begin_inset Formula $\epsilon$
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -792,15 +805,16 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
|||||||
\begin_inset Formula $S(i,j)$
|
\begin_inset Formula $S(i,j)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
for each signalling interval; for the JT65 protocol
|
for each signalling interval; for the JT65 protocol the frequency index
|
||||||
\begin_inset Formula $i=1,64$
|
and symbol index have values
|
||||||
|
\begin_inset Formula $i=$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the frequency index and
|
1 to 64 and
|
||||||
\begin_inset Formula $j=1,63$
|
\begin_inset Formula $j=$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
the symbol index.
|
1 to 63.
|
||||||
The most likely value for symbol
|
The most likely value for symbol
|
||||||
\begin_inset Formula $j$
|
\begin_inset Formula $j$
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -820,7 +834,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
|||||||
\begin_inset Formula $p_{2}$
|
\begin_inset Formula $p_{2}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, are passed from demodulator to decoder as soft-symbol information.
|
, are computed and passed from demodulator to decoder as soft-symbol information.
|
||||||
The FT decoder derives two metrics from
|
The FT decoder derives two metrics from
|
||||||
\begin_inset Formula $p_{1}$
|
\begin_inset Formula $p_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -841,7 +855,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
of the symbol's fractional power
|
of the symbol's fractional power
|
||||||
\begin_inset Formula $p_{1,\, j}$
|
\begin_inset Formula $p_{1,\,j}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
in a sorted list of
|
in a sorted list of
|
||||||
@ -891,21 +905,14 @@ a priori
|
|||||||
.
|
.
|
||||||
Correspondingly, the FT algorithm works best when the probability of erasing
|
Correspondingly, the FT algorithm works best when the probability of erasing
|
||||||
a symbol is somewhat larger than the probability that the symbol is incorrect.
|
a symbol is somewhat larger than the probability that the symbol is incorrect.
|
||||||
We found empirically that good decoding performance is obtained when the
|
For the JT65 code we found empirically that good decoding performance is
|
||||||
symbol erasure probability is about 1.3 times the symbol error probability.
|
obtained when the symbol erasure probability is about 1.3 times the symbol
|
||||||
|
error probability.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The FT algorithm tries successively to decode the received word using independen
|
The FT algorithm tries successively to decode the received word using independen
|
||||||
t
|
t educated guesses to select symbols for erasure.
|
||||||
\begin_inset Quotes eld
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
educated guesses
|
|
||||||
\begin_inset Quotes erd
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to select symbols for erasure.
|
|
||||||
For each iteration a stochastic erasure vector is generated based on the
|
For each iteration a stochastic erasure vector is generated based on the
|
||||||
symbol erasure probabilities.
|
symbol erasure probabilities.
|
||||||
The erasure vector is sent to the BM decoder along with the full set of
|
The erasure vector is sent to the BM decoder along with the full set of
|
||||||
@ -918,7 +925,7 @@ educated guesses
|
|||||||
, the soft distance between the received word and the codeword:
|
, the soft distance between the received word and the codeword:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,j}).\label{eq:soft_distance}
|
d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -936,7 +943,7 @@ Here
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
if the received symbol and codeword symbol are different, and
|
if the received symbol and codeword symbol are different, and
|
||||||
\begin_inset Formula $p_{1,j}$
|
\begin_inset Formula $p_{1\,j}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the fractional power associated with received symbol
|
is the fractional power associated with received symbol
|
||||||
@ -958,13 +965,14 @@ In practice we find that
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
can reliably indentify the correct codeword if the signal-to-noise ratio
|
can reliably indentify the correct codeword if the signal-to-noise ratio
|
||||||
for individual symbols is greater than about 4 in power units, or
|
for individual symbols is greater than about 4 in linear power units, or
|
||||||
|
|
||||||
\begin_inset Formula $E_{s}/N_{0}\apprge6$
|
\begin_inset Formula $E_{s}/N_{0}\apprge6$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
dB.
|
dB (*** check these numbers ***).
|
||||||
We also find that weaker signals frequently can be decoded by using soft-symbol
|
We also find that significantly weaker signals can be decoded by using
|
||||||
information beyond that contained in
|
soft-symbol information beyond that contained in
|
||||||
\begin_inset Formula $p_{1}$
|
\begin_inset Formula $p_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -977,15 +985,15 @@ In practice we find that
|
|||||||
\begin_inset Formula $u$
|
\begin_inset Formula $u$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, the average signal-plus-noise power in all symbols, according to a candidate
|
, the average signal-plus-noise power in all symbols according to a candidate
|
||||||
codeword's symbol values:
|
codeword's symbol values:
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).
|
u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -994,15 +1002,11 @@ Here the
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
's are the symbol values for the candidate codeword being tested.
|
's are the symbol values for the candidate codeword being tested.
|
||||||
|
The correct JT65 codeword produces a value for
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
The correct JT65 codeword produces a value for
|
|
||||||
\begin_inset Formula $u$
|
\begin_inset Formula $u$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
equal to average of
|
equal to the average of
|
||||||
\begin_inset Formula $n=63$
|
\begin_inset Formula $n=63$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1017,18 +1021,23 @@ The correct JT65 codeword produces a value for
|
|||||||
|
|
||||||
bins containing noise only.
|
bins containing noise only.
|
||||||
Thus, if the spectral array
|
Thus, if the spectral array
|
||||||
\begin_inset Formula $S(i,\, j)$
|
\begin_inset Formula $S(i,\,j)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
has been normalized so that its median value (essentially the average noise
|
has been normalized so that its median value (essentially the average noise
|
||||||
level) is unity, the correct codeword is expected to yield the metric value
|
level) is unity,
|
||||||
|
\begin_inset Formula $u$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for the correct codeword has expectation value (average over many random
|
||||||
|
realizations)
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
u=(1\pm n^{-\frac{1}{2}})(1+y)\approx(1.0\pm0.13)(1+y),
|
\bar{u}_{1}=1+y,\label{eq:u1-exp}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1036,60 +1045,95 @@ where
|
|||||||
\begin_inset Formula $y$
|
\begin_inset Formula $y$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the signal-to-noise ratio (in linear power units) and the quoted one-standar
|
is the signal-to-noise ratio in linear power units.
|
||||||
d-deviation uncertainty range assumes Gaussian statistics.
|
If we assume Gaussian statistics and a large number of trials, the standard
|
||||||
Incorrect codewords will yield metric values no larger than
|
deviation of measured values of
|
||||||
|
\begin_inset Formula $u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
u=\frac{n-k+1\pm\sqrt{n-k+1}}{n}+\frac{k-1\pm\sqrt{k-1}}{n}(1+y).
|
\sigma_{1}=\left(\frac{1+2y}{n}\right)^{1/2}.\label{eq:sigma1}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
For JT65 this expression evaluates to
|
In contrast, worst-case incorrect codewords will yield
|
||||||
|
\begin_inset Formula $u$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-metrics with expectation value and standard deviation given by
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
u\approx1\pm0.11+(0.17\pm0.05)\, y.
|
\bar{u}_{2}=1+\left(\frac{k-1}{n}\right)y,\label{eq:u2-exp}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
As a specific example, consider signal strength
|
|
||||||
\begin_inset Formula $y=4$
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\sigma_{2}=\frac{1}{n}\left[n+2y(k-1)\right]^{1/2}.\label{eq:sigma2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, corresponding to
|
|
||||||
\begin_inset Formula $E_{s}/N_{0}=6$
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
If tests on a number of tested candidate codewords yield largest and second-larg
|
||||||
|
est metrics
|
||||||
|
\begin_inset Formula $u_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
dB.
|
and
|
||||||
For JT65, the corresponding SNR in 2500 Hz bandwidth is
|
\begin_inset Formula $u_{2},$
|
||||||
\begin_inset Formula $-23.7$
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
dB.
|
respectively, we expect the ratio
|
||||||
The correct codeword is then expected to yield
|
\begin_inset Formula $r=u_{2}/u_{1}$
|
||||||
\begin_inset Formula $u\approx5.0\pm$
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
0.6, while incorrect codewords will give
|
to be significantly smaller in cases where the candidate associated with
|
||||||
\begin_inset Formula $u\approx1.7\pm0.3$
|
|
||||||
|
\begin_inset Formula $u_{1}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
or less.
|
is in fact the correct codeword.
|
||||||
We find that a threshold set at
|
On the other hand, if none of the tested candidates is correct,
|
||||||
\begin_inset Formula $u_{0}=4.4$
|
\begin_inset Formula $r$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
(about 8 standard deviations above the expected maximum for incorrect codewords
|
will likely be close to 1.
|
||||||
) reliably serves to distinguish correct codewords from all other candidates,
|
We therefore apply a ratio threshold test, say
|
||||||
while ensuring a very small probability of false decodes.
|
\begin_inset Formula $r<r_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, to identify codewords with high probability of being correct.
|
||||||
|
As described in Section
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:Theory,-Simulation,-and"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we have used simulations to set an empirical acceptance threshold
|
||||||
|
\begin_inset Formula $r_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
that maximizes the probability of correct decodes while ensuring a low
|
||||||
|
rate of false decodes.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
@ -1101,11 +1145,21 @@ Technically the FT algorithm is a list decoder.
|
|||||||
|
|
||||||
is retained.
|
is retained.
|
||||||
As with all such algorithms, a stopping criterion is necessary.
|
As with all such algorithms, a stopping criterion is necessary.
|
||||||
FT accepts a codeword unconditionally if
|
FT accepts a codeword unconditionally if the Hamming distance and soft
|
||||||
\begin_inset Formula $u>u_{0}$
|
distance
|
||||||
|
\begin_inset Formula $d_{s}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
are less than some conservatively specified limits.
|
||||||
|
Secondary acceptance criteria
|
||||||
|
\begin_inset Formula $d_{s}<d_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $r<r_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are used to validate additional decodes.
|
||||||
A timeout is used to limit the algorithm's execution time if no acceptable
|
A timeout is used to limit the algorithm's execution time if no acceptable
|
||||||
codeword is found in a reasonable number of trials,
|
codeword is found in a reasonable number of trials,
|
||||||
\begin_inset Formula $T$
|
\begin_inset Formula $T$
|
||||||
@ -1121,10 +1175,25 @@ Technically the FT algorithm is a list decoder.
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
or even higher.
|
or even higher.
|
||||||
|
Pseudo-code for the FT algorithm is presented in an accompanying text box.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Paragraph
|
\begin_layout Standard
|
||||||
Algorithm pseudo-code:
|
\begin_inset Float algorithm
|
||||||
|
wide false
|
||||||
|
sideways false
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
\begin_inset Caption Standard
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
Pseudo-code for the FT algorithm.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
@ -1134,7 +1203,7 @@ For each received symbol, define the erasure probability as 1.3 times the
|
|||||||
a priori
|
a priori
|
||||||
\emph default
|
\emph default
|
||||||
symbol-error probability determined from soft-symbol information
|
symbol-error probability determined from soft-symbol information
|
||||||
\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$
|
\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
@ -1150,17 +1219,6 @@ Make independent stochastic decisions about whether to erase each symbol
|
|||||||
Attempt errors-and-erasures decoding by using the BM algorithm and the set
|
Attempt errors-and-erasures decoding by using the BM algorithm and the set
|
||||||
of erasures determined in step 2.
|
of erasures determined in step 2.
|
||||||
If the BM decoder produces a candidate codeword, go to step 5.
|
If the BM decoder produces a candidate codeword, go to step 5.
|
||||||
\begin_inset Foot
|
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
Our implementation of the FT-algorithm is based on the excellent open-source
|
|
||||||
BM decoder written by Phil Karn, KA9Q.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
@ -1168,8 +1226,12 @@ If BM decoding was not successful, go to step 2.
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
Calculate the hard-decision Hamming distance between the candidate codeword
|
Calculate the hard-decision Hamming distance
|
||||||
and the received symbols, the corresponding soft distance
|
\begin_inset Formula $h$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
between the candidate codeword and the received symbols, the corresponding
|
||||||
|
soft distance
|
||||||
\begin_inset Formula $d_{s}$
|
\begin_inset Formula $d_{s}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1182,8 +1244,16 @@ Calculate the hard-decision Hamming distance between the candidate codeword
|
|||||||
\begin_inset Formula $u$
|
\begin_inset Formula $u$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is the largest one encountered so far, set
|
is the largest one encountered so far, preserve the previous value of
|
||||||
\begin_inset Formula $u_{max}=u$
|
\begin_inset Formula $u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
as
|
||||||
|
\begin_inset Formula $u_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and then set
|
||||||
|
\begin_inset Formula $u_{1}=u$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
@ -1191,11 +1261,14 @@ Calculate the hard-decision Hamming distance between the candidate codeword
|
|||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
If
|
If
|
||||||
\begin_inset Formula $u_{max}>u_{0}$
|
\begin_inset Formula $h<h_{0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, go to step 8.
|
and
|
||||||
|
\begin_inset Formula $d_{s}<d_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, go to step 10.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
@ -1204,7 +1277,27 @@ If the number of trials is less than the timeout limit
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
go to 2.
|
go to 2.
|
||||||
Otherwise, declare decoding failure and exit.
|
|
||||||
|
\begin_inset Formula $ $
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Enumerate
|
||||||
|
If
|
||||||
|
\begin_inset Formula $d_{s}<d_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $r<r_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
go to step 10.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Enumerate
|
||||||
|
Otherwise, declare decoding failure and exit.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Enumerate
|
\begin_layout Enumerate
|
||||||
@ -1216,26 +1309,31 @@ An acceptable codeword with
|
|||||||
Declare a successful decode and return this codeword.
|
Declare a successful decode and return this codeword.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The inspiration for the FT decoding algorithm came from a number of sources,
|
Inspiration for the FT decoding algorithm came from a number of sources,
|
||||||
particularly references
|
particularly references
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "key-2"
|
key "lhmg2010"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and
|
and
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "key-3"
|
key "lk2008"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and the textbook by Lin and Costello
|
and the textbook by Lin and Costello
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "key-1"
|
key "lc2004"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1252,7 +1350,7 @@ stochastic erasures-only list decoding algorithm
|
|||||||
, described in reference
|
, described in reference
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "key-4"
|
key "ls2009"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1260,15 +1358,15 @@ key "key-4"
|
|||||||
The algorithm in
|
The algorithm in
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "key-4"
|
key "ls2009"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is applied to higher-rate Reed-Solomon codes on a binary-input channel
|
is applied to higher-rate Reed-Solomon codes on a binary-input channel
|
||||||
over which BPSK-modulated symbols are transmitted.
|
with BPSK-modulated symbols.
|
||||||
Our 64-ary input channel with 64-FSK modulation required us to develop
|
Our 64-ary input channel with 64-FSK modulation required us to develop
|
||||||
our own unique methods for assigning erasure probabilities and for defining
|
unique methods for assigning erasure probabilities and for defining an
|
||||||
an acceptance criteria to select the best codeword from the list of candidates.
|
acceptance criteria to select the best codeword from the list of candidates.
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
@ -1283,21 +1381,110 @@ Hinted Decoding
|
|||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
To be written...
|
The FT algorithm is completely general: it recovers with equal sensitivity
|
||||||
\end_layout
|
any one of the
|
||||||
|
\begin_inset Formula $2^{72}\approx4.7\times10^{21}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
\begin_layout Section
|
different messages that can be transmitted using the JT65 protocol.
|
||||||
\begin_inset CommandInset label
|
In many circumstances it's easy to imagine a much smaller list of messages
|
||||||
LatexCommand label
|
(say, a few thousand or less) that may be among the most likely ones to
|
||||||
name "sec:Implementation-in-WSJT-X"
|
be received.
|
||||||
|
For example, one such situation exists when making short ham-radio contacts
|
||||||
|
exchanging minimal amounts of information such as callsigns, signal reports,
|
||||||
|
perhaps a Maidenhead locator, and acknowledgments.
|
||||||
|
Similarly, on the EME path or on a VHF or UHF band with limited geographical
|
||||||
|
coverage, the most likely received messages will often originate from callsigns
|
||||||
|
that have been decoded before.
|
||||||
|
Saving a list of previously decoded callsigns makes it easy to generate
|
||||||
|
lists of hypothetical messages and their corresponding codewords, at very
|
||||||
|
little computational expense.
|
||||||
|
The resulting candidate codewords can be tested in the same way as those
|
||||||
|
generated by the probabilistic method described in Setcion
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "sec:The-decoding-algorithm"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
Implementation in WSJT-X
|
.
|
||||||
|
We call this approach
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
hinted decoding;
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
it is sometimes referred to as the
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Deep Search
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
algorithm.
|
||||||
|
In certain limited situations it can provide enhanced sensitivity for the
|
||||||
|
principal task of any decoder, namely to determine what message was sent.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
To be written...
|
For hinted decoding we again invoke a ratio threshold test, but in this
|
||||||
|
case we use it to answer a more limited question.
|
||||||
|
Over the full list of messages considered likely, we want to know whether
|
||||||
|
|
||||||
|
\begin_inset Formula $r=u_{2}/u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, the ratio of second-largest to largest
|
||||||
|
\begin_inset Formula $u$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-metric, is small enough for us to be confident the codeword associated
|
||||||
|
with
|
||||||
|
\begin_inset Formula $u_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the one that was transmitted.
|
||||||
|
Once again we will set an empirical limit, say
|
||||||
|
\begin_inset Formula $r_{2},$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for what is
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
small enough
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for adequate confidence, while still ensuring that false decodes are rare.
|
||||||
|
Because tested candidate codewords are drawn from a list typically no longer
|
||||||
|
than a few thousand, rather than
|
||||||
|
\begin_inset Formula $2^{72},$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula $r_{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be a more relaxed limit than the ones
|
||||||
|
\begin_inset Formula $r_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $r_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
used in the FT algorithm.
|
||||||
|
For the limited subset of messages considered as likely, hinted decodes
|
||||||
|
can be obtained at lower signal levels than would be required for decodes
|
||||||
|
selected from the full universe of
|
||||||
|
\begin_inset Formula $2^{72}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
distinct messages.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
@ -1316,7 +1503,7 @@ Simulated results on the AWGN channel
|
|||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
Comparisons of decoding performance are usually presented in the professional
|
Comparisons of decoding performance are usually presented in the professional
|
||||||
literature as plots of word error-rate versus
|
literature as plots of word error rate versus
|
||||||
\begin_inset Formula $E_{b}/N_{0}$
|
\begin_inset Formula $E_{b}/N_{0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1326,10 +1513,10 @@ Comparisons of decoding performance are usually presented in the professional
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
In amateur radio circles performance is usually plotted as the probability
|
For weak-signal amateur radio work, performance is more conveniently presented
|
||||||
of successfully decoding a received word vs signal-to-noise ratio in a
|
as the probability of successfully decoding a received word versus signal-to-no
|
||||||
2.5 kHz reference bandwidth,
|
ise ratio in a 2500 Hz reference bandwidth,
|
||||||
\begin_inset Formula $\mathrm{SNR}{}_{2.5\,\mathrm{kHz}}$
|
\begin_inset Formula $\mathrm{SNR}{}_{2500}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
@ -1338,7 +1525,7 @@ Comparisons of decoding performance are usually presented in the professional
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
and
|
and
|
||||||
\begin_inset Formula $\mathrm{SNR}{}_{2.5\,\mathrm{kHz}}$
|
\begin_inset Formula $\mathrm{SNR}{}_{2500}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is described in Appendix
|
is described in Appendix
|
||||||
@ -1787,19 +1974,24 @@ Summary
|
|||||||
\begin_inset CommandInset bibitem
|
\begin_inset CommandInset bibitem
|
||||||
LatexCommand bibitem
|
LatexCommand bibitem
|
||||||
label "1"
|
label "1"
|
||||||
key "key-1"
|
key "kv2001"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
Error Control Coding, 2nd edition, Shu Lin and Daniel J.
|
“Algebraic soft-decision decoding of Reed-Solomon codes,” R.
|
||||||
Costello, Pearson-Prentice Hall, 2004.
|
Köetter and A.
|
||||||
|
Vardy, IEEE Trans.
|
||||||
|
Inform.
|
||||||
|
Theory, Vol.
|
||||||
|
49, Nov.
|
||||||
|
2003.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Bibliography
|
\begin_layout Bibliography
|
||||||
\begin_inset CommandInset bibitem
|
\begin_inset CommandInset bibitem
|
||||||
LatexCommand bibitem
|
LatexCommand bibitem
|
||||||
label "2"
|
label "2"
|
||||||
key "key-2"
|
key "lhmg2010"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1814,7 +2006,7 @@ key "key-2"
|
|||||||
\begin_inset CommandInset bibitem
|
\begin_inset CommandInset bibitem
|
||||||
LatexCommand bibitem
|
LatexCommand bibitem
|
||||||
label "3"
|
label "3"
|
||||||
key "key-3"
|
key "lk2008"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1837,7 +2029,19 @@ GLOBECOM
|
|||||||
\begin_inset CommandInset bibitem
|
\begin_inset CommandInset bibitem
|
||||||
LatexCommand bibitem
|
LatexCommand bibitem
|
||||||
label "4"
|
label "4"
|
||||||
key "key-4"
|
key "lc2004"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Error Control Coding, 2nd edition, Shu Lin and Daniel J.
|
||||||
|
Costello, Pearson-Prentice Hall, 2004.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Bibliography
|
||||||
|
\begin_inset CommandInset bibitem
|
||||||
|
LatexCommand bibitem
|
||||||
|
label "5"
|
||||||
|
key "ls2009"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1855,28 +2059,11 @@ Stochastic Erasure-Only List Decoding Algorithms for Reed-Solomon Codes,
|
|||||||
8, August 2009.
|
8, August 2009.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Bibliography
|
|
||||||
\begin_inset CommandInset bibitem
|
|
||||||
LatexCommand bibitem
|
|
||||||
label "5"
|
|
||||||
key "key-5"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
“Algebraic soft-decision decoding of Reed-Solomon codes,” R.
|
|
||||||
Köetter and A.
|
|
||||||
Vardy, IEEE Trans.
|
|
||||||
Inform.
|
|
||||||
Theory, Vol.
|
|
||||||
49, Nov.
|
|
||||||
2003.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Bibliography
|
\begin_layout Bibliography
|
||||||
\begin_inset CommandInset bibitem
|
\begin_inset CommandInset bibitem
|
||||||
LatexCommand bibitem
|
LatexCommand bibitem
|
||||||
label "6"
|
label "6"
|
||||||
key "key-6"
|
key "karn"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
@ -1922,7 +2109,7 @@ where
|
|||||||
is the bandwidth in Hz.
|
is the bandwidth in Hz.
|
||||||
In amateur radio applications, digital modes are often compared based on
|
In amateur radio applications, digital modes are often compared based on
|
||||||
the SNR defined in a 2.5 kHz reference bandwidth,
|
the SNR defined in a 2.5 kHz reference bandwidth,
|
||||||
\begin_inset Formula $\mathrm{SNR}_{2.5\,\mathrm{kHz}}$
|
\begin_inset Formula $\mathrm{SNR}_{2500}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
@ -1994,7 +2181,7 @@ reference "eq:Eb_Es"
|
|||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
),
|
),
|
||||||
\begin_inset Formula $\mathrm{SNR}_{2.5\,\mathrm{kHz}}$
|
\begin_inset Formula $\mathrm{SNR}_{2500}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
can be written in terms of
|
can be written in terms of
|
||||||
@ -2004,7 +2191,7 @@ reference "eq:Eb_Es"
|
|||||||
:
|
:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\mathrm{SNR}_{2.5\,\mathrm{kHz}}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.
|
\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
@ -2015,7 +2202,7 @@ If all quantities are expressed in dB, then:
|
|||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
SNR_{2.5\,\mathrm{kHz}}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}.
|
\mathrm{SNR}_{2500}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
Loading…
Reference in New Issue
Block a user