Move q65_dec0 into q65 module.

This commit is contained in:
Joe Taylor 2021-01-13 14:50:07 -05:00
parent bfca40aa1c
commit f0808942e5
3 changed files with 178 additions and 179 deletions

View File

@ -498,7 +498,6 @@ set (wsjt_FSRCS
lib/prog_args.f90
lib/ps4.f90
lib/qra/q65/q65_ap.f90
lib/qra/q65/q65_dec0.f90
lib/qra/q65/q65_loops.f90
lib/qra/q65/q65_set_list.f90
lib/refspectrum.f90

View File

@ -15,6 +15,184 @@ module q65
contains
subroutine q65_dec0(nutc,iwave,ntrperiod,nfqso,ntol,ndepth,lclearave, &
emedelay,xdt,f0,snr1,width,dat4,snr2,idec)
! Detect and align with the Q65 sync vector, returning time and frequency
! offsets and SNR estimate.
! Input: iwave(0:nmax-1) Raw data
! mode_q65 Tone spacing 1 2 4 8 16 (A-E)
! nsps Samples per symbol at 12000 Sa/s
! nfqso Target frequency (Hz)
! ntol Search range around nfqso (Hz)
! Output: xdt Time offset from nominal (s)
! f0 Frequency of sync tone
! snr1 Relative SNR of sync signal
use packjt77
use timer_module, only: timer
parameter (LN=2176*63) !LN=LL*NN; LL=64*(mode_q65+2), NN=63
integer*2 iwave(0:12000*ntrperiod-1) !Raw data
integer dat4(13)
integer ijpk(2)
character*37 decoded
logical first,lclearave
real, allocatable :: s1(:,:) !Symbol spectra, 1/8-symbol steps
real, allocatable :: s3(:,:) !Data-symbol energies s3(LL,63)
real, allocatable :: ccf(:,:) !CCF(freq,lag)
real, allocatable :: ccf1(:) !CCF(freq) at best lag
real, allocatable :: ccf2(:) !CCF(freq) at any lag
data first/.true./
save first
if(nutc+ndepth.eq.-999) stop
irc=-2
idec=-1
snr1=0.
dat4=0
LL=64*(2+mode_q65)
nfft=nsps
df=12000.0/nfft !Freq resolution = baud
istep=nsps/NSTEP
iz=5000.0/df !Uppermost frequency bin, at 5000 Hz
txt=85.0*nsps/12000.0
jz=(txt+1.0)*12000.0/istep !Number of quarter-symbol steps
if(nsps.ge.6912) jz=(txt+2.0)*12000.0/istep !For TR 60 s and higher
ia=ntol/df
ia2=max(ia,10*mode_q65,nint(100.0/df))
nsmo=int(0.7*mode_q65*mode_q65)
if(nsmo.lt.1) nsmo=1
! nsmo=1 !### TEMPORARY ###
allocate(s1(iz,jz))
allocate(s3(-64:LL-65,63))
allocate(ccf(-ia2:ia2,-53:214))
allocate(ccf1(-ia2:ia2))
allocate(ccf2(-ia2:ia2))
if(LL.ne.LL0 .or. lclearave) then
if(allocated(s1a)) deallocate(s1a)
allocate(s1a(iz,jz))
s1a=0.
navg=0
LL0=LL
endif
s3=0.
if(first) then !Generate the sync vector
sync=-22.0/63.0 !Sync tone OFF
do k=1,22
sync(isync(k))=1.0 !Sync tone ON
enddo
endif
call timer('s1 ',0)
! Compute spectra with symbol length and NSTEP time bins per symbol.
call q65_symspec(iwave,ntrperiod*12000,iz,jz,s1)
call timer('s1 ',1)
i0=nint(nfqso/df) !Target QSO frequency
if(i0-64.lt.1 .or. i0-65+LL.gt.iz) go to 900 !Frequency out of range
call pctile(s1(i0-64:i0-65+LL,1:jz),LL*jz,40,base)
s1=s1/base
! Apply fast AGC
s1max=20.0 !Empirical choice
do j=1,jz !### Maybe wrong way? ###
smax=maxval(s1(i0-64:i0-65+LL,j))
if(smax.gt.s1max) s1(i0-64:i0-65+LL,j)=s1(i0-64:i0-65+LL,j)*s1max/smax
enddo
dtstep=nsps/(NSTEP*12000.0) !Step size in seconds
lag1=-1.0/dtstep
lag2=1.0/dtstep + 0.9999
if(nsps.ge.3600 .and. emedelay.gt.0) lag2=4.0/dtstep + 0.9999 !Include EME
j0=0.5/dtstep
if(nsps.ge.7200) j0=1.0/dtstep !Nominal start-signal index
idec=-1
dat4=0
if(ncw.gt.0) then
! Try list decoding via "Deep Likelihood".
call timer('list_dec',0)
call q65_dec_q3(df,s1,iz,jz,ia,lag1,lag2,i0,j0,ccf,ccf1,ccf2, &
ia2,s3,LL,nfqso,dtstep,xdt,f0,snr2,dat4,idec,decoded)
call timer('list_dec',1)
endif
!######################################################################
! Get 2d CCF and ccf2 using sync symbols only
ccf=0.
call timer('2dccf ',0)
do lag=lag1,lag2
do k=1,85
n=NSTEP*(k-1) + 1
j=n+lag+j0
if(j.ge.1 .and. j.le.jz) then
do i=-ia2,ia2
if(i0+i.lt.1 .or. i0+i.gt.iz) cycle
ccf(i,lag)=ccf(i,lag) + sync(k)*s1(i0+i,j)
enddo
endif
enddo
enddo
do i=-ia2,ia2
ccf2(i)=maxval(ccf(i,:))
enddo
! Estimate rms on ccf baseline
ijpk=maxloc(ccf(-ia:ia,:))
ipk=ijpk(1)-ia-1
jpk=ijpk(2)-53-1
sq=0.
nsq=0
jd=(lag2-lag1)/4
do i=-ia2,ia2
do j=lag1,lag2
if(abs(j-jpk).gt.jd .and. abs(i-ipk).gt.ia/2) then
sq=sq + ccf(i,j)**2
nsq=nsq+1
endif
enddo
enddo
rms=sqrt(sq/nsq)
smax=ccf(ipk,jpk)
snr1=smax/rms
ccf2=ccf2/rms
if(snr1.gt.10.0) ccf2=(10.0/snr1)*ccf2
call timer('2dccf ',1)
if(idec.le.0) then
! The q3 decode attempt failed, so we'll try a more general decode.
f0=nfqso + ipk*df
xdt=jpk*dtstep
ccf1=ccf(:,jpk)/rms
if(snr1.gt.10.0) ccf1=(10.0/snr1)*ccf1
call q65_s1_to_s3(s1,iz,jz,i0,j0,ipk,jpk,LL,mode_q65,sync,s3)
endif
smax=maxval(ccf1)
i1=-9999
i2=-9999
do i=-ia,ia
if(i1.eq.-9999 .and. ccf1(i).ge.0.5*smax) i1=i
if(i2.eq.-9999 .and. ccf1(-i).ge.0.5*smax) i2=-i
enddo
width=df*(i2-i1)
! Write data for the red and orange sync curves.
do i=-ia2,ia2
freq=nfqso + i*df
write(17,1100) freq,ccf1(i),xdt,ccf2(i)
1100 format(4f10.3)
enddo
close(17)
900 return
end subroutine q65_dec0
subroutine q65_clravg
s1a=0.

View File

@ -1,178 +0,0 @@
subroutine q65_dec0(nutc,iwave,ntrperiod,nfqso,ntol,ndepth,lclearave, &
emedelay,xdt,f0,snr1,width,dat4,snr2,idec)
! Detect and align with the Q65 sync vector, returning time and frequency
! offsets and SNR estimate.
! Input: iwave(0:nmax-1) Raw data
! mode_q65 Tone spacing 1 2 4 8 16 (A-E)
! nsps Samples per symbol at 12000 Sa/s
! nfqso Target frequency (Hz)
! ntol Search range around nfqso (Hz)
! Output: xdt Time offset from nominal (s)
! f0 Frequency of sync tone
! snr1 Relative SNR of sync signal
use packjt77
use timer_module, only: timer
use q65
parameter (LN=2176*63) !LN=LL*NN; LL=64*(mode_q65+2), NN=63
integer*2 iwave(0:12000*ntrperiod-1) !Raw data
integer dat4(13)
integer ijpk(2)
character*37 decoded
logical first,lclearave
real, allocatable :: s1(:,:) !Symbol spectra, 1/8-symbol steps
real, allocatable :: s3(:,:) !Data-symbol energies s3(LL,63)
real, allocatable :: ccf(:,:) !CCF(freq,lag)
real, allocatable :: ccf1(:) !CCF(freq) at best lag
real, allocatable :: ccf2(:) !CCF(freq) at any lag
data first/.true./
save first
if(nutc+ndepth.eq.-999) stop
irc=-2
idec=-1
snr1=0.
dat4=0
LL=64*(2+mode_q65)
nfft=nsps
df=12000.0/nfft !Freq resolution = baud
istep=nsps/NSTEP
iz=5000.0/df !Uppermost frequency bin, at 5000 Hz
txt=85.0*nsps/12000.0
jz=(txt+1.0)*12000.0/istep !Number of quarter-symbol steps
if(nsps.ge.6912) jz=(txt+2.0)*12000.0/istep !For TR 60 s and higher
ia=ntol/df
ia2=max(ia,10*mode_q65,nint(100.0/df))
nsmo=int(0.7*mode_q65*mode_q65)
if(nsmo.lt.1) nsmo=1
! nsmo=1 !### TEMPORARY ###
allocate(s1(iz,jz))
allocate(s3(-64:LL-65,63))
allocate(ccf(-ia2:ia2,-53:214))
allocate(ccf1(-ia2:ia2))
allocate(ccf2(-ia2:ia2))
if(LL.ne.LL0 .or. lclearave) then
if(allocated(s1a)) deallocate(s1a)
allocate(s1a(iz,jz))
s1a=0.
navg=0
LL0=LL
endif
s3=0.
if(first) then !Generate the sync vector
sync=-22.0/63.0 !Sync tone OFF
do k=1,22
sync(isync(k))=1.0 !Sync tone ON
enddo
endif
call timer('s1 ',0)
! Compute spectra with symbol length and NSTEP time bins per symbol.
call q65_symspec(iwave,ntrperiod*12000,iz,jz,s1)
call timer('s1 ',1)
i0=nint(nfqso/df) !Target QSO frequency
if(i0-64.lt.1 .or. i0-65+LL.gt.iz) go to 900 !Frequency out of range
call pctile(s1(i0-64:i0-65+LL,1:jz),LL*jz,40,base)
s1=s1/base
! Apply fast AGC
s1max=20.0 !Empirical choice
do j=1,jz !### Maybe wrong way? ###
smax=maxval(s1(i0-64:i0-65+LL,j))
if(smax.gt.s1max) s1(i0-64:i0-65+LL,j)=s1(i0-64:i0-65+LL,j)*s1max/smax
enddo
dtstep=nsps/(NSTEP*12000.0) !Step size in seconds
lag1=-1.0/dtstep
lag2=1.0/dtstep + 0.9999
if(nsps.ge.3600 .and. emedelay.gt.0) lag2=4.0/dtstep + 0.9999 !Include EME
j0=0.5/dtstep
if(nsps.ge.7200) j0=1.0/dtstep !Nominal start-signal index
idec=-1
dat4=0
if(ncw.gt.0) then
! Try list decoding via "Deep Likelihood".
call timer('list_dec',0)
call q65_dec_q3(df,s1,iz,jz,ia,lag1,lag2,i0,j0,ccf,ccf1,ccf2, &
ia2,s3,LL,nfqso,dtstep,xdt,f0,snr2,dat4,idec,decoded)
call timer('list_dec',1)
endif
!######################################################################
! Get 2d CCF and ccf2 using sync symbols only
ccf=0.
call timer('2dccf ',0)
do lag=lag1,lag2
do k=1,85
n=NSTEP*(k-1) + 1
j=n+lag+j0
if(j.ge.1 .and. j.le.jz) then
do i=-ia2,ia2
if(i0+i.lt.1 .or. i0+i.gt.iz) cycle
ccf(i,lag)=ccf(i,lag) + sync(k)*s1(i0+i,j)
enddo
endif
enddo
enddo
do i=-ia2,ia2
ccf2(i)=maxval(ccf(i,:))
enddo
! Estimate rms on ccf baseline
ijpk=maxloc(ccf(-ia:ia,:))
ipk=ijpk(1)-ia-1
jpk=ijpk(2)-53-1
sq=0.
nsq=0
jd=(lag2-lag1)/4
do i=-ia2,ia2
do j=lag1,lag2
if(abs(j-jpk).gt.jd .and. abs(i-ipk).gt.ia/2) then
sq=sq + ccf(i,j)**2
nsq=nsq+1
endif
enddo
enddo
rms=sqrt(sq/nsq)
smax=ccf(ipk,jpk)
snr1=smax/rms
ccf2=ccf2/rms
if(snr1.gt.10.0) ccf2=(10.0/snr1)*ccf2
call timer('2dccf ',1)
if(idec.le.0) then
! The q3 decode attempt failed, so we'll try a more general decode.
f0=nfqso + ipk*df
xdt=jpk*dtstep
ccf1=ccf(:,jpk)/rms
if(snr1.gt.10.0) ccf1=(10.0/snr1)*ccf1
call q65_s1_to_s3(s1,iz,jz,i0,j0,ipk,jpk,LL,mode_q65,sync,s3)
endif
smax=maxval(ccf1)
i1=-9999
i2=-9999
do i=-ia,ia
if(i1.eq.-9999 .and. ccf1(i).ge.0.5*smax) i1=i
if(i2.eq.-9999 .and. ccf1(-i).ge.0.5*smax) i2=-i
enddo
width=df*(i2-i1)
! Write data for the red and orange sync curves.
do i=-ia2,ia2
freq=nfqso + i*df
write(17,1100) freq,ccf1(i),xdt,ccf2(i)
1100 format(4f10.3)
enddo
close(17)
900 return
end subroutine q65_dec0