diff --git a/lib/decode65a.f90 b/lib/decode65a.f90 index cb0116ab7..67814fd06 100644 --- a/lib/decode65a.f90 +++ b/lib/decode65a.f90 @@ -39,7 +39,8 @@ subroutine decode65a(dd,npts,newdat,nqd,f0,nflip,mode65,ntrials, & dtbest=dt call afc65b(c5x,n6,fsample,nflip,a,ccfbest,dtbest) call timer('afc65b ',1) - + dtbest=dtbest+0.003628 ! remove decimation filter and coh. integrator delay + dt=dtbest !return new, improved estimate of dt sync2=3.7e-4*ccfbest/sq0 !Constant is empirical ! Apply AFC corrections to the time-domain signal @@ -79,7 +80,6 @@ subroutine decode65a(dd,npts,newdat,nqd,f0,nflip,mode65,ntrials, & call timer('dec65b ',0) call decode65b(s2,nflip,mode65,ntrials,naggressive,ndepth, & mycall,hiscall,hisgrid,nexp_decode,nqd,nft,qual,nhist,decoded) - dt=dtbest !return new, improved estimate of dt call timer('dec65b ',1) return diff --git a/lib/ftrsd/ftrsd_paper/ftrsd.lyx b/lib/ftrsd/ftrsd_paper/ftrsd.lyx index df315b2ba..cf6aacb23 100644 --- a/lib/ftrsd/ftrsd_paper/ftrsd.lyx +++ b/lib/ftrsd/ftrsd_paper/ftrsd.lyx @@ -851,7 +851,7 @@ The FT algorithm uses quality indices made available by a noncoherent 64-FSK \end_inset of the symbol's fractional power -\begin_inset Formula $p_{1,\,j}$ +\begin_inset Formula $p_{1,\, j}$ \end_inset in a sorted list of @@ -921,7 +921,7 @@ t educated guesses to select symbols for erasure. , the soft distance between the received word and the codeword: \begin_inset Formula \begin{equation} -d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\,j}).\label{eq:soft_distance} +d_{s}=\sum_{j=1}^{n}\alpha_{j}\,(1+p_{1,\, j}).\label{eq:soft_distance} \end{equation} \end_inset @@ -939,7 +939,7 @@ Here \end_inset if the received symbol and codeword symbol are different, and -\begin_inset Formula $p_{1,\,j}$ +\begin_inset Formula $p_{1,\, j}$ \end_inset is the fractional power associated with received symbol @@ -983,7 +983,7 @@ In practice we find that \begin_layout Standard \begin_inset Formula \begin{equation} -u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\,j).\label{eq:u-metric} +u=\frac{1}{n}\sum_{j=1}^{n}S(c_{j},\, j).\label{eq:u-metric} \end{equation} \end_inset @@ -1016,7 +1016,7 @@ The correct JT65 codeword produces a value for bins containing noise only. Thus, if the spectral array -\begin_inset Formula $S(i,\,j)$ +\begin_inset Formula $S(i,\, j)$ \end_inset has been normalized so that the average value of the noise-only bins is @@ -1265,7 +1265,7 @@ For each received symbol, define the erasure probability as 1.3 times the a priori \emph default symbol-error probability determined from soft-symbol information -\begin_inset Formula $\{p_{1}\textrm{-rank},\,p_{2}/p_{1}\}$ +\begin_inset Formula $\{p_{1}\textrm{-rank},\, p_{2}/p_{1}\}$ \end_inset . @@ -2265,8 +2265,8 @@ ing tones of signals from DL7UAE and SP6GWB. \begin_inset Formula $-24$ \end_inset - dB, respectrively, just one or two dB above the decoding threshold for - the FT decoder. + dB, respectively, just one or two dB above the decoding threshold for the + FT decoder. Note that the two signals overlap throughout 94% of their occupied bandwidths, yet both are decoded cleanly and without errors. Such behavior is typical of the JT65 protocol. @@ -2301,8 +2301,8 @@ name "fig:JT65B_EME" Examples of JT65B EME signals recorded at K1JT. Numbers above the spectrogram are audio frequencies in Hz, and the spectrogram' s vertical direction is one minute of time. - The horizintal green bar indicates full band occupied by the second decoded - signal, a reply from SP6GWB. + The horizontal green bar on the frequency axis indicates the bandwidth + occupied by the second decoded signal, a reply from SP6GWB. See text for additional details. \end_layout