mirror of
https://github.com/saitohirga/WSJT-X.git
synced 2024-11-25 13:48:42 -05:00
Another bunch needesd for astro display.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3839 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
parent
2e6611dbb5
commit
f7d4a71454
108
lib/astro.f90
Normal file
108
lib/astro.f90
Normal file
@ -0,0 +1,108 @@
|
||||
subroutine astro(nyear,month,nday,uth,nfreq,Mygrid, &
|
||||
NStation,MoonDX,AzSun,ElSun,AzMoon0,ElMoon0, &
|
||||
ntsky,doppler00,doppler,dbMoon,RAMoon,DecMoon,HA,Dgrd,sd, &
|
||||
poloffset,xnr,day,lon,lat,LST,techo)
|
||||
|
||||
! Computes astronomical quantities for display and tracking.
|
||||
! NB: may want to smooth the Tsky map to 10 degrees or so.
|
||||
|
||||
character*6 MyGrid,HisGrid
|
||||
real LST
|
||||
real lat,lon
|
||||
integer*2 nt144(180)
|
||||
|
||||
! common/echo/xdop(2),techo,AzMoon,ElMoon,mjd
|
||||
real xdop(2)
|
||||
|
||||
data rad/57.2957795/
|
||||
data nt144/ &
|
||||
234, 246, 257, 267, 275, 280, 283, 286, 291, 298, &
|
||||
305, 313, 322, 331, 341, 351, 361, 369, 376, 381, &
|
||||
383, 382, 379, 374, 370, 366, 363, 361, 363, 368, &
|
||||
376, 388, 401, 415, 428, 440, 453, 467, 487, 512, &
|
||||
544, 579, 607, 618, 609, 588, 563, 539, 512, 482, &
|
||||
450, 422, 398, 379, 363, 349, 334, 319, 302, 282, &
|
||||
262, 242, 226, 213, 205, 200, 198, 197, 196, 197, &
|
||||
200, 202, 204, 205, 204, 203, 202, 201, 203, 206, &
|
||||
212, 218, 223, 227, 231, 236, 240, 243, 247, 257, &
|
||||
276, 301, 324, 339, 346, 344, 339, 331, 323, 316, &
|
||||
312, 310, 312, 317, 327, 341, 358, 375, 392, 407, &
|
||||
422, 437, 451, 466, 480, 494, 511, 530, 552, 579, &
|
||||
612, 653, 702, 768, 863,1008,1232,1557,1966,2385, &
|
||||
2719,2924,3018,3038,2986,2836,2570,2213,1823,1461, &
|
||||
1163, 939, 783, 677, 602, 543, 494, 452, 419, 392, &
|
||||
373, 360, 353, 350, 350, 350, 350, 350, 350, 348, &
|
||||
344, 337, 329, 319, 307, 295, 284, 276, 272, 272, &
|
||||
273, 274, 274, 271, 266, 260, 252, 245, 238, 231/
|
||||
save
|
||||
|
||||
call grid2deg(MyGrid,elon,lat)
|
||||
lon=-elon
|
||||
call sun(nyear,month,nday,uth,lon,lat,RASun,DecSun,LST, &
|
||||
AzSun,ElSun,mjd,day)
|
||||
|
||||
freq=nfreq*1.e6
|
||||
if(nfreq.eq.2) freq=1.8e6
|
||||
if(nfreq.eq.4) freq=3.5e6
|
||||
|
||||
call MoonDop(nyear,month,nday,uth,lon,lat,RAMoon,DecMoon, &
|
||||
LST,HA,AzMoon,ElMoon,vr,dist)
|
||||
|
||||
! Compute spatial polarization offset
|
||||
xx=sin(lat/rad)*cos(ElMoon/rad) - cos(lat/rad)* &
|
||||
cos(AzMoon/rad)*sin(ElMoon/rad)
|
||||
yy=cos(lat/rad)*sin(AzMoon/rad)
|
||||
if(NStation.eq.1) poloffset1=rad*atan2(yy,xx)
|
||||
if(NStation.eq.2) poloffset2=rad*atan2(yy,xx)
|
||||
|
||||
techo=2.0 * dist/2.99792458e5 !Echo delay time
|
||||
doppler=-freq*vr/2.99792458e5 !One-way Doppler
|
||||
|
||||
call coord(0.,0.,-1.570796,1.161639,RAMoon/rad,DecMoon/rad,el,eb)
|
||||
longecl_half=nint(rad*el/2.0)
|
||||
if(longecl_half.lt.1 .or. longecl_half.gt.180) longecl_half=180
|
||||
t144=nt144(longecl_half)
|
||||
tsky=(t144-2.7)*(144.0/nfreq)**2.6 + 2.7 !Tsky for obs freq
|
||||
|
||||
xdop(NStation)=doppler
|
||||
if(NStation.eq.2) then
|
||||
HisGrid=MyGrid
|
||||
go to 900
|
||||
endif
|
||||
|
||||
doppler00=2.0*xdop(1)
|
||||
doppler=xdop(1)+xdop(2)
|
||||
! if(mode.eq.3) doppler=2.0*xdop(1)
|
||||
dBMoon=-40.0*log10(dist/356903.)
|
||||
sd=16.23*370152.0/dist
|
||||
|
||||
! if(NStation.eq.1 .and. MoonDX.ne.0 .and.
|
||||
! + (mode.eq.2 .or. mode.eq.5)) then
|
||||
if(NStation.eq.1 .and. MoonDX.ne.0) then
|
||||
poloffset=mod(poloffset2-poloffset1+720.0,180.0)
|
||||
if(poloffset.gt.90.0) poloffset=poloffset-180.0
|
||||
x1=abs(cos(2*poloffset/rad))
|
||||
if(x1.lt.0.056234) x1=0.056234
|
||||
xnr=-20.0*log10(x1)
|
||||
if(HisGrid(1:1).lt.'A' .or. HisGrid(1:1).gt.'R') xnr=0
|
||||
endif
|
||||
|
||||
tr=80.0 !Good preamp
|
||||
tskymin=13.0*(408.0/nfreq)**2.6 !Cold sky temperature
|
||||
tsysmin=tskymin+tr
|
||||
tsys=tsky+tr
|
||||
dgrd=-10.0*log10(tsys/tsysmin) + dbMoon
|
||||
900 AzMoon0=Azmoon
|
||||
ElMoon0=Elmoon
|
||||
ntsky=nint(tsky)
|
||||
|
||||
! auxHA = 15.0*(LST-auxra) !HA in degrees
|
||||
! pi=3.14159265
|
||||
! pio2=0.5*pi
|
||||
! call coord(pi,pio2-lat/rad,0.0,lat/rad,auxha*pi/180.0,
|
||||
! + auxdec/rad,azaux,elaux)
|
||||
! AzAux=azaux*rad
|
||||
! ElAux=ElAux*rad
|
||||
|
||||
return
|
||||
end subroutine astro
|
82
lib/astro0.f90
Normal file
82
lib/astro0.f90
Normal file
@ -0,0 +1,82 @@
|
||||
subroutine astro0(nyear,month,nday,uth8,nfreq,mygrid,hisgrid, &
|
||||
AzSun8,ElSun8,AzMoon8,ElMoon8,AzMoonB8,ElMoonB8,ntsky,ndop,ndop00, &
|
||||
dbMoon8,RAMoon8,DecMoon8,HA8,Dgrd8,sd8,poloffset8,xnr8,dfdt,dfdt0, &
|
||||
width1,width2,w501,w502,xlst8,techo8)
|
||||
|
||||
parameter (DEGS=57.2957795130823d0)
|
||||
character*6 mygrid,hisgrid
|
||||
real*8 AzSun8,ElSun8,AzMoon8,ElMoon8,AzMoonB8,ElMoonB8
|
||||
real*8 dbMoon8,RAMoon8,DecMoon8,HA8,Dgrd8,xnr8,dfdt,dfdt0,dt
|
||||
real*8 sd8,poloffset8,day8,width1,width2,w501,w502,xlst8
|
||||
real*8 uth8,techo8
|
||||
data uth8z/0.d0/
|
||||
save
|
||||
|
||||
uth=uth8
|
||||
call astro(nyear,month,nday,uth,nfreq,hisgrid,2,1, &
|
||||
AzSun,ElSun,AzMoon,ElMoon,ntsky,doppler00,doppler, &
|
||||
dbMoon,RAMoon,DecMoon,HA,Dgrd,sd,poloffset,xnr, &
|
||||
day,xlon2,xlat2,xlst,techo)
|
||||
AzMoonB8=AzMoon
|
||||
ElMoonB8=ElMoon
|
||||
call astro(nyear,month,nday,uth,nfreq,mygrid,1,1, &
|
||||
AzSun,ElSun,AzMoon,ElMoon,ntsky,doppler00,doppler, &
|
||||
dbMoon,RAMoon,DecMoon,HA,Dgrd,sd,poloffset,xnr, &
|
||||
day,xlon1,xlat1,xlst,techo)
|
||||
|
||||
day8=day
|
||||
xlst8=xlst
|
||||
techo8=techo
|
||||
call tm2(day8,xlat1,xlon1,xl1,b1)
|
||||
call tm2(day8,xlat2,xlon2,xl2,b2)
|
||||
call tm2(day8+1.d0/1440.0,xlat1,xlon1,xl1a,b1a)
|
||||
call tm2(day8+1.d0/1440.0,xlat2,xlon2,xl2a,b2a)
|
||||
fghz=0.001*nfreq
|
||||
dldt1=DEGS*(xl1a-xl1)
|
||||
dbdt1=DEGS*(b1a-b1)
|
||||
dldt2=DEGS*(xl2a-xl2)
|
||||
dbdt2=DEGS*(b2a-b2)
|
||||
rate1=2.0*sqrt(dldt1**2 + dbdt1**2)
|
||||
width1=0.5*6741*fghz*rate1
|
||||
rate2=sqrt((dldt1+dldt2)**2 + (dbdt1+dbdt2)**2)
|
||||
width2=0.5*6741*fghz*rate2
|
||||
|
||||
fbend=0.7
|
||||
a2=0.0045*log(fghz/fbend)/log(1.05)
|
||||
if(fghz.lt.fbend) a2=0.0
|
||||
f50=0.19 * (fghz/fbend)**a2
|
||||
if(f50.gt.1.0) f50=1.0
|
||||
w501=f50*width1
|
||||
w502=f50*width2
|
||||
|
||||
AzSun8=AzSun
|
||||
ElSun8=ElSun
|
||||
AzMoon8=AzMoon
|
||||
ElMoon8=ElMoon
|
||||
dbMoon8=dbMoon
|
||||
RAMoon8=RAMoon/15.0
|
||||
DecMoon8=DecMoon
|
||||
HA8=HA
|
||||
Dgrd8=Dgrd
|
||||
sd8=sd
|
||||
poloffset8=poloffset
|
||||
xnr8=xnr
|
||||
ndop=nint(doppler)
|
||||
ndop00=nint(doppler00)
|
||||
|
||||
if(uth8z.eq.0.d0) then
|
||||
uth8z=uth8-1.d0/3600.d0
|
||||
dopplerz=doppler
|
||||
doppler00z=doppler00
|
||||
endif
|
||||
|
||||
dt=60.0*(uth8-uth8z)
|
||||
if(dt.le.0) dt=1.d0/60.d0
|
||||
dfdt=(doppler-dopplerz)/dt
|
||||
dfdt0=(doppler00-doppler00z)/dt
|
||||
uth8z=uth8
|
||||
dopplerz=doppler
|
||||
doppler00z=doppler00
|
||||
|
||||
return
|
||||
end subroutine astro0
|
41
lib/coord.f90
Normal file
41
lib/coord.f90
Normal file
@ -0,0 +1,41 @@
|
||||
SUBROUTINE COORD(A0,B0,AP,BP,A1,B1,A2,B2)
|
||||
|
||||
! Examples:
|
||||
! 1. From ha,dec to az,el:
|
||||
! call coord(pi,pio2-lat,0.,lat,ha,dec,az,el)
|
||||
! 2. From az,el to ha,dec:
|
||||
! call coord(pi,pio2-lat,0.,lat,az,el,ha,dec)
|
||||
! 3. From ra,dec to l,b
|
||||
! call coord(4.635594495,-0.504691042,3.355395488,0.478220215,
|
||||
! ra,dec,l,b)
|
||||
! 4. From l,b to ra,dec
|
||||
! call coord(1.705981071d0,-1.050357016d0,2.146800277d0,
|
||||
! 0.478220215d0,l,b,ra,dec)
|
||||
! 5. From ra,dec to ecliptic latitude (eb) and longitude (el):
|
||||
! call coord(0.d0,0.d0,-pio2,pio2-23.443*pi/180,ra,dec,el,eb)
|
||||
! 6. From ecliptic latitude (eb) and longitude (el) to ra,dec:
|
||||
! call coord(0.d0,0.d0,-pio2,pio2-23.443*pi/180,el,eb,ra,dec)
|
||||
|
||||
SB0=sin(B0)
|
||||
CB0=cos(B0)
|
||||
SBP=sin(BP)
|
||||
CBP=cos(BP)
|
||||
SB1=sin(B1)
|
||||
CB1=cos(B1)
|
||||
SB2=SBP*SB1 + CBP*CB1*cos(AP-A1)
|
||||
CB2=SQRT(1.e0-SB2**2)
|
||||
B2=atan(SB2/CB2)
|
||||
SAA=sin(AP-A1)*CB1/CB2
|
||||
CAA=(SB1-SB2*SBP)/(CB2*CBP)
|
||||
CBB=SB0/CBP
|
||||
SBB=sin(AP-A0)*CB0
|
||||
SA2=SAA*CBB-CAA*SBB
|
||||
CA2=CAA*CBB+SAA*SBB
|
||||
TA2O2=0.0 !Shut up compiler warnings. -db
|
||||
IF(CA2.LE.0.e0) TA2O2=(1.e0-CA2)/SA2
|
||||
IF(CA2.GT.0.e0) TA2O2=SA2/(1.e0+CA2)
|
||||
A2=2.e0*atan(TA2O2)
|
||||
IF(A2.LT.0.e0) A2=A2+6.2831853
|
||||
|
||||
RETURN
|
||||
END SUBROUTINE COORD
|
17
lib/geocentric.f90
Normal file
17
lib/geocentric.f90
Normal file
@ -0,0 +1,17 @@
|
||||
subroutine geocentric(alat,elev,hlt,erad)
|
||||
|
||||
implicit real*8 (a-h,o-z)
|
||||
|
||||
! IAU 1976 flattening f, equatorial radius a
|
||||
f = 1.d0/298.257d0
|
||||
a = 6378140.d0
|
||||
c = 1.d0/sqrt(1.d0 + (-2.d0 + f)*f*sin(alat)*sin(alat))
|
||||
arcf = (a*c + elev)*cos(alat)
|
||||
arsf = (a*(1.d0 - f)*(1.d0 - f)*c + elev)*sin(alat)
|
||||
hlt = datan2(arsf,arcf)
|
||||
erad = sqrt(arcf*arcf + arsf*arsf)
|
||||
erad = 0.001d0*erad
|
||||
|
||||
return
|
||||
end subroutine geocentric
|
||||
|
166
lib/moon2.f90
Normal file
166
lib/moon2.f90
Normal file
@ -0,0 +1,166 @@
|
||||
subroutine moon2(y,m,Day,UT,lon,lat,RA,Dec,topRA,topDec, &
|
||||
LST,HA,Az,El,dist)
|
||||
|
||||
implicit none
|
||||
|
||||
integer y !Year
|
||||
integer m !Month
|
||||
integer Day !Day
|
||||
real*8 UT !UTC in hours
|
||||
real*8 RA,Dec !RA and Dec of moon
|
||||
|
||||
! NB: Double caps are single caps in the writeup.
|
||||
|
||||
real*8 NN !Longitude of ascending node
|
||||
real*8 i !Inclination to the ecliptic
|
||||
real*8 w !Argument of perigee
|
||||
real*8 a !Semi-major axis
|
||||
real*8 e !Eccentricity
|
||||
real*8 MM !Mean anomaly
|
||||
|
||||
real*8 v !True anomaly
|
||||
real*8 EE !Eccentric anomaly
|
||||
real*8 ecl !Obliquity of the ecliptic
|
||||
|
||||
real*8 d !Ephemeris time argument in days
|
||||
real*8 r !Distance to sun, AU
|
||||
real*8 xv,yv !x and y coords in ecliptic
|
||||
real*8 lonecl,latecl !Ecliptic long and lat of moon
|
||||
real*8 xg,yg,zg !Ecliptic rectangular coords
|
||||
real*8 Ms !Mean anomaly of sun
|
||||
real*8 ws !Argument of perihelion of sun
|
||||
real*8 Ls !Mean longitude of sun (Ns=0)
|
||||
real*8 Lm !Mean longitude of moon
|
||||
real*8 DD !Mean elongation of moon
|
||||
real*8 FF !Argument of latitude for moon
|
||||
real*8 xe,ye,ze !Equatorial geocentric coords of moon
|
||||
real*8 mpar !Parallax of moon (r_E / d)
|
||||
real*8 lat,lon !Station coordinates on earth
|
||||
real*8 gclat !Geocentric latitude
|
||||
real*8 rho !Earth radius factor
|
||||
real*8 GMST0,LST,HA
|
||||
real*8 g
|
||||
real*8 topRA,topDec !Topocentric coordinates of Moon
|
||||
real*8 Az,El
|
||||
real*8 dist
|
||||
|
||||
real*8 rad,twopi,pi,pio2
|
||||
data rad/57.2957795131d0/,twopi/6.283185307d0/
|
||||
|
||||
d=367*y - 7*(y+(m+9)/12)/4 + 275*m/9 + Day - 730530 + UT/24.d0
|
||||
ecl = 23.4393d0 - 3.563d-7 * d
|
||||
|
||||
! Orbital elements for Moon:
|
||||
NN = 125.1228d0 - 0.0529538083d0 * d
|
||||
i = 5.1454d0
|
||||
w = mod(318.0634d0 + 0.1643573223d0 * d + 360000.d0,360.d0)
|
||||
a = 60.2666d0
|
||||
e = 0.054900d0
|
||||
MM = mod(115.3654d0 + 13.0649929509d0 * d + 360000.d0,360.d0)
|
||||
|
||||
EE = MM + e*rad*sin(MM/rad) * (1.d0 + e*cos(MM/rad))
|
||||
EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.d0 - e*cos(EE/rad))
|
||||
EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.d0 - e*cos(EE/rad))
|
||||
|
||||
xv = a * (cos(EE/rad) - e)
|
||||
yv = a * (sqrt(1.d0-e*e) * sin(EE/rad))
|
||||
|
||||
v = mod(rad*atan2(yv,xv)+720.d0,360.d0)
|
||||
r = sqrt(xv*xv + yv*yv)
|
||||
|
||||
! Get geocentric position in ecliptic rectangular coordinates:
|
||||
|
||||
xg = r * (cos(NN/rad)*cos((v+w)/rad) - &
|
||||
sin(NN/rad)*sin((v+w)/rad)*cos(i/rad))
|
||||
yg = r * (sin(NN/rad)*cos((v+w)/rad) + &
|
||||
cos(NN/rad)*sin((v+w)/rad)*cos(i/rad))
|
||||
zg = r * (sin((v+w)/rad)*sin(i/rad))
|
||||
|
||||
! Ecliptic longitude and latitude of moon:
|
||||
lonecl = mod(rad*atan2(yg/rad,xg/rad)+720.d0,360.d0)
|
||||
latecl = rad*atan2(zg/rad,sqrt(xg*xg + yg*yg)/rad)
|
||||
|
||||
! Now include orbital perturbations:
|
||||
Ms = mod(356.0470d0 + 0.9856002585d0 * d + 3600000.d0,360.d0)
|
||||
ws = 282.9404d0 + 4.70935d-5*d
|
||||
Ls = mod(Ms + ws + 720.d0,360.d0)
|
||||
Lm = mod(MM + w + NN+720.d0,360.d0)
|
||||
DD = mod(Lm - Ls + 360.d0,360.d0)
|
||||
FF = mod(Lm - NN + 360.d0,360.d0)
|
||||
|
||||
lonecl = lonecl &
|
||||
-1.274d0 * sin((MM-2.d0*DD)/rad) &
|
||||
+0.658d0 * sin(2.d0*DD/rad) &
|
||||
-0.186d0 * sin(Ms/rad) &
|
||||
-0.059d0 * sin((2.d0*MM-2.d0*DD)/rad) &
|
||||
-0.057d0 * sin((MM-2.d0*DD+Ms)/rad) &
|
||||
+0.053d0 * sin((MM+2.d0*DD)/rad) &
|
||||
+0.046d0 * sin((2.d0*DD-Ms)/rad) &
|
||||
+0.041d0 * sin((MM-Ms)/rad) &
|
||||
-0.035d0 * sin(DD/rad) &
|
||||
-0.031d0 * sin((MM+Ms)/rad) &
|
||||
-0.015d0 * sin((2.d0*FF-2.d0*DD)/rad) &
|
||||
+0.011d0 * sin((MM-4.d0*DD)/rad)
|
||||
|
||||
latecl = latecl &
|
||||
-0.173d0 * sin((FF-2.d0*DD)/rad) &
|
||||
-0.055d0 * sin((MM-FF-2.d0*DD)/rad) &
|
||||
-0.046d0 * sin((MM+FF-2.d0*DD)/rad) &
|
||||
+0.033d0 * sin((FF+2.d0*DD)/rad) &
|
||||
+0.017d0 * sin((2.d0*MM+FF)/rad)
|
||||
|
||||
r = 60.36298d0 &
|
||||
- 3.27746d0*cos(MM/rad) &
|
||||
- 0.57994d0*cos((MM-2.d0*DD)/rad) &
|
||||
- 0.46357d0*cos(2.d0*DD/rad) &
|
||||
- 0.08904d0*cos(2.d0*MM/rad) &
|
||||
+ 0.03865d0*cos((2.d0*MM-2.d0*DD)/rad) &
|
||||
- 0.03237d0*cos((2.d0*DD-Ms)/rad) &
|
||||
- 0.02688d0*cos((MM+2.d0*DD)/rad) &
|
||||
- 0.02358d0*cos((MM-2.d0*DD+Ms)/rad) &
|
||||
- 0.02030d0*cos((MM-Ms)/rad) &
|
||||
+ 0.01719d0*cos(DD/rad) &
|
||||
+ 0.01671d0*cos((MM+Ms)/rad)
|
||||
|
||||
dist=r*6378.140d0
|
||||
|
||||
! Geocentric coordinates:
|
||||
! Rectangular ecliptic coordinates of the moon:
|
||||
|
||||
xg = r * cos(lonecl/rad)*cos(latecl/rad)
|
||||
yg = r * sin(lonecl/rad)*cos(latecl/rad)
|
||||
zg = r * sin(latecl/rad)
|
||||
|
||||
! Rectangular equatorial coordinates of the moon:
|
||||
xe = xg
|
||||
ye = yg*cos(ecl/rad) - zg*sin(ecl/rad)
|
||||
ze = yg*sin(ecl/rad) + zg*cos(ecl/rad)
|
||||
|
||||
! Right Ascension, Declination:
|
||||
RA = mod(rad*atan2(ye,xe)+360.d0,360.d0)
|
||||
Dec = rad*atan2(ze,sqrt(xe*xe + ye*ye))
|
||||
|
||||
! Now convert to topocentric system:
|
||||
mpar=rad*asin(1.d0/r)
|
||||
! alt_topoc = alt_geoc - mpar*cos(alt_geoc)
|
||||
gclat = lat - 0.1924d0*sin(2.d0*lat/rad)
|
||||
rho = 0.99883d0 + 0.00167d0*cos(2.d0*lat/rad)
|
||||
GMST0 = (Ls + 180.d0)/15.d0
|
||||
LST = mod(GMST0+UT+lon/15.d0+48.d0,24.d0) !LST in hours
|
||||
HA = 15.d0*LST - RA !HA in degrees
|
||||
g = rad*atan(tan(gclat/rad)/cos(HA/rad))
|
||||
topRA = RA - mpar*rho*cos(gclat/rad)*sin(HA/rad)/cos(Dec/rad)
|
||||
topDec = Dec - mpar*rho*sin(gclat/rad)*sin((g-Dec)/rad)/sin(g/rad)
|
||||
|
||||
HA = 15.d0*LST - topRA !HA in degrees
|
||||
if(HA.gt.180.d0) HA=HA-360.d0
|
||||
if(HA.lt.-180.d0) HA=HA+360.d0
|
||||
|
||||
pi=0.5d0*twopi
|
||||
pio2=0.5d0*pi
|
||||
call dcoord(pi,pio2-lat/rad,0.d0,lat/rad,ha*twopi/360,topDec/rad,az,el)
|
||||
Az=az*rad
|
||||
El=El*rad
|
||||
|
||||
return
|
||||
end subroutine moon2
|
73
lib/moondop.f90
Normal file
73
lib/moondop.f90
Normal file
@ -0,0 +1,73 @@
|
||||
subroutine MoonDop(nyear,month,nday,uth4,lon4,lat4,RAMoon4, &
|
||||
DecMoon4,LST4,HA4,AzMoon4,ElMoon4,vr4,dist4)
|
||||
|
||||
implicit real*8 (a-h,o-z)
|
||||
real*4 uth4 !UT in hours
|
||||
real*4 lon4 !West longitude, degrees
|
||||
real*4 lat4 !Latitude, degrees
|
||||
real*4 RAMoon4 !Topocentric RA of moon, hours
|
||||
real*4 DecMoon4 !Topocentric Dec of Moon, degrees
|
||||
real*4 LST4 !Locat sidereal time, hours
|
||||
real*4 HA4 !Local Hour angle, degrees
|
||||
real*4 AzMoon4 !Topocentric Azimuth of moon, degrees
|
||||
real*4 ElMoon4 !Topocentric Elevation of moon, degrees
|
||||
real*4 vr4 !Radial velocity of moon wrt obs, km/s
|
||||
real*4 dist4 !Echo time, seconds
|
||||
|
||||
real*8 LST
|
||||
real*8 RME(6) !Vector from Earth center to Moon
|
||||
real*8 RAE(6) !Vector from Earth center to Obs
|
||||
real*8 RMA(6) !Vector from Obs to Moon
|
||||
real*8 pvsun(6)
|
||||
real*8 rme0(6)
|
||||
logical km,bary
|
||||
|
||||
data rad/57.2957795130823d0/,twopi/6.28310530717959d0/
|
||||
|
||||
km=.true.
|
||||
dlat=lat4/rad
|
||||
dlong1=lon4/rad
|
||||
elev1=200.d0
|
||||
call geocentric(dlat,elev1,dlat1,erad1)
|
||||
|
||||
dt=100.d0 !For numerical derivative, in seconds
|
||||
UT=uth4
|
||||
|
||||
! NB: geodetic latitude used here, but geocentric latitude used when
|
||||
! determining Earth-rotation contribution to Doppler.
|
||||
|
||||
call moon2(nyear,month,nDay,UT-dt/3600.d0,dlong1*rad,dlat*rad, &
|
||||
RA,Dec,topRA,topDec,LST,HA,Az0,El0,dist)
|
||||
call toxyz(RA/rad,Dec/rad,dist,rme0) !Convert to rectangular coords
|
||||
|
||||
call moon2(nyear,month,nDay,UT,dlong1*rad,dlat*rad, &
|
||||
RA,Dec,topRA,topDec,LST,HA,Az,El,dist)
|
||||
call toxyz(RA/rad,Dec/rad,dist,rme) !Convert to rectangular coords
|
||||
|
||||
phi=LST*twopi/24.d0
|
||||
call toxyz(phi,dlat1,erad1,rae) !Gencentric numbers used here!
|
||||
radps=twopi/(86400.d0/1.002737909d0)
|
||||
rae(4)=-rae(2)*radps !Vel of Obs wrt Earth center
|
||||
rae(5)=rae(1)*radps
|
||||
rae(6)=0.d0
|
||||
|
||||
do i=1,3
|
||||
rme(i+3)=(rme(i)-rme0(i))/dt
|
||||
rma(i)=rme(i)-rae(i)
|
||||
rma(i+3)=rme(i+3)-rae(i+3)
|
||||
enddo
|
||||
|
||||
call fromxyz(rma,alpha1,delta1,dtopo0) !Get topocentric coords
|
||||
vr=dot(rma(4),rma)/dtopo0
|
||||
|
||||
RAMoon4=topRA
|
||||
DecMoon4=topDec
|
||||
LST4=LST
|
||||
HA4=HA
|
||||
AzMoon4=Az
|
||||
ElMoon4=El
|
||||
vr4=vr
|
||||
dist4=dist
|
||||
|
||||
return
|
||||
end subroutine MoonDop
|
88
lib/sun.f90
Normal file
88
lib/sun.f90
Normal file
@ -0,0 +1,88 @@
|
||||
subroutine sun(y,m,DD,UT,lon,lat,RA,Dec,LST,Az,El,mjd,day)
|
||||
|
||||
implicit none
|
||||
|
||||
integer y !Year
|
||||
integer m !Month
|
||||
integer DD !Day
|
||||
integer mjd !Modified Julian Date
|
||||
real UT !UT!in hours
|
||||
real RA,Dec !RA and Dec of sun
|
||||
|
||||
! NB: Double caps here are single caps in the writeup.
|
||||
|
||||
! Orbital elements of the Sun (also N=0, i=0, a=1):
|
||||
real w !Argument of perihelion
|
||||
real e !Eccentricity
|
||||
real MM !Mean anomaly
|
||||
real Ls !Mean longitude
|
||||
|
||||
! Other standard variables:
|
||||
real v !True anomaly
|
||||
real EE !Eccentric anomaly
|
||||
real ecl !Obliquity of the ecliptic
|
||||
real d !Ephemeris time argument in days
|
||||
real r !Distance to sun, AU
|
||||
real xv,yv !x and y coords in ecliptic
|
||||
real lonsun !Ecliptic long and lat of sun
|
||||
!Ecliptic coords of sun (geocentric)
|
||||
real xs,ys
|
||||
!Equatorial coords of sun (geocentric)
|
||||
real xe,ye,ze
|
||||
real lon,lat
|
||||
real GMST0,LST,HA
|
||||
real xx,yy,zz
|
||||
real xhor,yhor,zhor
|
||||
real Az,El
|
||||
|
||||
real day
|
||||
real rad
|
||||
data rad/57.2957795/
|
||||
|
||||
! Time in days, with Jan 0, 2000 equal to 0.0:
|
||||
d=367*y - 7*(y+(m+9)/12)/4 + 275*m/9 + DD - 730530 + UT/24.0
|
||||
mjd=d + 51543
|
||||
ecl = 23.4393 - 3.563e-7 * d
|
||||
|
||||
! Compute updated orbital elements for Sun:
|
||||
w = 282.9404 + 4.70935e-5 * d
|
||||
e = 0.016709 - 1.151e-9 * d
|
||||
MM = mod(356.0470d0 + 0.9856002585d0 * d + 360000.d0,360.d0)
|
||||
Ls = mod(w+MM+720.0,360.0)
|
||||
|
||||
EE = MM + e*rad*sin(MM/rad) * (1.0 + e*cos(M/rad))
|
||||
EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.0 - e*cos(EE/rad))
|
||||
|
||||
xv = cos(EE/rad) - e
|
||||
yv = sqrt(1.0-e*e) * sin(EE/rad)
|
||||
v = rad*atan2(yv,xv)
|
||||
r = sqrt(xv*xv + yv*yv)
|
||||
lonsun = mod(v + w + 720.0,360.0)
|
||||
! Ecliptic coordinates of sun (rectangular):
|
||||
xs = r * cos(lonsun/rad)
|
||||
ys = r * sin(lonsun/rad)
|
||||
|
||||
! Equatorial coordinates of sun (rectangular):
|
||||
xe = xs
|
||||
ye = ys * cos(ecl/rad)
|
||||
ze = ys * sin(ecl/rad)
|
||||
|
||||
! RA and Dec in degrees:
|
||||
RA = rad*atan2(ye,xe)
|
||||
Dec = rad*atan2(ze,sqrt(xe*xe + ye*ye))
|
||||
|
||||
GMST0 = (Ls + 180.0)/15.0
|
||||
LST = mod(GMST0+UT+lon/15.0+48.0,24.0) !LST in hours
|
||||
HA = 15.0*LST - RA !HA in degrees
|
||||
xx = cos(HA/rad)*cos(Dec/rad)
|
||||
yy = sin(HA/rad)*cos(Dec/rad)
|
||||
zz = sin(Dec/rad)
|
||||
xhor = xx*sin(lat/rad) - zz*cos(lat/rad)
|
||||
yhor = yy
|
||||
zhor = xx*cos(lat/rad) + zz*sin(lat/rad)
|
||||
Az = mod(rad*atan2(yhor,xhor) + 180.0 + 360.0,360.0)
|
||||
El = rad*asin(zhor)
|
||||
day=d-1.5
|
||||
|
||||
return
|
||||
end subroutine sun
|
14
lib/tm2.f90
Normal file
14
lib/tm2.f90
Normal file
@ -0,0 +1,14 @@
|
||||
subroutine tm2(day,xlat4,xlon4,xl4,b4)
|
||||
|
||||
implicit real*8 (a-h,o-z)
|
||||
parameter (RADS=0.0174532925199433d0)
|
||||
|
||||
real*4 day4,xlat4,xlon4,xl4,b4
|
||||
|
||||
glat=xlat4*RADS
|
||||
glong=xlon4*RADS
|
||||
call tmoonsub(day,glat,glong,el,rv,xl,b,pax)
|
||||
xl4=xl
|
||||
b4=b
|
||||
|
||||
end subroutine tm2
|
25
lib/toxyz.f90
Normal file
25
lib/toxyz.f90
Normal file
@ -0,0 +1,25 @@
|
||||
subroutine toxyz(alpha,delta,r,vec)
|
||||
|
||||
implicit real*8 (a-h,o-z)
|
||||
real*8 vec(3)
|
||||
|
||||
vec(1)=r*cos(delta)*cos(alpha)
|
||||
vec(2)=r*cos(delta)*sin(alpha)
|
||||
vec(3)=r*sin(delta)
|
||||
|
||||
return
|
||||
end subroutine toxyz
|
||||
|
||||
subroutine fromxyz(vec,alpha,delta,r)
|
||||
|
||||
implicit real*8 (a-h,o-z)
|
||||
real*8 vec(3)
|
||||
data twopi/6.283185307d0/
|
||||
|
||||
r=sqrt(vec(1)**2 + vec(2)**2 + vec(3)**2)
|
||||
alpha=atan2(vec(2),vec(1))
|
||||
if(alpha.lt.0.d0) alpha=alpha+twopi
|
||||
delta=asin(vec(3)/r)
|
||||
|
||||
return
|
||||
end subroutine fromxyz
|
Loading…
Reference in New Issue
Block a user