Access in CMake via ${WSJT_SHARE_DESTINATION}/${WSJT_DATA_DESTINATION}
Access in wsjtx.exe using Configuration::data_dir()
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5487 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Release builds were incrorrectly selecting a high level of Hamlib
trace verbosity.
Added a new CMake option to turn on maximum Hamlib trace verbosity
when required (WSJT_HAMLIB_VERBOSE_TRACE default=OFF). The current
WSJT_HAMLIB_TRACE (default=OFF) now only turns on tracing at warning
level and above, this option must be set ON before the
WSJT_HAMLIB_VERBOSE_TRACE option becomes available. Release
configuration builds use a Hamlib trace level of error or above by
default.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5261 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Pass the temporary directory to jt9 and use it to give the correct
paths to temporary files. Also jt9 passes the absolute path to
kvasd.dat in the temporary directory to kvasd.
Clear out all the annoying cruft that has accumulated due to having to
run with $CWD as the temporary directory.
Use QStandardPaths to find the writable data directory where needed
rather than passing it around between objects. This now works because
the $CWD hasn't been changed.
Do away with the CMake option WSJT_STANDARD_FILE_LOCATIONS as it is no
longer needed.
Fix astro status file azel.dat formatting.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4732 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
The kavasd binary is not open source so cannot be automatically
bundled with WSJT-X on Linux.
The CMake option WSJT_INCLUDE_KVASD has been added with a default of
OFF in Linux Release configuration builds.
Merged from wsjtx-1.4 branch.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4498 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
An ambiguity existed between release candidates and development
versions as there was no definitive identification for development
versions.
Added a new version number suffix of '-devel' which appears if the
release candidate number is missing or zero in Versions.cmake and the
revision is not marked as a release version, also in Versions.cmake.
Also re-factored setting of version number suffiexes to a single place
in in CMake/VersionCompute.cmake.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4422 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
The location of documentation files on Linux distributions is
controlled to a certain extent. Using the QStandardPaths::locate()
method helps us with this.
Work round the misbehaviour of QCoreApplication::applicationDirPath()
when the CWD has been changed by working out the documentation
location before changing the CWD to a temporary directory. This path
is now provided by the Configuration settings class which also manages
other run time paths.
Updated Debian packaging to move a little nearer a conforming DEB
file.
Added a basic manpage for rigctld-wsjtx.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4364 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
So that a manual can be viewed without an Internet connection a second
manual action has been added to the WSJT_X help menu. This shells out
to the default web browser with a local file target.
The build has been enhanced to install and package the current version
of the HTML user manual as downloaded from the project web site at
build time
The package file locations have been adjusted to be compatible with
the QStandardPaths class so that its locate() method can be used to
portably access resources like this local help file
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4359 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Since the manual URL is used in both the installer and the WSJT-X code
the definition of the URL (CMake variable PROJECT_MANUAL) is defined
in the CMakeList.txt file and propagated to the source via the
wsjtx_config.h header.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4252 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Sometimes parts of the application are not fully ready for release at
release time. This option allows such features to be enabled
conditionally at configure time.
The CMake option WSJT_ENABLE_EXPERIMENTAL_FEATURES is used to control
this ability. Normally you will not need to change it as it behaves
in a reasonable way. The option is ON in debug build configurations
and OFF in non-debug configuratiuons.
The option is made available in all source modules via the
WSJT_ENABLE_EXPERIMENTAL_FEATURES macro which is defined to 1 if the
option is ON and to 0 if it is OFF.
Since this default behavior is potentially dangerous because it can
mean that release builds contain different code from debug builds; the
option may be set to OFF in debug configurations in the normal way
(cmake-gui, edit CMakeCache.txt, etc.) to achieve a debug build
similar to a default release build.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4182 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
WSJT-X has a capability of redirecting Qt debugging output (qDebug,
qWarning etc.) to a trace file 'wsjtx_trace.log' which is created in
the application run directory if not already present.
Setting the CMake build option WSJT_QDEBUG_TO_FILE to ON will enable
this feature.
It should be noted that this option is not compatible with a
distributibutable official release since writing to the application
directory is not recommended. Also in a full Release configuration
build all Qt debugging code is elided so no useful trace would be
obtained anyway.
The CMake option WSJT_QDEBUG_IN_RELEASE may be useful in concert with
this option as it causes Qt debugging statements to remain in place in
a Release build configuration. Again not recommended in a full
Release build since the debugging code both slows down the application
and adds unecessary bloat to the executable size.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4032 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
default).
Reorganized Modulator interface so that it can control the stream
it writes to.
Make sure only QAudioOutput::stop is called at the end of sending
rather than QAudioOutput::reset which discards pending samples.
Added a quick close option to the Modulator::stop slot to discard
pending buffers if required.
Fix issue in CW synthesizer that was causing CW to be inverted
occasionally.
Made global arrays of symbols volatile because compiler waa
optimizing away reads in sound thread. These global variables
must go eventually as they are a multi-threading hazard.
Simplified TX sequencing to remove some duplicate signals.
Increased range of TX attenuator from 10dB to 30dB. This is mainly for
non-Windows platforms where the attenuator isn't linearized correctly.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3985 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79