Commit Graph

10 Commits

Author SHA1 Message Date
Bill Somerville
a867a3ca18
Updates to Omni-Rig interface in line with suggestions from Alex, VE3NEA
Includes tidying up some old and obsolete code.
2019-05-30 23:32:09 +01:00
Bill Somerville
424ed88645 Take advantage of the forthcommng DX Lab Commander enhancement
V12.2.6 of  teh DX Lab Suite  Commander finally has a  way to suppress
mode rationalization  when setting  the split  Tx frequency.  This now
means that we  can now honor the  radio setting to not  change the rig
modulation mode. This  should help with a number of  rigs that require
different modes  on teh Tx and  Rx VFOs for optimal  wide band digital
operation.  This   will  also  help   with  some  rig   and  interface
combinations that lock  up or otherwise misbehave when  setting the Tx
VFO mode at certain times with respect to other rig control commands.

This change also improves mode  setting in general hopefully closing a
few corner case issues when starting  up and when transmitting for the
first time in a session.

Included  is  the  latest  DX  Lab  Suite  Commander  TCP/IP  commands
documentation correct for v12.2.6.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@7030 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-08-13 23:33:54 +00:00
Bill Somerville
2cfbb15b4f Rig control overhaul to implement generic Doppler shift tracking
The  concept of  a nominal  receive  and transmit  frequency has  been
introduced. This is  used as a base frequency  for Doppler correction,
frequency setting  and reporting. The  start up frequency is  now zero
which is  updated by the first  rig control status report.  This needs
more  work to  accommodate  calling frequency  plus working  frequency
operation as is used for random MS operation etc..

The  main  window  frequency  display  now  shows  the  transmit  dial
frequency while transmitting.

The mode changing logic sequence has been changed such that the rig is
correctly put  into and  taken out  of split mode  as required  by the
target mode.  This also  avoids the "other"  VFO having  its frequency
changed when  entering a mode that  does not use split  operating like
WSPR.

The main window  band combo box edit  may now be used to  input an kHz
offset  from the  current MHz  dial  frequency. This  is intended  for
setting  a sked  or working  frequency on  the VHF  and up  bands. For
example the working frequency for 23cms  might be set to 1296MHz and a
working  frequency of  1296.3MHz would  be selected  by selecting  the
23cms band  with the combo box  drop down list and  then entering 300k
into the band combo box edit widget.

When using JT4 modes a CTRL+Click on the waterfall adjusts the nominal
frequency such  that the frequency  clicked on  becomes the Tx  and Rx
frequency using  the fixed 1000Hz  DF that  JT4 modes use.   This will
probably be extended to all QSO modes when used in VHF & up mode. This
assumes that 1000Hz is an optimal DF  for both Tx and Rx and therefore
one  can "net"  to an  off frequency,  but visible  on the  waterfall,
caller with one click.

Improvements to OmniRig  rig control including use of  the serial port
control lines RTS or DTR, on the  CAT serial port used by OmniRig, for
PTT control.

Incrementing transaction sequence numbers added to messages to and from
the rig control  thread. This enables round trip status  to be tracked
and associated with a request. For  example a command that might cause
several  asynchronous  status  updates  can  now  be  tracked  in  the
originating thread such  that it is clear which updates  are caused by
executing the  request. This in turn  allows updates to be  held until
the request is complete i.e. the  state is consistent with the results
of the request.

Messages  to the  rig control  thread are  now posted  as a  new state
(Transceiver::TransceiverState) object. The  rig control thread tracks
requests and  actions any differences  between the prior  requests and
the new state.

The rig  control thread is now  stored on the  heap so that it  can be
closed down  and released as needed.  Along with this the  rig control
close  down  semantics  are  better defined  avoiding  some  potential
deadlock situations.

If the rig  is placed into split  mode it will be  reverted to simplex
mode when the rig connection is closed.

When  using direct  rig control  via Hamlib,  rigs that  have A/B  VFO
arrangements and  no method to query  the current VFO like  many Icoms
and  the Yaesu  FT-817/857/897(D)  series now  have smarted  frequency
updating requiring no  VFO changes when changing  the frequency.  This
is particularly  important when doing  Tx Doppler correction  to avoid
glitches.

The implementation  of emulated  split operating  mode ("Fake  It") is
simplified and improved.

A dummy  Hamlib transceiver for PTT  control on a separate  port is no
long instantiated if CAT or VOX PTT control is selected.

The resolution and  any rounding of the rig CAT  frequency set and get
commands is determined automatically  upon opening the rig connection.
This is needed to determine the  rate of frequency updates for Doppler
tracking. It also allows the rig to be more accurately controlled.

Frequency  calibration is  calculated separately  for the  receive and
transmit frequencies.

Whether  the  rig  modulation  mode  should be  controlled  is  now  a
constructor  argument rather  than  being passed  with individual  rig
control requests.

Doppler  shift  correction  is   considerably  enhanced  with  simpler
controls and much  better rig control.  A new mode  of tracking called
"receive only" is introduced for those with rigs that cannot be QSY:ed
via  CAT  when transmitting.   Such  rigs  have a  Doppler  correction
calculated  for the  middle of  the next  transmit period  just before
transmission starts. While  using Doppler tracking it  is now possible
to adjust the  sked frequency either using the new  kHz offset feature
of the main  window band combo box  or by directly tuning  the rig VFO
knob while holding down the CTRL key.

The astronomical data window that includes Doppler tracking control is
now opened  and closed using a  checkable menu item to  avoid it being
accidentally closed.

Debug  configuration  rig  control  diagnostic  messages  now  have  a
facility argument for clearer and more standardized trace messages.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6590 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2016-04-06 17:11:58 +00:00
Bill Somerville
28b4c31dee Various WSPR fixes
Make WSPRnet.org spot uploads tolerant  of network issues, spots still
get  discarded for  any period  that  has problems  but now  uploading
resumes on the next period.

Ensure that  decoded text starts  with correct  font by not  using the
base class append method directly.

Fixed a major  memory leak in the WSPRNet class  which was not freeing
processed request reply objects.

Added some helpful debug prints in WSPRnet.org spot processing.

Also  tidied  up a  number  of  class  implementations that  were  not
including he MOC generated code.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5560 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-06-09 14:30:23 +00:00
Bill Somerville
a84b7cdfd3 ------------------------------------------------------------------------
r5297 | bsomervi | 2015-04-26 17:26:54 +0100 (Sun, 26 Apr 2015) | 49 lines

Various defect repairs and ambigous behaviour clarifications

A regression introduced in v1.5.0-rc1 where PTT on an alternate serial
port when using no CAT control is resolved.

A regression introduced  in v1.5.0-rc1 where the  network server field
was not being restored in the settings dialog has been resolved.

In settings the "Test PTT" button is now styled  by checked state.

The  "Test PTT"  button is  enabled without  needing click  "Test CAT"
first when no CAT rig control is selected.

Various parts of the settings dialog  are now disabled when no CAT rig
control is selected. These are the "Mode" group, the "Split Operation"
group and the "Monitor returns to last used frequency" check box. None
of  these have  any  visible impact  nor make  sense  without CAT  rig
control.

Initialization and teardown of rig  control internals has been revised
to avoid several problems related to timing and when switching between
different  CAT  settings. This  includes  improvements  in having  the
operating frequency restored  between sessions when not  using CAT rig
control.

The  initialization   of  OmniRig   connections  has   been  improved,
unfortunately it is  still possible to get an  exception when clicking
the  "Test  CAT" button  where  just  clicking  "OK" and  leaving  the
settings dialog will probably work.

Some unnecessary  CAT commands output  during direct rig  control have
been elided to reduce the level of traffic a little.

The handling of  some automatically generated free  text messages used
when the station is a type 2  compound callsign or is working a type 2
compound callsign has  been improved. This is related to  how a double
click  on  a  message  of  the   form  "DE  TI4/N0URE  73"  is  double
clicked. The  new behaviour depends  on whether the current  "DX Call"
matches the  call in the message.   This resolves the ambiguity  as to
whether this message  is a sign off  at the end of a  QSO with current
operator (a 73  message is generated) or a tail  end opportunity where
the message should be treated the same  as a CQ or QRZ message (WSJT-X
QSYs  to the  frequency, generates  messages and  selects message  one
ready to call).  This still  leaves some potential ambiguous behaviors
in  this complex  area but  selecting "Clear  DX call  and grid  after
logging" should resolve most of them.

Rig  control trace  messages have  been cleaned  up and  are now  more
helpful, less verbose and, tidier in the source code.
------------------------------------------------------------------------

Merged from the wsjtx-1.5 branch.



git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5298 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-04-26 16:41:12 +00:00
Bill Somerville
498d4af7a9 Rig polling not detecting changes against cached values correctly
The  PollingTransceiver class  was not  dealing with  frequency change
commands correctly when the mode was not specified.

Improved some diagnostic messages.

Only leave transmit mode when PTT is seen to drop.

Merged from wsjtx-1.4 branch.



git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4886 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2015-01-08 23:51:56 +00:00
Bill Somerville
6a6e56b712 Set split mode before and after setting Tx frequency
Also cleaned up duplicate trace output.

Using the  DX Lab  Suite Commander  CAT interface  with rigs  like the
TS-2000  requires  that  split  mode  be set  after  changing  the  Tx
frequency. This  is because  setting teh  Tx frequency  disables split
mode.

With some Icom rigs  the rig must be in split  mode before setting the
Tx frequency otherwise the Tx frequency change will not be honoured.

To fix  this the sequence set-split,  set-tx-frequency, set-split must
always be used to change the Tx frequency.

Support for new DX Lab Suite Commander TCP/IP commands

Dave AA6YQ has added two new commands to the Commander server to allow
more reliable control.

Requires DX Lab Suite Commander 11.1.4 or later.

Ensure split Tx frequency agrees with UI before transmitting

Ensure split works on Yaesu via Hamlib without breaking others

Also improved class HamlibTransceiver debug trace messages.

Merged r4776-r4779 from wsjtx-1.4 branch.



git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4780 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-12-06 20:23:29 +00:00
Bill Somerville
d157c20016 Add those pesky MOC generated code includes that break libraries if
they are included by automoc.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4035 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-04-16 15:15:46 +00:00
Bill Somerville
fbafa17b3b Added context information to Hamlib interface exception messages.
Enhanced TransceiverBase  error exception  type to allow  for language
translatable messages.

git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4033 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-04-16 14:59:00 +00:00
Bill Somerville
9247e10115 Added support for use of "Standard" locations for writable files.
This allows  writable files  to be  located in  the "correct"
         location for  each platform rather  than in the  directory of
         the  executable  which, in  general,  is  not recommended  or
         allowed in some cases.

         A preprocessor macro  WSJT_STANDARD_FILE_LOCATIONS is used to
         switch be tween old and new functionality, currently it is on
         by default.  It  can be turned off by defining  it to a false
         value (0)  or more simply  with cmake-gui setting  the option
         with  the same  name.  JTAlert  can  only work  with the  old
         non-standard file  locations until  Laurie VK3AMA  chooses to
         support the new file locations.

         Even  if the  above is  not  enabled; the  QSettings file  is
         written to a  user specific location so it will  be shared by
         all instances  of the  program (i.e.  across  upgrades).  See
         below for multiple concurrent instance support changes.

Added a command line parser module for Fortran.

         Added 'lib/options.f90'  to facilitate more  complex argument
         passing to jt9 to cover explicit file locations.

Changed the way multiple concurrent instances are handled.

         This is  to allow the program  to be run multiple  times from
         the same installation directory.

         A new wsjtx command line  optional argument is available "-r"
         or  "--rig"   which  enables  multiple   concurrent  instance
         support.  The  parameter of the  new option is a  unique name
         signifying  a rig  or equivalent.   The name  is used  as the
         shared memory segment key and  in window titles.  The name is
         also used to  access unique settings files  and writable data
         files like ALL.TXT  and log files.  No attempt  has been made
         to share these files between concurrent instances.

         If  "-r" or  "--rig" is  used  without a  parameter it  still
         enables  multiple   concurrent  instance  support   for  that
         instance.  All instances must use  a unique parameter, one of
         which may be empty.

         The        rig       name        is       appended        the
         QCoreApplication::applicationName() for convenient usage like
         window titles.

Set non Qt locale to "C".

         This ensures that C library functions give consistent results
         whatever the  system locale is set  to.  QApplication follows
         the system locale as before.  Thus using QApplication and its
         descendants  like widgets  and QString  for all  user visible
         formating will give correct l10n and using C/C++ library will
         give consistent formatting across locales.

Added top level C++ exception handling to main.cpp.

         Because  the   new  transceiver  framework   uses  exceptions
         internally, the main function now handles any exceptions that
         aren't caught.

Retired devsetup, replaced with Configuration.

         Configuration  is  a  class  that encapsulates  most  of  the
         configuration  behavior.   Because  rig configuration  is  so
         closely coupled with rig operation, Configuration serves as a
         proxy  for   access  to  the  rig   control  functions.   See
         Configuration.hpp  for  more  details  of  the  Configuration
         interface.

Menu changes.

         Various checkable  menu actions moved  from main menu  to the
         Configuration  dialog.   The  whole settings  menu  has  been
         retired with  the single  "Settings..."  action moved  to the
         file  menu  for  consistency  on  Mac  where  it  appears  as
         "Preferences" in line with Mac guidelines.

New data models for data used by the application.

         ADIF amateur band parameters,  free text message macros, spot
         working   frequencies  and,   station  information   (station
         descriptions and transverter offsets per band) each implement
         the  QAbstractItemModel interface  allowing them  to be  used
         directly with  Qt view widgets  (Bands.hpp, FrequencyList.hpp
         and, StationList.hpp).  Configuration  manages maintenance of
         an instance of  all but the former of the  above models.  The
         ADIF band  model is  owned by  Configuration but  requires no
         user maintenance as it is immutable.

Band combo box gets more functionality.

         This  widget is  now an  editable QComboBox  with some  extra
         input capabilities.

         The popup list is still the list of spot working frequencies,
         now  showing the  actual  frequency decorated  with the  band
         name.  This  allows multiple  spot frequencies  on a  band if
         required.

         The  line edit  allows direct  frequency entry  in mega-Hertz
         with  a completer  built  in to  suggest  the available  spot
         working frequencies.   It also  allows band name  entry where
         the  first  available  spot working  frequency  is  selected.
         Recognized band names are those  that are defined by the ADIF
         specification and  can be found  in in the  implementation of
         the ADIF bands model (Bands.cpp).

         If an out of band frequency  is chosen, the line edit shows a
         warning red  background and the  text "OOB".  Out of  band is
         only defined  by the  ADIF band limits  which in  general are
         wider than any entities regulations.

Qt 5.2 now supports default audio i/p and o/p devices.

         These devices are placeholders  for whatever the user defines
         as the  default device.   Because of  this they  need special
         treatment as  the actual device  used is chosen at  open time
         behind the scenes.

Close-down behavior is simplified.

         The close-down  semantics were broken such  that some objects
         were not being shut down cleanly, this required amendments to
         facilitate correct close down of threads.

User font selection added to Configuration UI.

         Buttons to set the application font and the font for the band
         and  Rx frequency  activity widgets  have been  added to  the
         Configuration UI to replace the file based font size control.

Free text macros now selected directly.

         The free text line edit  widgets are now editable combo boxes
         that have  the current free  text macro definitions  as their
         popup  list.   The old  context  menu  to  do this  has  been
         retired.

Astronomical data window dynamically formatted and has font a chooser.

         This window is now autonomous,  has its own font chooser and,
         dynamically resizes to cover the contents.

Double click to Tx enabled now has its own widget in the status bar.

QDir used for portable path and file name handling throughout.

The  "Monitor", "Decode",  "Enable  Tx" and,  "Tune"  buttons are  now
checkable.

         Being checkable allows these  buttons control their own state
         and rendering.

Calls to PSK Reporter interface simplified.

         In   mainwindow.cpp  the   calls   to   this  interface   are
         rationalized to just 3 locations.

Manipulation of ALL.TXT simplified.

         Moved, where possible, to common functions.

Elevated frequency types to be Qt types.

         Frequency  and FrequencyDelta  defined as  Qt types  in their
         meta-type system  (Radio.hpp).  They  are integral  types for
         maximum accuracy.

Re-factored rig control calls in mainwindow.cpp.

         The new  Configuration proxy  access to rig  control required
         many changes  (mostly simplifications) to the  MainWindow rig
         control code.  Some  common code has been  gathered in member
         functions   like   qsy(),   monitor(),   band_changed()   and
         auto_tx_mode().

Rig control enhancements.

         The  rig control  for  clients interface  is  declared as  an
         abstract    interface   (See    Transceiver.hpp).    Concrete
         implementations of this interface are provided for the Hamlib
         rig  control library,  DX Lab  Suite Commander  via a  TCP/IP
         command channel, Ham  Radio Deluxe also via  a TCP/IP command
         channel and, OmniRig via its Windows COM server interface.

         Concrete Transceiver implementations are expected to be moved
         to a separate thread after construction since many operations
         are blocking  and not suitable  for running in a  GUI thread.
         To facilitate this all  instantiation of concrete Transceiver
         instances are handled by  Configuration using a factory class
         (TransceiverFactory)   for   configuration  parameter   based
         instantiation.

         Various   common  functionality   shared  by   different  rig
         interface implementations  are factored out into  helper base
         classes that  implement or delegate parts  of the Transceiver
         interface.  They  are TransceiverBase  which caches  state to
         minimize expensive rig commands, it also maps the Transceiver
         interface  into a  more  convenient  form for  implementation
         (template methods).  PollingTransceiver that provides a state
         polling   mechanism  that   only   reports  actual   changes.
         EmulateSplitTransceiver  that  provides  split  operation  by
         QSYing on PTT state changes.

         EmulateSplitTransceiver can  be used with  any implementation
         as  it follows  the GoF  Decorator pattern  and can  wrap any
         Transceiver implementation.

         OmniRigTransceiver is  derived directly  from TransceiverBase
         since  it doesn't  require  polling due  to its  asynchronous
         nature.  OmniRigTransceiver is only built on Windows as it is
         a COM server client.  To build  it you must first install the
         OmniRig     client     on     the     development     machine
         (http://www.dxatlas.com/omnirig/).

         DXLabSuiteCommanderTransceiver          derives          from
         PollingTransceiver since  it is a  synchronous communications
         channel.   No  third  party  library  is  required  for  this
         interface.

         HRDTransceiver also derives from PollingTransceiver.  The HRD
         interface  library has  been  reverse  engineered to  provide
         functionality with  all available versions of  HRD.  No third
         party libraries are required.

         HamlibTransceiver  likewise  derives from  PollingTransceiver
         since  the Hamlib  asynchronous interface  is non-functional.
         Although this  class will interface with  the release version
         of Hamlib (1.2.15.3);  for correct operation on  most rigs it
         needs to  run with the  latest master branch code  of Hamlib.
         During development many changes to Hamlib have been submitted
         and accepted,  hence this requirement.  Hamlib  source can be
         obtained from git://git.code.sf.net/p/hamlib/code  and at the
         time of writing he master branch was at SHA 6e4432.

         The Hamlib interface directly calls the "C" interface and the
         modified rigclass.{h,cpp} files have been retired.

         There is a rig type selection of "None" which may be used for
         non-CAT  rigs, this  is actually  a connection  to the  dummy
         Hamlib device.

         PollingTransvceiver   derives    from   TransceiverBase   and
         TransceiverBase derives from the Transceiver interface.

         Each interface implementation offers  some possibility of PTT
         control via  a different serial  port than the CAT  port.  We
         also support PTT  control directly via a  second serial port.
         This is done  by delegating to a dummy  Hamlib instance which
         is   only   used   for   PTT  control.    This   means   that
         DXLabSuiteCommanderTransceiver,       HRDTransceiver      and
         OmniRigTransceiver  always  wrap  a  dummy  HamlibTransceiver
         instance.  The  factory class TransceiverFactory  manages all
         these constructional complexities.

         Serial port  selection combo  boxes are  now editable  with a
         manually  entered value  being  saved to  the settings  file.
         This allows  a non-standard  port device  to be  used without
         having to edit the settings file manually.

         For TCP/IP  network CAT  interfaces; the network  address and
         port  may  be specified  allowing  the  target device  to  be
         located on a different machine  from the one running wsjtx if
         required.  The  default used when  the address field  is left
         blank is the correct one for normal usage on the local host.

         Selecting a polling  interval of zero is  no longer possible,
         this  is because  the rig  control capability  can no  longer
         support one way connection.  This  is in line with most other
         CAT control software.

         In the Configuration dialog there are options to select split
         mode  control  by  the  software  and  mode  control  by  the
         software.  For  the former  "None", "Rig"  and "Fake  it" are
         available,  for  the latter  "None",  "USB"  and, "Data"  are
         available.  Because  tone generation is implicitly  linked to
         split mode  operation; it is  no longer possible to  have the
         software in split  mode and the rig not or  vice versa.  This
         may mean some rigs cannot be used in split mode and therefore
         not in dual JT65+JT9 until  issues with CAT control with that
         rig are  resolved.  Single  mode with VOX  keying and  no CAT
         control are still possible so even the most basic transceiver
         setup is supported as before.

         Configuration now  supports a  frequency offset  suitable for
         transverter   operation.     The   station    details   model
         (StationList.hpp) includes  a column  to store an  offset for
         each band if required.

CMake build script improvements.

         The CMakeLists.txt from the  'lib' directory has been retired
         with its  contents merged into the  top level CMakeLists.txt.
         Install  target support  has been  greatly improved  with the
         Release build  configuration now building a  fully standalone
         installation  on Mac  and Windows.   The Debug  configuration
         still   builds   an   installation   that   has   environment
         dependencies for  external libraries, which is  desirable for
         testing and debugging.

         Package target  support is largely complete  for Mac, Windows
         and, Linux, it should be possible to build release installers
         directly from CMake/CPack.

         Cmake FindXXXX.cmake  modules have been added  to improve the
         location of fftw-3 and Hamlib packages.

         Version numbers are now stored in Versions.cmake and work in
         concert with automatic svn revision lookup during build.  The
         version string becomes 'rlocal'± if there are any uncommitted
         changes in the build source tree.

Moved resource like files to Qt resources.

      	 Because location of resource files  (when they cannot go into
      	 the  installation directory  because of  packaging rules)  is
      	 hard to standardize.  I have used the Qt  resource system for
      	 all ancillary data files. Some  like kvasd.dat are dumped out
      	 to the temp (working directory)  because they are accessed by
      	 an external program, others like the audio samples are copied
      	 out so  they appear in  the data directory under  the default
      	 save directory.



git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2014-03-26 13:21:00 +00:00