[For now, I'll make do with () in place of <>.]
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6418 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This merge brings the WSPR feature development into the main line
ready for release in a future v1.6 release.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@5424 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
The lib/Makefile.MinGW makefile has been enhanced to link to the DLL
version of fftw3 which is the normal version of the library that you
get with the Windows installer.
The library is located by passing the FFTW3_DIR variable on the make
command line. For example on my system:
$ # In a MinGW console
$ cd ~/src/wsjtx/lib
$ make QT_DIR=/c/Tools/Qt/5.2.1/mingw48_32 \
> FFTW3_DIR=/c/Tools/fftw-3.3.3-dll32-2
Similarly with the qmake project:
$ # In a Qt MinGW 32-bit console
$ cd ~/src/wsjtx
$ qmake \
> HAMLIB_DIR=c:/test-install/hamlib/mingw48_32 \
> FFTW3_DIR=c:/Tools/fftw-3.3.3-dll32-2
$ mingw32-make
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4551 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
If built with qmake the version string will now be "Not for Release"
since some many features essential to making a complete package are
currently only build when using CMake.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4372 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
The define PROJECT_MANUAL is defined by the CMake build system, this
has been hard coded in the wsjtx.pro file to allow old style qmake
builds to continue working.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4332 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
It is now possible to override the default locations hard coded in
this file with local preferences.
The variables that can be overridden are HAMLIB_DIR and DESTDIR.
To override, add local variable assignments on the intial qmake
command line. E.g.:
qmake HAMLIB_DIR=c:\my\local\hamlib\installation DESTDIR=c:\my\local\install\destination
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@4141 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
(Many changes still needed to wsjtx.pro, in order to build from
within QtCreator.)
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3945 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This allows writable files to be located in the "correct"
location for each platform rather than in the directory of
the executable which, in general, is not recommended or
allowed in some cases.
A preprocessor macro WSJT_STANDARD_FILE_LOCATIONS is used to
switch be tween old and new functionality, currently it is on
by default. It can be turned off by defining it to a false
value (0) or more simply with cmake-gui setting the option
with the same name. JTAlert can only work with the old
non-standard file locations until Laurie VK3AMA chooses to
support the new file locations.
Even if the above is not enabled; the QSettings file is
written to a user specific location so it will be shared by
all instances of the program (i.e. across upgrades). See
below for multiple concurrent instance support changes.
Added a command line parser module for Fortran.
Added 'lib/options.f90' to facilitate more complex argument
passing to jt9 to cover explicit file locations.
Changed the way multiple concurrent instances are handled.
This is to allow the program to be run multiple times from
the same installation directory.
A new wsjtx command line optional argument is available "-r"
or "--rig" which enables multiple concurrent instance
support. The parameter of the new option is a unique name
signifying a rig or equivalent. The name is used as the
shared memory segment key and in window titles. The name is
also used to access unique settings files and writable data
files like ALL.TXT and log files. No attempt has been made
to share these files between concurrent instances.
If "-r" or "--rig" is used without a parameter it still
enables multiple concurrent instance support for that
instance. All instances must use a unique parameter, one of
which may be empty.
The rig name is appended the
QCoreApplication::applicationName() for convenient usage like
window titles.
Set non Qt locale to "C".
This ensures that C library functions give consistent results
whatever the system locale is set to. QApplication follows
the system locale as before. Thus using QApplication and its
descendants like widgets and QString for all user visible
formating will give correct l10n and using C/C++ library will
give consistent formatting across locales.
Added top level C++ exception handling to main.cpp.
Because the new transceiver framework uses exceptions
internally, the main function now handles any exceptions that
aren't caught.
Retired devsetup, replaced with Configuration.
Configuration is a class that encapsulates most of the
configuration behavior. Because rig configuration is so
closely coupled with rig operation, Configuration serves as a
proxy for access to the rig control functions. See
Configuration.hpp for more details of the Configuration
interface.
Menu changes.
Various checkable menu actions moved from main menu to the
Configuration dialog. The whole settings menu has been
retired with the single "Settings..." action moved to the
file menu for consistency on Mac where it appears as
"Preferences" in line with Mac guidelines.
New data models for data used by the application.
ADIF amateur band parameters, free text message macros, spot
working frequencies and, station information (station
descriptions and transverter offsets per band) each implement
the QAbstractItemModel interface allowing them to be used
directly with Qt view widgets (Bands.hpp, FrequencyList.hpp
and, StationList.hpp). Configuration manages maintenance of
an instance of all but the former of the above models. The
ADIF band model is owned by Configuration but requires no
user maintenance as it is immutable.
Band combo box gets more functionality.
This widget is now an editable QComboBox with some extra
input capabilities.
The popup list is still the list of spot working frequencies,
now showing the actual frequency decorated with the band
name. This allows multiple spot frequencies on a band if
required.
The line edit allows direct frequency entry in mega-Hertz
with a completer built in to suggest the available spot
working frequencies. It also allows band name entry where
the first available spot working frequency is selected.
Recognized band names are those that are defined by the ADIF
specification and can be found in in the implementation of
the ADIF bands model (Bands.cpp).
If an out of band frequency is chosen, the line edit shows a
warning red background and the text "OOB". Out of band is
only defined by the ADIF band limits which in general are
wider than any entities regulations.
Qt 5.2 now supports default audio i/p and o/p devices.
These devices are placeholders for whatever the user defines
as the default device. Because of this they need special
treatment as the actual device used is chosen at open time
behind the scenes.
Close-down behavior is simplified.
The close-down semantics were broken such that some objects
were not being shut down cleanly, this required amendments to
facilitate correct close down of threads.
User font selection added to Configuration UI.
Buttons to set the application font and the font for the band
and Rx frequency activity widgets have been added to the
Configuration UI to replace the file based font size control.
Free text macros now selected directly.
The free text line edit widgets are now editable combo boxes
that have the current free text macro definitions as their
popup list. The old context menu to do this has been
retired.
Astronomical data window dynamically formatted and has font a chooser.
This window is now autonomous, has its own font chooser and,
dynamically resizes to cover the contents.
Double click to Tx enabled now has its own widget in the status bar.
QDir used for portable path and file name handling throughout.
The "Monitor", "Decode", "Enable Tx" and, "Tune" buttons are now
checkable.
Being checkable allows these buttons control their own state
and rendering.
Calls to PSK Reporter interface simplified.
In mainwindow.cpp the calls to this interface are
rationalized to just 3 locations.
Manipulation of ALL.TXT simplified.
Moved, where possible, to common functions.
Elevated frequency types to be Qt types.
Frequency and FrequencyDelta defined as Qt types in their
meta-type system (Radio.hpp). They are integral types for
maximum accuracy.
Re-factored rig control calls in mainwindow.cpp.
The new Configuration proxy access to rig control required
many changes (mostly simplifications) to the MainWindow rig
control code. Some common code has been gathered in member
functions like qsy(), monitor(), band_changed() and
auto_tx_mode().
Rig control enhancements.
The rig control for clients interface is declared as an
abstract interface (See Transceiver.hpp). Concrete
implementations of this interface are provided for the Hamlib
rig control library, DX Lab Suite Commander via a TCP/IP
command channel, Ham Radio Deluxe also via a TCP/IP command
channel and, OmniRig via its Windows COM server interface.
Concrete Transceiver implementations are expected to be moved
to a separate thread after construction since many operations
are blocking and not suitable for running in a GUI thread.
To facilitate this all instantiation of concrete Transceiver
instances are handled by Configuration using a factory class
(TransceiverFactory) for configuration parameter based
instantiation.
Various common functionality shared by different rig
interface implementations are factored out into helper base
classes that implement or delegate parts of the Transceiver
interface. They are TransceiverBase which caches state to
minimize expensive rig commands, it also maps the Transceiver
interface into a more convenient form for implementation
(template methods). PollingTransceiver that provides a state
polling mechanism that only reports actual changes.
EmulateSplitTransceiver that provides split operation by
QSYing on PTT state changes.
EmulateSplitTransceiver can be used with any implementation
as it follows the GoF Decorator pattern and can wrap any
Transceiver implementation.
OmniRigTransceiver is derived directly from TransceiverBase
since it doesn't require polling due to its asynchronous
nature. OmniRigTransceiver is only built on Windows as it is
a COM server client. To build it you must first install the
OmniRig client on the development machine
(http://www.dxatlas.com/omnirig/).
DXLabSuiteCommanderTransceiver derives from
PollingTransceiver since it is a synchronous communications
channel. No third party library is required for this
interface.
HRDTransceiver also derives from PollingTransceiver. The HRD
interface library has been reverse engineered to provide
functionality with all available versions of HRD. No third
party libraries are required.
HamlibTransceiver likewise derives from PollingTransceiver
since the Hamlib asynchronous interface is non-functional.
Although this class will interface with the release version
of Hamlib (1.2.15.3); for correct operation on most rigs it
needs to run with the latest master branch code of Hamlib.
During development many changes to Hamlib have been submitted
and accepted, hence this requirement. Hamlib source can be
obtained from git://git.code.sf.net/p/hamlib/code and at the
time of writing he master branch was at SHA 6e4432.
The Hamlib interface directly calls the "C" interface and the
modified rigclass.{h,cpp} files have been retired.
There is a rig type selection of "None" which may be used for
non-CAT rigs, this is actually a connection to the dummy
Hamlib device.
PollingTransvceiver derives from TransceiverBase and
TransceiverBase derives from the Transceiver interface.
Each interface implementation offers some possibility of PTT
control via a different serial port than the CAT port. We
also support PTT control directly via a second serial port.
This is done by delegating to a dummy Hamlib instance which
is only used for PTT control. This means that
DXLabSuiteCommanderTransceiver, HRDTransceiver and
OmniRigTransceiver always wrap a dummy HamlibTransceiver
instance. The factory class TransceiverFactory manages all
these constructional complexities.
Serial port selection combo boxes are now editable with a
manually entered value being saved to the settings file.
This allows a non-standard port device to be used without
having to edit the settings file manually.
For TCP/IP network CAT interfaces; the network address and
port may be specified allowing the target device to be
located on a different machine from the one running wsjtx if
required. The default used when the address field is left
blank is the correct one for normal usage on the local host.
Selecting a polling interval of zero is no longer possible,
this is because the rig control capability can no longer
support one way connection. This is in line with most other
CAT control software.
In the Configuration dialog there are options to select split
mode control by the software and mode control by the
software. For the former "None", "Rig" and "Fake it" are
available, for the latter "None", "USB" and, "Data" are
available. Because tone generation is implicitly linked to
split mode operation; it is no longer possible to have the
software in split mode and the rig not or vice versa. This
may mean some rigs cannot be used in split mode and therefore
not in dual JT65+JT9 until issues with CAT control with that
rig are resolved. Single mode with VOX keying and no CAT
control are still possible so even the most basic transceiver
setup is supported as before.
Configuration now supports a frequency offset suitable for
transverter operation. The station details model
(StationList.hpp) includes a column to store an offset for
each band if required.
CMake build script improvements.
The CMakeLists.txt from the 'lib' directory has been retired
with its contents merged into the top level CMakeLists.txt.
Install target support has been greatly improved with the
Release build configuration now building a fully standalone
installation on Mac and Windows. The Debug configuration
still builds an installation that has environment
dependencies for external libraries, which is desirable for
testing and debugging.
Package target support is largely complete for Mac, Windows
and, Linux, it should be possible to build release installers
directly from CMake/CPack.
Cmake FindXXXX.cmake modules have been added to improve the
location of fftw-3 and Hamlib packages.
Version numbers are now stored in Versions.cmake and work in
concert with automatic svn revision lookup during build. The
version string becomes 'rlocal'± if there are any uncommitted
changes in the build source tree.
Moved resource like files to Qt resources.
Because location of resource files (when they cannot go into
the installation directory because of packaging rules) is
hard to standardize. I have used the Qt resource system for
all ancillary data files. Some like kvasd.dat are dumped out
to the temp (working directory) because they are accessed by
an external program, others like the audio samples are copied
out so they appear in the data directory under the default
save directory.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3929 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Note to developers: Not sure about the makefiles...
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3835 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
2. The main window can be expanded wider to allow those with large screens to use larger fonts
3. New class DecodedText handles the formatted text from decoder.f90.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3564 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Audio input can be mono, left of stereo pair or, right of stereo
pair. Audio output can be mono, left of stereo pair, right of stereo
pair or, both of stereo pair (the same output goes to both channels in
both mode). Settings are remembered between sessions.
Stream channel suport is implemented mainly in the new AudioDevice
class which is now the base class of Modulator and Detector.
Audio channels are selected on the configuration screen. Only
supported channel configurations per device can be selected.
Audio output volume (actually attenuation) is now possible from the
GUI. I have added a slider control to the main window; I don't
necessarily propose this as a final release location for the widget as
I understand that changes to the main screen are sensitive. This
location is just a starting suggestion for a trial. The volume
(attenuation) setting is remembered between sessions and is not device
dependent. This addresses all issues of volume setting on *nix
versions since there is no need to use pavucontrol to set audio
levels. The volume (attenuation) action is logarithmic.
Shaped CW keying has been implemented in Modulator although it is
currently disabled as I am not 100% happy wth the implementation. If
you want to try it define the C++ preprocessor macro WSJT_SOFT_KEYING
in your build.
The Modulator instance has been moved to the same thread as the
SoundOutput instance as it should have been since the output callback
already operates in that thread. Cross thread slots are now correctly
called in a thread safe way as a result.
A number of files where in the SVN repository with DOS line endings
which I have removed. SVN users on Windows need set the config for
native line endings so that DOS line endings are automatically
stripped on checkin.
The DevSetup class now holds it's UI o the heap to reduce imapact on
build dependencies.
The application settings are now passed to objects from the main.cpp
file. Management of settings are moved to the responsible classes (top
level windows). This has involved a few settings moving groups so
users will see some settings reverting to default values on the first
run of an update.
Persistance of top level windows geometry and position is now handled
in the recommened manner (constructor for load, closeEvent for store
in modal windows and, hideEvent for store in modeless dialogs).
The MainWindow class now holds its children as members rather than
global variables.
The LogQSO class now hides its implementation and takes responsibility
for its own settings and widows rendering parameters. A new settings
file group is implemented to persist the LogQSO class settings.
The WideGraph class now hides its implementation and manages its own
settings and window rendering parameters.
--This line, and those below, will be ignored--
M Modulator.cpp
M rigclass.cpp
M widegraph.cpp
M signalmeter.cpp
M soundin.cpp
M soundout.cpp
M mainwindow.h
M main.cpp
M meterwidget.h
M devsetup.cpp
M mainwindow.ui
M Detector.cpp
M logqso.h
M rigclass.h
M mainwindow.cpp
M meterwidget.cpp
M soundin.h
M devsetup.ui
M wsjtx.pro
M devsetup.h
M logqso.cpp
M Modulator.hpp
M psk_reporter.cpp
M killbyname.cpp
M Detector.hpp
M signalmeter.h
M widegraph.h
M psk_reporter.h
M soundout.h
M PSKReporter.h
M lib/afc65b.f90
M lib/gran.c
M lib/usleep.c
M lib/afc9.f90
M lib/wrapkarn.c
A AudioDevice.hpp
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3542 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Currently only Qt5 or above is known to work with this code. It may be
possible to backport it to Qt4 if required.
Audio output goes back to a separate thread to try and minimize
stutters in streaming on Windows particularly.
A crash on Linux due to mishandling of stereo audio output has been
fixed and both left and right channels are now correctly synthesised
with identical contents.
Rigs are enumerated directly from hamlib API rather than running a sub
process reading output of rigctl -l. This was initially done to get
rid of some GUI thread blocking in the configuration dialog, but is
generally a better way of doing it anyway.
Some refactoring in MainWindow to accomodate the audio streaming,
modulation and detecting classes.
Exit handling for application refactored to use signals rather than
brute force event loop exit. This was required to get correct thread
shutdown semantics.
The GUI update timer is now stopped during application shutdown which
is necessary to stop crashes when shutting down gracefully with
signals and window close() calls.
There is an outstanding issue with Linux audio streams; the QAudio
Input/Output classes create a new stream name each time a stream is
started. This doesn't play well with PulseAudio utilities such as
pavucontrol to set stream volume as settings are lost every tx
period. I have tried to keep a single stream for all output but there
are problems restarting it that haven't been resolved yet.
The QtCreator project file has been rearranged a little because it
passes all the object files to the linker rather than using an archive
library. Since the GNU linker is single pass; the object files need to
be in a logical order with definitions appearing afer references to
them. This was required to avoid a linking error.
The lib/Makefile.linux has been enhanced to use the fortran compiler
to locate the correct version of the Fortran library to use. This is
necessary on the latest Linux distros because the unversioned symlink
to compiler support libraries is no longer provided. This only an
issue with mixed programming language links where the linker driver
for one language has to link support libraraies for another language.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3532 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
Qt's built-in QAudio calls rather than PortAudio. Also includes some
refactoring of the arrangement for these calls, and more use of C++ style.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3523 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
The old Makefile.MinGW has been renamed Makefile.MinGW.qt4.
Be sure to check settings in lines 13-19 of wsjtx.pro.
Soon to come: Permanent changeover from PortAudio to QAudio ?
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@3521 ab8295b8-cf94-4d9e-aec4-7959e3be5d79