#include "Modulator.hpp" #include #include #include #include #include "mainwindow.h" #include "soundout.h" #include "moc_Modulator.cpp" extern float gran(); // Noise generator (for tests only) #define RAMP_INCREMENT 64 // MUST be an integral factor of 2^16 #if defined (WSJT_SOFT_KEYING) # define SOFT_KEYING WSJT_SOFT_KEYING #else # define SOFT_KEYING 1 #endif double const Modulator::m_twoPi = 2.0 * 3.141592653589793238462; // float wpm=20.0; // unsigned m_nspd=1.2*48000.0/wpm; // m_nspd=3072; //18.75 WPM unsigned const Modulator::m_nspd = 2048 + 512; // 22.5 WPM Modulator::Modulator (unsigned frameRate, unsigned periodLengthInSeconds, QObject * parent) : AudioDevice {parent} , m_quickClose {false} , m_phi {0.0} , m_toneSpacing {0.0} , m_fSpread {0.0} , m_itone0 {0} , m_frameRate {frameRate} , m_period {periodLengthInSeconds} , m_state {Idle} , m_tuning {false} , m_cwLevel {false} { } void Modulator::start (unsigned symbolsLength, double framesPerSymbol, double frequency, double toneSpacing, SoundOutput * stream, Channel channel, bool synchronize, double dBSNR) { Q_ASSERT (stream); // Time according to this computer which becomes our base time qint64 ms0 = QDateTime::currentMSecsSinceEpoch() % 86400000; if (m_state != Idle) { stop (); } m_quickClose = false; m_symbolsLength = symbolsLength; m_isym0 = std::numeric_limits::max (); // big number m_frequency0 = 0.; m_phi = 0.; m_addNoise = dBSNR < 0.; m_nsps = framesPerSymbol; m_frequency = frequency; m_amp = std::numeric_limits::max (); m_toneSpacing = toneSpacing; // noise generator parameters if (m_addNoise) { m_snr = qPow (10.0, 0.05 * (dBSNR - 6.0)); m_fac = 3000.0; if (m_snr > 1.0) m_fac = 3000.0 / m_snr; } unsigned mstr = ms0 % (1000 * m_period); // ms in period m_ic = (mstr / 1000) * m_frameRate; // we start exactly N seconds // into period where N is the next whole second m_silentFrames = 0; // calculate number of silent frames to send if (synchronize && !m_tuning) { m_silentFrames = m_ic + m_frameRate - (mstr * m_frameRate / 1000); } initialize (QIODevice::ReadOnly, channel); Q_EMIT stateChanged ((m_state = (synchronize && m_silentFrames) ? Synchronizing : Active)); m_stream = stream; if (m_stream) m_stream->restart (this); } void Modulator::tune (bool newState) { m_tuning = newState; if (!m_tuning) stop (true); } void Modulator::stop (bool quick) { m_quickClose = quick; close (); } void Modulator::close () { if (m_stream) { if (m_quickClose) { m_stream->reset (); } else { m_stream->stop (); } } if (m_state != Idle) { Q_EMIT stateChanged ((m_state = Idle)); } AudioDevice::close (); } qint64 Modulator::readData (char * data, qint64 maxSize) { static int j0=-1; static double toneFrequency0=1500.0; double toneFrequency=1500.0; if(maxSize==0) return 0; Q_ASSERT (!(maxSize % qint64 (bytesPerFrame ()))); // no torn frames Q_ASSERT (isOpen ()); qint64 numFrames (maxSize / bytesPerFrame ()); qint16 * samples (reinterpret_cast (data)); qint16 * end (samples + numFrames * (bytesPerFrame () / sizeof (qint16))); qint64 framesGenerated (0); switch (m_state) { case Synchronizing: { if (m_silentFrames) { // send silence up to first second framesGenerated = qMin (m_silentFrames, numFrames); for ( ; samples != end; samples = load (0, samples)) { // silence } m_silentFrames -= framesGenerated; return framesGenerated * bytesPerFrame (); } Q_EMIT stateChanged ((m_state = Active)); m_cwLevel = false; m_ramp = 0; // prepare for CW wave shaping } // fall through case Active: { unsigned isym (m_tuning ? 0 : m_ic / (4.0 * m_nsps)); // Actual fsample=48000 if (isym >= m_symbolsLength && icw[0] > 0) { // start CW condition // Output the CW ID m_dphi = m_twoPi * m_frequency / m_frameRate; unsigned const ic0 = m_symbolsLength * 4 * m_nsps; unsigned j (0); while (samples != end) { j = (m_ic - ic0) / m_nspd + 1; // symbol of this sample bool level {bool (icw[j])}; m_phi += m_dphi; if (m_phi > m_twoPi) m_phi -= m_twoPi; qint16 sample=0; float amp=32767.0; if(m_ramp!=0) { float x=qSin(float(m_phi)); if(SOFT_KEYING) { amp=qAbs(qint32(m_ramp)); if(amp>32767.0) amp=32767.0; } sample=round(amp*x); } if (int (j) <= icw[0] && j < NUM_CW_SYMBOLS) // stop condition { samples = load (postProcessSample (sample), samples); ++framesGenerated; ++m_ic; } else { Q_EMIT stateChanged ((m_state = Idle)); return framesGenerated * bytesPerFrame (); } // adjust ramp if ((m_ramp != 0 && m_ramp != std::numeric_limits::min ()) || level != m_cwLevel) { // either ramp has terminated at max/min or direction has changed m_ramp += RAMP_INCREMENT; // ramp } m_cwLevel = level; } return framesGenerated * bytesPerFrame (); } double const baud (12000.0 / m_nsps); // fade out parameters (no fade out for tuning) unsigned const i0 = m_tuning ? 9999 * m_nsps : (m_symbolsLength - 0.017) * 4.0 * m_nsps; unsigned const i1 = m_tuning ? 9999 * m_nsps : m_symbolsLength * 4.0 * m_nsps; for (unsigned i = 0; i < numFrames && m_ic <= i1; ++i) { isym = m_tuning ? 0 : m_ic / (4.0 * m_nsps); //Actual fsample=48000 if (isym != m_isym0 || m_frequency != m_frequency0) { if(itone[0]>=100) { toneFrequency0=itone[0]; } else { if(m_toneSpacing==0.0) { toneFrequency0=m_frequency + itone[isym]*baud; } else { toneFrequency0=m_frequency + itone[isym]*m_toneSpacing; } } m_dphi = m_twoPi * toneFrequency0 / m_frameRate; m_isym0 = isym; m_frequency0 = m_frequency; //??? } int j=m_ic/480; if(m_fSpread>0.0 and j!=j0) { float x1=(float)qrand()/RAND_MAX; float x2=(float)qrand()/RAND_MAX; toneFrequency = toneFrequency0 + 0.5*m_fSpread*(x1+x2-1.0); m_dphi = m_twoPi * toneFrequency / m_frameRate; j0=j; } m_phi += m_dphi; if (m_phi > m_twoPi) m_phi -= m_twoPi; if (m_ic > i0) m_amp = 0.98 * m_amp; if (m_ic > i1) m_amp = 0.0; samples = load (postProcessSample (m_amp * qSin (m_phi)), samples); ++framesGenerated; ++m_ic; } if (m_amp == 0.0) { // TODO G4WJS: compare double with zero might not be wise if (icw[0] == 0) { // no CW ID to send Q_EMIT stateChanged ((m_state = Idle)); return framesGenerated * bytesPerFrame (); } m_phi = 0.0; } m_frequency0 = m_frequency; // done for this chunk - continue on next call return framesGenerated * bytesPerFrame (); } // fall through case Idle: break; } Q_ASSERT (Idle == m_state); return 0; } qint16 Modulator::postProcessSample (qint16 sample) const { if (m_addNoise) { // Test frame, we'll add noise qint32 s = m_fac * (gran () + sample * m_snr / 32768.0); if (s > std::numeric_limits::max ()) { s = std::numeric_limits::max (); } if (s < std::numeric_limits::min ()) { s = std::numeric_limits::min (); } sample = s; } return sample; }