/* sfrsd.c A soft-decision decoder for the JT65 (63,12) Reed-Solomon code. This decoding scheme is built around Phil Karn's Berlekamp-Massey errors and erasures decoder. The approach is inspired by a number of publications, including the stochastic Chase decoder described in "Stochastic Chase Decoding of Reed-Solomon Codes", by Leroux et al., IEEE Communications Letters, Vol. 14, No. 9, September 2010 and "Soft-Decision Decoding of Reed-Solomon Codes Using Successive Error- and-Erasure Decoding," by Soo-Woong Lee and B. V. K. Vijaya Kumar. Steve Franke K9AN, Urbana IL, September 2015 */ #include #include #include #include #include #include "rs.h" static void *rs; //*************************************************************************** void usage(void) { printf("Usage: sfrsd [options...] \n"); printf(" input file should be in kvasd format\n"); printf("\n"); printf("Options:\n"); printf(" -n number of random erasure vectors to try\n"); printf(" -v verbose\n"); } int main(int argc, char *argv[]){ extern char *optarg; extern int optind; int rxdat[63], rxprob[63], rxdat2[63], rxprob2[63]; int workdat[63], correct[63]; int era_pos[51]; int c, i, numera, nerr, nn=63, kk=12; char *infile; FILE *datfile, *logfile; int nsec, maxe, nads; float xlambda; int mrsym[63],mrprob[63],mr2sym[63],mr2prob[63]; int nsec2,ncount,dat4[12],bestdat[12]; int ntrials=10000; int verbose=0; int nhard=0,nhard_min=32768,nsoft=0,nsoft_min=32768, ncandidates; while ( (c = getopt(argc, argv, "n:qv")) !=-1 ) { switch (c) { case 'n': ntrials=(int)strtof(optarg,NULL); printf("ntrials set to %d\n",ntrials); break; case 'v': verbose=1; break; case 'q': //accept (and ignore) -q option for WSJT10 compatibility break; case '?': usage(); exit(1); } } if( optind+1 > argc) { // usage(); // exit(1); infile="kvasd.dat"; } else { infile=argv[optind]; } logfile=fopen("/tmp/sfrsd.log","a"); if( !logfile ) { printf("Unable to open sfrsd.log\n"); exit(1); } datfile=fopen(infile,"rb"); if( !datfile ) { printf("Unable to open kvasd.dat\n"); exit(1); } else { fread(&nsec,sizeof(int),1,datfile); fread(&xlambda,sizeof(float),1,datfile); fread(&maxe,sizeof(int),1,datfile); fread(&nads,sizeof(int),1,datfile); fread(&mrsym,sizeof(int),63,datfile); fread(&mrprob,sizeof(int),63,datfile); fread(&mr2sym,sizeof(int),63,datfile); fread(&mr2prob,sizeof(int),63,datfile); fread(&nsec2,sizeof(int),1,datfile); fread(&ncount,sizeof(int),1,datfile); // printf("ncount %d\n",ncount); fread(&dat4,sizeof(int),12,datfile); fclose(datfile); } // initialize the ka9q reed solomon encoder/decoder unsigned int symsize=6, gfpoly=0x43, fcr=3, prim=1, nroots=51; rs=init_rs_int(symsize, gfpoly, fcr, prim, nroots, 0); /* // debug int revdat[12], parity[51], correct[63]; for (i=0; i<12; i++) { revdat[i]=dat4[11-i]; printf("%d ",revdat[i]); } printf("\n"); encode_rs_int(rs,revdat,parity); for (i=0; i<63; i++) { if( i<12 ) { correct[i]=revdat[i]; printf("%d ",parity[i]); } else { correct[i]=parity[i-12]; } } printf("\n"); */ // reverse the received symbol vector for bm decoder for (i=0; i<63; i++) { rxdat[i]=mrsym[62-i]; rxprob[i]=mrprob[62-i]; rxdat2[i]=mr2sym[62-i]; rxprob2[i]=mr2prob[62-i]; } // sort the mrsym probabilities to find the least reliable symbols int k, pass, tmp, nsym=63; int probs[63], indexes[63]; for (i=0; i<63; i++) { indexes[i]=i; probs[i]=rxprob[i]; // must un-comment sfrsd metrics in demod64a } for (pass = 1; pass <= nsym-1; pass++) { for (k = 0; k < nsym - pass; k++) { if( probs[k] < probs[k+1] ) { tmp = probs[k]; probs[k] = probs[k+1]; probs[k+1] = tmp; tmp = indexes[k]; indexes[k] = indexes[k+1]; indexes[k+1] = tmp; } } } // see if we can decode using BM HDD (and calculate the syndrome vector) memset(era_pos,0,51*sizeof(int)); numera=0; memcpy(workdat,rxdat,sizeof(rxdat)); nerr=decode_rs_int(rs,workdat,era_pos,numera,1); if( nerr >= 0 ) { fprintf(logfile," BM decode nerrors= %3d : ",nerr); for(i=0; i<12; i++) printf("%2d ",workdat[11-i]); fprintf(logfile,"\n"); fclose(logfile); exit(0); } // generate random erasure-locator vectors and see if any of them // decode. This will generate a list of potential codewords. The // "soft" distance between each codeword and the received word is // used to decide which codeword is "best". // // srandom(time(NULL)); #ifdef WIN32 srand(0xdeadbeef); #else srandom(0xdeadbeef); #endif float p_erase; int thresh, nsum; ncandidates=0; for( k=0; k= 255 ) { p_erase = 0.5; } else if ( probs[62-i] >= 196 ) { p_erase = 0.6; } else if ( probs[62-i] >= 128 ) { p_erase = 0.6; } else if ( probs[62-i] >= 32 ) { p_erase = 0.6; } else { p_erase = 0.8; } thresh = p_erase*100; long int ir; #ifdef WIN32 ir=rand(); #else ir=random(); #endif if( ((ir % 100) < thresh ) && numera < 51 ) { era_pos[numera]=indexes[62-i]; numera=numera+1; } } nerr=decode_rs_int(rs,workdat,era_pos,numera,0); if( nerr >= 0 ) { ncandidates=ncandidates+1; for(i=0; i<12; i++) dat4[i]=workdat[11-i]; // fprintf(logfile,"loop1 decode nerr= %3d : ",nerr); // for(i=0; i<12; i++) fprintf(logfile, "%2d ",dat4[i]); // fprintf(logfile,"\n"); nhard=0; nsoft=0; nsum=0; for (i=0; i<63; i++) { nsum=nsum+rxprob[i]; if( workdat[i] != rxdat[i] ) { nhard=nhard+1; nsoft=nsoft+rxprob[i]; } } if( nsum != 0 ) { nsoft=63*nsoft/nsum; if( (nsoft < nsoft_min) ) { nsoft_min=nsoft; nhard_min=nhard; memcpy(bestdat,dat4,12*sizeof(int)); memcpy(correct,workdat,63*sizeof(int)); } } else { fprintf(logfile,"error - nsum %d nsoft %d nhard %d\n",nsum,nsoft,nhard); } // if( ncandidates >= 5000 ) { if( ncandidates >= ntrials/2 ) { break; } } } fprintf(logfile,"%d candidates after stochastic loop\n",ncandidates); // do Forney Generalized Minimum Distance pattern for (k=0; k<25; k++) { memset(era_pos,0,51*sizeof(int)); numera=2*k; for (i=0; i= 0 ) { ncandidates=ncandidates+1; for(i=0; i<12; i++) dat4[i]=workdat[11-i]; // fprintf(logfile,"GMD decode nerr= %3d : ",nerr); // for(i=0; i<12; i++) fprintf(logfile, "%2d ",dat4[i]); // fprintf(logfile,"\n"); nhard=0; nsoft=0; nsum=0; for (i=0; i<63; i++) { nsum=nsum+rxprob[i]; if( workdat[i] != rxdat[i] ) { nhard=nhard+1; nsoft=nsoft+rxprob[i]; } } if( nsum != 0 ) { nsoft=63*nsoft/nsum; if( (nsoft < nsoft_min) ) { nsoft_min=nsoft; nhard_min=nhard; memcpy(bestdat,dat4,12*sizeof(int)); memcpy(correct,workdat,63*sizeof(int)); } } else { fprintf(logfile,"error - nsum %d nsoft %d nhard %d\n",nsum,nsoft,nhard); } // if( ncandidates >=5000 ) { if( ncandidates >= ntrials/2 ) { break; } } } fprintf(logfile,"%d candidates after GMD\n",ncandidates); if( (ncandidates >= 0) && (nsoft_min < 36) && (nhard_min < 44) ) { for (i=0; i<63; i++) { fprintf(logfile,"%3d %3d %3d %3d %3d %3d\n",i,correct[i],rxdat[i],rxprob[i],rxdat2[i],rxprob2[i]); // fprintf(logfile,"%3d %3d %3d %3d %3d\n",i,workdat[i],rxdat[i],rxprob[i],rxdat2[i],rxprob2[i]); } fprintf(logfile,"**** ncandidates %d nhard %d nsoft %d nsum %d\n",ncandidates,nhard_min,nsoft_min,nsum); } else { nhard_min=-1; memset(bestdat,0,12*sizeof(int)); } datfile=fopen(infile,"wb"); if( !datfile ) { printf("Unable to open kvasd.dat\n"); return 1; } else { fwrite(&nsec,sizeof(int),1,datfile); fwrite(&xlambda,sizeof(float),1,datfile); fwrite(&maxe,sizeof(int),1,datfile); fwrite(&nads,sizeof(int),1,datfile); fwrite(&mrsym,sizeof(int),63,datfile); fwrite(&mrprob,sizeof(int),63,datfile); fwrite(&mr2sym,sizeof(int),63,datfile); fwrite(&mr2prob,sizeof(int),63,datfile); fwrite(&nsec2,sizeof(int),1,datfile); fwrite(&nhard_min,sizeof(int),1,datfile); fwrite(&bestdat,sizeof(int),12,datfile); fclose(datfile); } fprintf(logfile,"exiting sfrsd\n"); fflush(logfile); fclose(logfile); exit(0); }