subroutine polfit(y,npts,a) ! Input: y(npts) !Expect npts=4 ! Output: a(1) = baseline ! a(2) = amplitude ! a(3) = theta (deg) real y(npts) real a(3) real deltaa(3) integer ipk(1) save ! Set starting values: a(1)=minval(y) a(2)=maxval(y)-a(1) ipk=maxloc(y) a(3)=(ipk(1)-1)*45.0 deltaa(1:2)=0.1*a(2) deltaa(3)=10.0 nterms=3 ! Start the iteration chisqr=0. chisqr0=1.e6 iters=10 do iter=1,iters do j=1,nterms chisq1=fchisq_pol(y,npts,a) fn=0. delta=deltaa(j) 10 a(j)=a(j)+delta chisq2=fchisq_pol(y,npts,a) if(chisq2.eq.chisq1) go to 10 if(chisq2.gt.chisq1) then delta=-delta !Reverse direction a(j)=a(j)+delta tmp=chisq1 chisq1=chisq2 chisq2=tmp endif 20 fn=fn+1.0 a(j)=a(j)+delta chisq3=fchisq_pol(y,npts,a) if(chisq3.lt.chisq2) then chisq1=chisq2 chisq2=chisq3 go to 20 endif ! Find minimum of parabola defined by last three points delta=delta*(1./(1.+(chisq1-chisq2)/(chisq3-chisq2))+0.5) a(j)=a(j)-delta deltaa(j)=deltaa(j)*fn/3. ! write(*,4000) iter,j,a,deltaa,chisq2 !4000 format(2i2,2(2x,3f8.2),f12.5) enddo ! j=1,nterms chisqr=fchisq_pol(y,npts,a) ! write(*,4000) 0,0,a,chisqr if(chisqr.lt.1.0) exit if(deltaa(1).lt.0.01*(a(2)-a(1)) .and. deltaa(2).lt.0.01*(a(2)-a(1)) & .and. deltaa(3).lt.1.0) exit if(chisqr/chisqr0.gt.0.99) exit chisqr0=chisqr enddo ! iter a(3)=mod(a(3)+360.0,180.0) return end subroutine polfit real function fchisq_pol(y,npts,a) real y(npts),a(3) data rad/57.2957795/ chisq = 0. do i=1,npts theta=(i-1)*45.0 yfit=a(1) + a(2)*cos((theta-a(3))/rad)**2 chisq=chisq + (y(i) - yfit)**2 enddo fchisq_pol=chisq return end function fchisq_pol