/* This file is part of program wsprd, a detector/demodulator/decoder for the Weak Signal Propagation Reporter (WSPR) mode. File name: wsprd.c Copyright 2001-2015, Joe Taylor, K1JT Much of the present code is based on work by Steven Franke, K9AN, which in turn was based on earlier work by K1JT. Copyright 2014-2015, Steven Franke, K9AN License: GNU GPL v3 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "fano.h" #include "jelinek.h" #include "nhash.h" #include "wsprd_utils.h" #include "wsprsim_utils.h" #define max(x,y) ((x) > (y) ? (x) : (y)) // Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT, // FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE #define PATIENCE FFTW_ESTIMATE fftwf_plan PLAN1,PLAN2,PLAN3; unsigned char pr3[162]= {1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0, 0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1, 0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1, 1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1, 0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0, 0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1, 0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,1, 0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0, 0,0}; unsigned long nr; int printdata=0; //*************************************************************************** unsigned long readc2file(char *ptr_to_infile, float *idat, float *qdat, double *freq, int *wspr_type) { float *buffer; double dfreq; int i,ntrmin; char *c2file[15]; FILE* fp; buffer=malloc(sizeof(float)*2*65536); memset(buffer,0,sizeof(float)*2*65536); fp = fopen(ptr_to_infile,"rb"); if (fp == NULL) { fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile); return 1; } unsigned long nread=fread(c2file,sizeof(char),14,fp); nread=fread(&ntrmin,sizeof(int),1,fp); nread=fread(&dfreq,sizeof(double),1,fp); *freq=dfreq; nread=fread(buffer,sizeof(float),2*45000,fp); *wspr_type=ntrmin; for(i=0; i<45000; i++) { idat[i]=buffer[2*i]; qdat[i]=-buffer[2*i+1]; } if( nread == 2*45000 ) { return nread/2; } else { return 1; } free(buffer); } //*************************************************************************** unsigned long readwavfile(char *ptr_to_infile, int ntrmin, float *idat, float *qdat ) { unsigned long i, j, npoints; int nfft1, nfft2, nh2, i0; double df; nfft2=46080; //this is the number of downsampled points that will be returned nh2=nfft2/2; if( ntrmin == 2 ) { nfft1=nfft2*32; //need to downsample by a factor of 32 df=12000.0/nfft1; i0=1500.0/df+0.5; npoints=114*12000; } else if ( ntrmin == 15 ) { nfft1=nfft2*8*32; df=12000.0/nfft1; i0=(1500.0+112.5)/df+0.5; npoints=8*114*12000; } else { fprintf(stderr,"This should not happen\n"); return 1; } float *realin; fftwf_complex *fftin, *fftout; FILE *fp; short int *buf2; buf2 = malloc(npoints*sizeof(short int)); fp = fopen(ptr_to_infile,"rb"); if (fp == NULL) { fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile); return 1; } nr=fread(buf2,2,22,fp); //Read and ignore header nr=fread(buf2,2,npoints,fp); //Read raw data fclose(fp); realin=(float*) fftwf_malloc(sizeof(float)*nfft1); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft1); PLAN1 = fftwf_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE); for (i=0; inh2 ) j=j-nfft2; fftin[i][0]=fftout[j][0]; fftin[i][1]=fftout[j][1]; } fftwf_free(fftout); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2); PLAN2 = fftwf_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE); fftwf_execute(PLAN2); for (i=0; i0) && (k syncmax ) { //Save best parameters syncmax=ss; best_shift=lag; fbest=f0; } } // lag loop } //freq loop if( mode <=1 ) { //Send best params back to caller *sync=syncmax; *shift1=best_shift; *f1=fbest; return; } if( mode == 2 ) { *sync=syncmax; for (i=0; i<162; i++) { //Normalize the soft symbols fsum=fsum+fsymb[i]/162.0; f2sum=f2sum+fsymb[i]*fsymb[i]/162.0; } fac=sqrt(f2sum-fsum*fsum); for (i=0; i<162; i++) { fsymb[i]=symfac*fsymb[i]/fac; if( fsymb[i] > 127) fsymb[i]=127.0; if( fsymb[i] < -128 ) fsymb[i]=-128.0; symbols[i]=fsymb[i] + 128; } return; } return; } /*************************************************************************** symbol-by-symbol signal subtraction ****************************************************************************/ void subtract_signal(float *id, float *qd, long np, float f0, int shift0, float drift0, unsigned char* channel_symbols) { float dt=1.0/375.0, df=375.0/256.0; int i, j, k; float pi=4.*atan(1.0),twopidt, fp; float i0,q0; float c0[256],s0[256]; float dphi, cdphi, sdphi; twopidt=2*pi*dt; for (i=0; i<162; i++) { fp = f0 + ((float)drift0/2.0)*((float)i-81.0)/81.0; dphi=twopidt*(fp+((float)channel_symbols[i]-1.5)*df); cdphi=cos(dphi); sdphi=sin(dphi); c0[0]=1; s0[0]=0; for (j=1; j<256; j++) { c0[j]=c0[j-1]*cdphi - s0[j-1]*sdphi; s0[j]=c0[j-1]*sdphi + s0[j-1]*cdphi; } i0=0.0; q0=0.0; for (j=0; j<256; j++) { k=shift0+i*256+j; if( (k>0) & (k0) & (k0) && (k(nsig-1-nfilt/2) ) { norm=partialsum[nfilt/2+nsig-1-i]; } else { norm=1.0; } k=shift0+i; j=i+nfilt; if( (k>0) && (k path to writeable data files, default=\".\"\n"); printf(" -c write .c2 file at the end of the first pass\n"); printf(" -C maximum number of decoder cycles per bit, default 10000\n"); printf(" -d deeper search. Slower, a few more decodes\n"); printf(" -e x (x is transceiver dial frequency error in Hz)\n"); printf(" -f x (x is transceiver dial frequency in MHz)\n"); printf(" -H do not use (or update) the hash table\n"); printf(" -J use the stack decoder instead of Fano decoder\n"); printf(" -m decode wspr-15 .wav file\n"); printf(" -q quick mode - doesn't dig deep for weak signals\n"); printf(" -s single pass mode, no subtraction (same as original wsprd)\n"); printf(" -v verbose mode (shows dupes)\n"); printf(" -w wideband mode - decode signals within +/- 150 Hz of center\n"); printf(" -z x (x is fano metric table bias, default is 0.45)\n"); } //*************************************************************************** int main(int argc, char *argv[]) { extern char *optarg; extern int optind; int i,j,k; unsigned char *symbols, *decdata, *channel_symbols; signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0}; char *callsign, *call_loc_pow; char *ptr_to_infile,*ptr_to_infile_suffix; char *data_dir=NULL; char wisdom_fname[200],all_fname[200],spots_fname[200]; char timer_fname[200],hash_fname[200]; char uttime[5],date[7]; int c,delta,maxpts=65536,verbose=0,quickmode=0,more_candidates=0, stackdecoder=0; int writenoise=0,usehashtable=1,wspr_type=2, ipass; int writec2=0, npasses=2, subtraction=1; int shift1, lagmin, lagmax, lagstep, ifmin, ifmax, worth_a_try, not_decoded; unsigned int nbits=81, stacksize=200000; unsigned int npoints, metric, cycles, maxnp; float df=375.0/256.0/2; float freq0[200],snr0[200],drift0[200],sync0[200]; int shift0[200]; float dt=1.0/375.0, dt_print; double dialfreq_cmdline=0.0, dialfreq, freq_print; double dialfreq_error=0.0; float fmin=-110, fmax=110; float f1, fstep, sync1, drift1; float psavg[512]; float *idat, *qdat; clock_t t0,t00; float tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0; float tsync1=0.0,tsync2=0.0,ttotal=0.0; struct result { char date[7]; char time[5]; float sync; float snr; float dt; float freq; char message[23]; float drift; unsigned int cycles; int jitter; }; struct result decodes[50]; char *hashtab; hashtab=malloc(sizeof(char)*32768*13); memset(hashtab,0,sizeof(char)*32768*13); int nh; symbols=malloc(sizeof(char)*nbits*2); decdata=malloc(sizeof(char)*11); channel_symbols=malloc(sizeof(char)*nbits*2); callsign=malloc(sizeof(char)*13); call_loc_pow=malloc(sizeof(char)*23); float allfreqs[100]; char allcalls[100][13]; memset(allfreqs,0,sizeof(float)*100); memset(allcalls,0,sizeof(char)*100*13); int uniques=0, noprint=0, ndecodes_pass=0; // Parameters used for performance-tuning: unsigned int maxcycles=10000; //Decoder timeout limit float minsync1=0.10; //First sync limit float minsync2=0.12; //Second sync limit int iifac=8; //Step size in final DT peakup int symfac=50; //Soft-symbol normalizing factor int maxdrift=4; //Maximum (+/-) drift float minrms=52.0 * (symfac/64.0); //Final test for plausible decoding delta=60; //Fano threshold step float bias=0.45; //Fano metric bias (used for both Fano and stack algorithms) t00=clock(); fftwf_complex *fftin, *fftout; #include "./metric_tables.c" int mettab[2][256]; idat=malloc(sizeof(float)*maxpts); qdat=malloc(sizeof(float)*maxpts); while ( (c = getopt(argc, argv, "a:cC:de:f:HJmqstwvz:")) !=-1 ) { switch (c) { case 'a': data_dir = optarg; break; case 'c': writec2=1; break; case 'C': maxcycles=(unsigned int) strtoul(optarg,NULL,10); break; case 'd': more_candidates=1; break; case 'e': dialfreq_error = strtod(optarg,NULL); // units of Hz // dialfreq_error = dial reading - actual, correct frequency break; case 'f': dialfreq_cmdline = strtod(optarg,NULL); // units of MHz break; case 'H': usehashtable = 0; break; case 'J': //Stack (Jelinek) decoder, Fano decoder is the default stackdecoder = 1; break; case 'm': //15-minute wspr mode wspr_type = 15; break; case 'q': //no shift jittering quickmode = 1; break; case 's': //single pass mode (same as original wsprd) subtraction = 0; npasses = 1; break; case 'v': verbose = 1; break; case 'w': fmin=-150.0; fmax=150.0; break; case 'z': bias=strtod(optarg,NULL); //fano metric bias (default is 0.45) break; case '?': usage(); return 1; } } if( stackdecoder ) { stack=malloc(stacksize*sizeof(struct snode)); } if( optind+1 > argc) { usage(); return 1; } else { ptr_to_infile=argv[optind]; } // setup metric table for(i=0; i<256; i++) { mettab[0][i]=round( 10*(metric_tables[2][i]-bias) ); mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) ); } FILE *fp_fftwf_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer; strcpy(wisdom_fname,"."); strcpy(all_fname,"."); strcpy(spots_fname,"."); strcpy(timer_fname,"."); strcpy(hash_fname,"."); if(data_dir != NULL) { strcpy(wisdom_fname,data_dir); strcpy(all_fname,data_dir); strcpy(spots_fname,data_dir); strcpy(timer_fname,data_dir); strcpy(hash_fname,data_dir); } strncat(wisdom_fname,"/wspr_wisdom.dat",20); strncat(all_fname,"/ALL_WSPR.TXT",20); strncat(spots_fname,"/wspr_spots.txt",20); strncat(timer_fname,"/wspr_timer.out",20); strncat(hash_fname,"/hashtable.txt",20); if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "r"))) { //Open FFTW wisdom fftwf_import_wisdom_from_file(fp_fftwf_wisdom_file); fclose(fp_fftwf_wisdom_file); } fall_wspr=fopen(all_fname,"a"); fwsprd=fopen(spots_fname,"w"); // FILE *fdiag; // fdiag=fopen("wsprd_diag","a"); if((ftimer=fopen(timer_fname,"r"))) { //Accumulate timing data nr=fscanf(ftimer,"%f %f %f %f %f %f %f", &treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&ttotal); fclose(ftimer); } ftimer=fopen(timer_fname,"w"); if( strstr(ptr_to_infile,".wav") ) { ptr_to_infile_suffix=strstr(ptr_to_infile,".wav"); t0 = clock(); npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat); treadwav += (float)(clock()-t0)/CLOCKS_PER_SEC; if( npoints == 1 ) { return 1; } dialfreq=dialfreq_cmdline - (dialfreq_error*1.0e-06); } else if ( strstr(ptr_to_infile,".c2") !=0 ) { ptr_to_infile_suffix=strstr(ptr_to_infile,".c2"); npoints=readc2file(ptr_to_infile, idat, qdat, &dialfreq, &wspr_type); if( npoints == 1 ) { return 1; } dialfreq -= (dialfreq_error*1.0e-06); } else { printf("Error: Failed to open %s\n",ptr_to_infile); printf("WSPR file must have suffix .wav or .c2\n"); return 1; } // Parse date and time from given filename strncpy(date,ptr_to_infile_suffix-11,6); strncpy(uttime,ptr_to_infile_suffix-4,4); date[6]='\0'; uttime[4]='\0'; // Do windowed ffts over 2 symbols, stepped by half symbols int nffts=4*floor(npoints/512)-1; fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512); PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE); float ps[512][nffts]; float w[512]; for(i=0; i<512; i++) { w[i]=sin(0.006147931*i); } if( usehashtable ) { char line[80], hcall[12]; if( (fhash=fopen(hash_fname,"r+")) ) { while (fgets(line, sizeof(line), fhash) != NULL) { sscanf(line,"%d %s",&nh,hcall); strcpy(hashtab+nh*13,hcall); } } else { fhash=fopen(hash_fname,"w+"); } fclose(fhash); } //*************** main loop starts here ***************** for (ipass=0; ipass 0 && ndecodes_pass == 0 ) break; ndecodes_pass=0; memset(ps,0.0, sizeof(float)*512*nffts); for (i=0; i511 ) k=k-512; ps[j][i]=fftout[k][0]*fftout[k][0]+fftout[k][1]*fftout[k][1]; } } // Compute average spectrum memset(psavg,0.0, sizeof(float)*512); for (i=0; imin_snr) && (npk<200); if ( candidate ) { freq0[npk]=(j-205)*df; snr0[npk]=10*log10(smspec[j])-snr_scaling_factor; npk++; } } } else { for(j=1; j<410; j++) { candidate = (smspec[j]>smspec[j-1]) && (smspec[j]>smspec[j+1]) && (npk<200); if ( candidate ) { freq0[npk]=(j-205)*df; snr0[npk]=10*log10(smspec[j])-snr_scaling_factor; npk++; } } } // Compute corrected fmin, fmax, accounting for dial frequency error fmin += dialfreq_error; // dialfreq_error is in units of Hz fmax += dialfreq_error; // Don't waste time on signals outside of the range [fmin,fmax]. i=0; for( j=0; j= fmin && freq0[j] <= fmax ) { freq0[i]=freq0[j]; snr0[i]=snr0[j]; i++; } } npk=i; // bubble sort on snr, bringing freq along for the ride int pass; float tmp; for (pass = 1; pass <= npk - 1; pass++) { for (k = 0; k < npk - pass ; k++) { if (snr0[k] < snr0[k+1]) { tmp = snr0[k]; snr0[k] = snr0[k+1]; snr0[k+1] = tmp; tmp = freq0[k]; freq0[k] = freq0[k+1]; freq0[k+1] = tmp; } } } t0=clock(); /* Make coarse estimates of shift (DT), freq, and drift * Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative to nominal start time, which is 2 seconds into the file * Calculates shift relative to the beginning of the file * Negative shifts mean that signal started before start of file * The program prints DT = shift-2 s * Shifts that cause sync vector to fall off of either end of the data vector are accommodated by "partial decoding", such that missing symbols produce a soft-decision symbol value of 128 * The frequency drift model is linear, deviation of +/- drift/2 over the span of 162 symbols, with deviation equal to 0 at the center of the signal vector. */ int idrift,ifr,if0,ifd,k0; int kindex; float smax,ss,pow,p0,p1,p2,p3; for(j=0; j smax ) { //Save coarse parameters smax=sync1; shift0[j]=128*(k0+1); drift0[j]=idrift; freq0[j]=(ifr-256)*df; sync0[j]=sync1; } } } } } tcandidates += (float)(clock()-t0)/CLOCKS_PER_SEC; /* Refine the estimates of freq, shift using sync as a metric. Sync is calculated such that it is a float taking values in the range [0.0,1.0]. Function sync_and_demodulate has three modes of operation mode is the last argument: 0 = no frequency or drift search. find best time lag. 1 = no time lag or drift search. find best frequency. 2 = no frequency or time lag search. Calculate soft-decision symbols using passed frequency and shift. NB: best possibility for OpenMP may be here: several worker threads could each work on one candidate at a time. */ for (j=0; jminsync1 continue fstep=0.0; ifmin=0; ifmax=0; lagmin=shift1-128; lagmax=shift1+128; lagstep=64; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0); tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC; fstep=0.25; ifmin=-2; ifmax=2; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1); // refine drift estimate fstep=0.0; ifmin=0; ifmax=0; float driftp,driftm,syncp,syncm; driftp=drift1+0.5; sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &driftp, symfac, &syncp, 1); driftm=drift1-0.5; sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &driftm, symfac, &syncm, 1); if(syncp>sync1) { drift1=driftp; sync1=syncp; } else if (syncm>sync1) { drift1=driftm; sync1=syncm; } tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC; // fine-grid lag and freq search if( sync1 > minsync1 ) { lagmin=shift1-32; lagmax=shift1+32; lagstep=16; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0); tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC; // fine search over frequency fstep=0.05; ifmin=-2; ifmax=2; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1); tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC; worth_a_try = 1; } else { worth_a_try = 0; } int idt=0, ii=0, jiggered_shift; float y,sq,rms; not_decoded=1; while ( worth_a_try && not_decoded && idt<=(128/iifac)) { ii=(idt+1)/2; if( idt%2 == 1 ) ii=-ii; ii=iifac*ii; jiggered_shift=shift1+ii; // Use mode 2 to get soft-decision symbols t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &jiggered_shift, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 2); tsync2 += (float)(clock()-t0)/CLOCKS_PER_SEC; sq=0.0; for(i=0; i<162; i++) { y=(float)symbols[i] - 128.0; sq += y*y; } rms=sqrt(sq/162.0); if((sync1 > minsync2) && (rms > minrms)) { deinterleave(symbols); t0 = clock(); if ( stackdecoder ) { not_decoded = jelinek(&metric, &cycles, decdata, symbols, nbits, stacksize, stack, mettab,maxcycles); } else { not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits, mettab,delta,maxcycles); } tfano += (float)(clock()-t0)/CLOCKS_PER_SEC; } idt++; if( quickmode ) break; } if( worth_a_try && !not_decoded ) { ndecodes_pass++; for(i=0; i<11; i++) { if( decdata[i]>127 ) { message[i]=decdata[i]-256; } else { message[i]=decdata[i]; } } // Unpack the decoded message, update the hashtable, apply // sanity checks on grid and power, and return // call_loc_pow string and also callsign (for de-duping). noprint=unpk_(message,hashtab,call_loc_pow,callsign); // subtract even on last pass if( subtraction && (ipass < npasses ) && !noprint ) { if( get_wspr_channel_symbols(call_loc_pow, hashtab, channel_symbols) ) { subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols); } else { break; } } // Remove dupes (same callsign and freq within 3 Hz) int dupe=0; for (i=0; i decodes[k+1].freq) { temp = decodes[k]; decodes[k]=decodes[k+1];; decodes[k+1] = temp; } } } for (i=0; i\n"); fftwf_free(fftin); fftwf_free(fftout); if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "w"))) { fftwf_export_wisdom_to_file(fp_fftwf_wisdom_file); fclose(fp_fftwf_wisdom_file); } ttotal += (float)(clock()-t00)/CLOCKS_PER_SEC; fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n", treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,ttotal); fprintf(ftimer,"Code segment Seconds Frac\n"); fprintf(ftimer,"-----------------------------------\n"); fprintf(ftimer,"readwavfile %7.2f %7.2f\n",treadwav,treadwav/ttotal); fprintf(ftimer,"Coarse DT f0 f1 %7.2f %7.2f\n",tcandidates, tcandidates/ttotal); fprintf(ftimer,"sync_and_demod(0) %7.2f %7.2f\n",tsync0,tsync0/ttotal); fprintf(ftimer,"sync_and_demod(1) %7.2f %7.2f\n",tsync1,tsync1/ttotal); fprintf(ftimer,"sync_and_demod(2) %7.2f %7.2f\n",tsync2,tsync2/ttotal); fprintf(ftimer,"Stack/Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal); fprintf(ftimer,"-----------------------------------\n"); fprintf(ftimer,"Total %7.2f %7.2f\n",ttotal,1.0); fclose(fall_wspr); fclose(fwsprd); // fclose(fdiag); fclose(ftimer); fftwf_destroy_plan(PLAN1); fftwf_destroy_plan(PLAN2); fftwf_destroy_plan(PLAN3); if( usehashtable ) { fhash=fopen(hash_fname,"w"); for (i=0; i<32768; i++) { if( strncmp(hashtab+i*13,"\0",1) != 0 ) { fprintf(fhash,"%5d %s\n",i,hashtab+i*13); } } fclose(fhash); } if( stackdecoder ) { free(stack); } if(writenoise == 999) return -1; //Silence compiler warning return 0; }