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Overview

About the Math Toolkit

Thislibrary is divided into three interconnected parts:
Statistical Distributions
Provides areasonably comprehensive set of statistical distributions, upon which higher level statistical tests can be built.

The initial focus is on the central univariate distributions. Both continuous (like normal & Fisher) and discrete (like binomial &
Poisson) distributions are provided.

A comprehensive tutorial is provided, along with a series of worked examplesiillustrating how the library is used to conduct statist-
icd tests.

Mathematical Special Functions

Providesasmall number of high quality special functions, initially these were concentrated on functions used in statistical applications
along with those in the Technical Report on C++ Library Extensions.

Thefunction families currently implemented arethe gamma, beta& erf functions along with theincomplete gammaand betafunctions
(four variants of each) and all the possible inverses of these, plus digamma, various factorial functions, Bessel functions, elliptic in-
tegrals, sinus cardinals (along with their hyperbolic variants), inverse hyperbolic functions, Legrendre/L aguerre/Hermite polynomials
and various specia power and logarithmic functions.

All theimplementationsare fully generic and support the use of arbitrary "real-number" types, including Boost.Multiprecision, although
they are optimised for use with types with known-about significand (or mantissa) sizes: typically f | oat , doubl e or | ong doubl e.

Implementation Toolkit

The section Internal tools provides many of the tools required to implement mathematical special functions: hopefully the presence
of these will encourage other authors to contribute more special function implementations in the future.

Some tools are now considered well-tried and their signatures stable and unlikely to change.

Thereis afairly comprehensive set of root finding both root-finding without derivatives and root-finding with derivatives with de-
rivative support, and function minimization using Brent's method.

Other Internal tools are currently still considered experimental: they are "exposed implementation details' whose interfaces and/or
implementations may change without notice.

There are helpers for the evaluation of infinite series, continued fractions and rational approximations. A Remez algorithm imple-
mentation allows for the locating of minimax rational approximations.

There are also (experimental) classes for the manipulation of polynomials, for testing a special function against tabulated test data,
and for the rapid generation of test data and/or data for output to an external graphing application.
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Navigation

Boost.Math documentation is provided in both HTML and PDF formats.

e Tutorialsarelisted in the Table of Contents and include many examples that should help you get started quickly.

* Source code of the many Examples will often be your quickest starting point.

* Index (general) includes all entries.

» Specific Indexeslist only functions, class signatures, macros and typedefs.

Using the Indexes

The main index will usually help, especially if you know aword describing what it does, without needing to know the exact name
chosen for the function.

v

Tip

When using theindex, keep in mind that clicking on anindex term only takesyou to the section containing the index
entry. This section may be several pages long, so you may need to use the find facility of your browser or PDF
reader to get to the index term itself.

Tip

A PDF reader usually allows a global find; this can be really useful if the term you expect to be indexed is not the
one chosen by the authors. You might find searching the PDF version and viewing the HTML version will locate
an elusive item.

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Document Conventions

This documentation aims to use of the following naming and formatting conventions.

C++ Codeisinfixed wi dth font andissyntax-highlighted in color, for example doubl e.
Other codeisinblock t el et ype fi xed-wi dth font.
Replaceable text that you will need to supply isini tal i cs.

If anamerefersto afreefunction, itisspecified likethis: free_functi on() ;thatis, itisincode font anditsnameisfollowed
by () toindicatethat it isafree function.

If anamerefersto aclasstemplate, it is specified likethis. cl ass_t enpl at e<>; thatis, itisin code font and itsnameisfollowed
by <> toindicate that it is a class template.

If aname refers to a function-like macro, it is specified like this: MACRQ() ; that is, it is uppercase in code font and its name is
followed by () toindicate that it is a function-like macro. Object-like macros appear without the trailing () .

Names that refer to concepts in the generic programming sense (like template parameter names) are specified in Camel Case.
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Other Hints and tips

* If you have afeature request, or if it appears that the implementation isin error, please search first in the Boost Trac.

 Tracentriesmay indicate that updates or correctionsthat solve your problem arein Boost-trunk where changes are being assembled
and tested ready for the next release. You may, at your own risk, download new versions from there.

« If you do not understand why things work the way they do, see the rationale section.

* If you do not find your idea/feature/complaint, please reach the author preferably through the Boost development list, or email
the author(s) direct.

Admonishments
@ Note
In addition, notes such asthis one specify non-essential information that provides additional background or rationale.

Q Tip

These blocks contain information that you may find helpful while coding.

2 I mportant
These contain information that is imperative to understanding a concept. Failure to follow suggestions in these
blocks will probably result in undesired behavior. Read all of these you find.

O Warning
Failure to heed thiswill lead to incorrect, and very likely undesired, results.

httpo://www.renderx.com/


https://svn.boost.org/trac/boost/
https://svn.boost.org/trac/boost/
http://svn.boost.org/svn/boost/trunk
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Directory and File Structure

boost/math

/concepty/

/constants/

[distributions/

/policies

/specia_functions/

/tools/

boost/libs

/doc/
/examples/
/performance/

ftest/

/tools/

Prototype defining the essential features of a Real Type class (see real_concept.hpp). Most applications
will use doubl e as the Real Type (and short t ypedef names of distributions are reserved for this
type where possible), afew will use f1 oat or | ong doubl e, but it is aso possible to use higher
precision typeslike NTL::RR, GNU Multiple Precision Arithmetic Library, GNU MPFR library that
conform to the requirements specified by real_concept.

Templated definition of some highly accurate math constants (in constants.hpp).

Distributions used in mathematics and, especially, statistics. Gaussian, Students-t, Fisher, Binomial
etc

Policy framework, for handling user requested behaviour modifications.

Math functions generally regarded as'special’, like beta, cbrt, erf, gamma, Igamma, tgamma.... (Some
of these are specified in C++, and C99/TR1, and perhaps TR2).

Tools used by functions, like evaluating polynomials, continued fractions, root finding, precision and
limits, and by tests. Some will find application outside this package.

Documentation source files in Quickbook format processed into html and pdf formats.
Examples and demos of using math functions and distributions.
Performance testing and tuning program.

Test files, in many .cpp files, most using Boost. Test (some with test data as .ipp files, usually generated using
NTL RR type with ample precision for the type, often for precisions suitable for up to 256-bit significand real

types).

Programs used to generate test data. Also changes to the NTL released package to provide a few additional
(and vital) extrafeatures.
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Namespaces

All math functions and distributions are in namespace boost: : mat h

So, for example, the Students-t distribution template in namespace boost:: mathis
tenpl ate <cl ass Real Type> cl ass students_t _distribution
and can be instantiated with the help of the reserved name st udent s_t (for Real Type doubl e)

typedef students_t_distribution<doubl e> students_t;

student _t nydi st (10);

O Warning
Some distribution names are also used in std random library, so to avoid the risk of ambiguity it is better to make
explicit using declarations, for example: usi ng boost:: mat h: : students_t _di stribution
Functions not intended for use by applications arein boost : : mat h: : det ai | .

Functions that may have more genera use, like digits (significand), max_val ue, m n_val ue and epsilon are in
boost:: math::tools.

Policy and configuration information isin hamespace boost : : mat h: : pol i ci es.

@ Tip

Many code snippets assume implicit namespace(s), for example, st d: : or boost : : mat h.

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Calculation of the Type of the Result

The functionsin thislibrary are al overloaded to accept mixed floating point (or mixed integer and floating point type) arguments.
So for example:

f0o(1.0, 2.0);
foo(1.0f, 2);
foo(1.0, 2L);

etc, aredl valid calls, aslong as "foo" is a function taking two floating-point arguments. But that |eaves the question:

"Given a special function with N arguments of types T1, T2, T3 ... TN, then what type is the result?"

If all the argumentsare of the same (floating point) type then the result is the same type as the arguments.
Otherwise, the type of the result is computed using the following logic:
1. Any arguments that are not template arguments are disregarded from further analysis.

2. For each type in the argument list, if that type is an integer type then it istreated asif it were of type double for the purposes of
further analysis.

3. If any of the arguments is a user-defined class type, then the result type is the first such class type that is constructible from all
of the other argument types.

4. If any of theargumentsis of typel ong doubl e, thenthe result is of typel ong doubl e.
5. If any of the argumentsis of type doubl e, then the result is of type doubl e.
6. Otherwise theresult isof typef | oat .

For example:
cyl _bessel (2, 3.0);
Returnsadoubl e result, as does:
cyl _bessel (2, 3.0f);

as in this case the integer first argument is treated as a doubl e and takes precedence over the f | oat second argument. To get a
f1 oat result wewould need al the arguments to be of type float:

cyl bessel j(2.0f, 3.0f);
When one or more of the arguments is not a template argument then it doesn't effect the return type at all, for example:
sph_bessel (2, 3.0f);

returnsaf | oat , since the first argument is not a template argument and so doesn't effect the result: without this rule functions that
take explicitly integer arguments could never return f | oat .

And for user-defined types, all of the following return an NTL: : RR result:

render
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cyl _bessel j(0, NTL::RR(2));
cyl bessel j(NTL::RR(2), 3);
cyl bessel j(NTL::quad_float(2), NTL::RR(3));

Inthelast case, quad_f | oat isconvertible to RR, but not vice-versa, so the result will be an NTL: : RR. Note that this assumes that
you are using apatched NTL library.

These rules are chosen to be compatible with the behaviour of |SO/IEC 9899:1999 Programming languages - C and with the Draft
Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5.

render
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Error Handling

Quick Reference
Handling of errors by thislibrary is split into two orthogonal parts:
» What kind of error has been raised?

» What should be done when the error is raised?

O Warning
The default error actions are to throw an exception with an informative error message. If you do not try to catch the
exception, you will not see the message!

The kinds of errorsthat can beraised are:

Domain Error Occurs when one or more arguments to a function are out of range.

Pole Error Occurs when the particular arguments cause the function to be evaluated at a pole with no
well defined residual value. For example if tgamma is evaluated at exactly -2, the function
approaches different limiting values depending upon whether you approach from just above
or just below -2. Hence the function has no well defined value at this point and a Pole Error
will be raised.

Overflow Error Occurs when the result is either infinite, or too large to represent in the numeric type being
returned by the function.

Underflow Error Occurswhen the result is not zero, but istoo small to be represented by any other value in the
type being returned by the function.

Denormalisation Error Occurs when the returned result would be a denormalised value.

Rounding Error Occurs when the argument to one of the rounding functions trunc, round and modf can not
be represented as an integer type, is outside the range of the result type.

Evaluation Error Occursif no method of evaluation isknown, or when an internal error occurred that prevented
the result from being evaluated: this should never occur, but if it does, then it's likely to be
due to an iterative method not converging fast enough.

Indeterminate Result Error Occurs when the result of afunction is not defined for the values that were passed to it.

The action undertaken by each error condition is determined by the current Policy in effect. This can be changed program-wide by
setting some configuration macros, or at namespace scope, or at the call site (by specifying a specific policy in the function call).

The available actions are:

throw_on_error Throws the exception most appropriate to the error condition.

€rrno_on_error Sets ::errno to an appropriate value, and then returns the most appropriate result
ignore_error Ignores the error and simply the returns the most appropriate result.

user_error Calls auser-supplied error handler.

The following tables show all the permutations of errors and actions, with the default action for each error shown in bold:

10
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Table 1. Possible Actionsfor Domain Errors
Action
throw_on_error

errno_on_error

ignore_error

user_error

Table 2. Possible Actionsfor Pole Errors
Action
throw_on_error

€rrno_on_error

ignore_error

user_error

Table 3. Possible Actions for Overflow Errors

Action
throw_on_error

errno_on_error

ignore_error

user_error

Behaviour
Throwsstd: : domai n_error

Sets ::errno to EDOM and returns std::nunmeric_|lim
i ts<T>::quiet_NaN()

Returnsst d: : nunmeric_limts<T>::quiet_NaN()

Returnstheresult of boost : : mat h: : pol i ci es: : user_do-
mai n_er r or : thisfunction must be defined by the user.

Behaviour
Throwsstd: : domai n_error

Sets ::errno to EDOM and returns std: : numeric_lim
its<T>::quiet_NaN()

Returnsstd: : nunmeric_limts<T>::quiet_NaN()
Returns the result of

boost: : mat h: : pol i ci es: : user_pol e_error:thisfunction
must be defined by the user.

Behaviour
Throwsstd: : overfl ow error

Sets : : errno to ERANGE and returns std: : nuneric_|lim
its<T>::infinity()

Returnsstd: : nunmeric_linmts<T> :infinity()
Returns the result of

boost:: math::policies::user_overflow error: this
function must be defined by the user.

11
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Table 4. Possible Actions for Underflow Errors
Action
throw_on_error
errno_on_error
ignore_error

user_error

Table 5. Possible Actions for Denorm Errors
Action
throw_on_error
€rrno_on_error
ignore_error

user_error

Table 6. Possible Actions for Rounding Errors

Action
throw_on_error
errno_on_error

ignore_error

user_error

Behaviour

Throwsst d: : underfl ow error
Sets: : er r no to ERANGE and returns 0.
ReturnsO

Returnstheresult of boost : : mat h: : pol i ci es: : user_un-
der f1 ow_error: this function must be defined by the user.

Behaviour

Throwsst d: : under f1 ow_error

Sets: : er r no to ERANGE and returns the denormalised value.
Returnsthe denormalised value.

Returnstheresult of boost : : mat h: : pol i ci es: : user _de-
nor m er r or : thisfunction must be defined by the user.

Behaviour
Throwsboost : : mat h: : roundi ng_error

Sets: : err no to ERANGE and returns the largest representable
value of the target integer type (or the most negative value if
the argument to the function was less than zero).

Returnsthelargest representablevalue of thetarget integer
type (or the most negative value if the argument to the
function was lessthan zero).

Returns the result of
boost:: math:: policies::user_rounding error: this
function must be defined by the user.

12
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Table 7. Possible Actions for Internal Evaluation Errors

Action Behaviour

throw_on_error Throwsboost : : mat h: : eval uation_error

errno_on_error Sets: : errno to EDOM and returns the closest approximation
found.

ignore_error Returns the closest approximation found.

user_error Returns the result of

boost :: mat h: : polici es::user_eval uati on_error:this
function must be defined by the user.

Table 8. Possible Actions for Indeter minate Result Errors

Action Behaviour

throw_on_error Throwsst d: : donwi n_error

errno_on_error Sets: : er r no to EDOMand returnsthe samevalueasi gnor e_er -
ror.

ignore_error Returnsadefault result that dependson thefunction where

theerror occurred.

user_error Returnstheresult of boost : : mat h: : pol i ci es: : user_i n-
determ nate_result_error:thisfunction must be defined
by the user.

All these error conditions are in namespace boost::math::policies, made available, for example, a by namespace declaration using
namespace boost: : mat h: : pol i ci es; orindividual using declarationsusi ng boost:: mat h: : policies::overflow error;.

Rationale

The flexibility of the current implementation should be reasonably obvious: the default behaviours were chosen based on feedback
during the formal review of thislibrary. It was felt that:

» Genuine errors should be flagged with exceptions rather than following C-compatible behaviour and setting : : er r no.

* Numeric underflow and denormalised results were not considered to be fatal errorsin most cases, so it was felt that these should
be ignored.

« If thereis more than one error, only the first detected will be reported in the throw message.

Finding More Information
There are some pre-processor macro defines that can be used to change the policy defaults. See also the policy section.
An exampleis at the Policy tutorial in Changing the Policy Defaults.

Full source code of this typical example of passing a 'bad' argument (negative degrees of freedom) to Student's t distribution isin
the error handling example.

The various kind of errors are described in more detail below.

13
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Domain Errors

When aspecial function is passed an argument that is outside the range of values for which that function is defined, then the function
returns the result of:

boost:: math:: policies::raise_domai n_error<T>(FunctionNane, Message, Val, Policy);

Where T is the floating-point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, Va isthe value that was out of range, and Policy isthe current policy in use for the function that was called.

The default policy behaviour of thisfunction isto throw a std::domain_error C++ exception. But if the Policy isto ignore the error,
or set global : : er r no, then aNaN will be returned.

This behaviour is chosen to assist compatibility with the behaviour of 1SO/IEC 9899:1999 Programming languages - C and with
the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6:

"Each of the functions declared above shall return a NaN (Not a Number) if any argument value is a NaN, but it
shall not report a domain error. Otherwise, each of the functions declared above shall report a domain error for
just those argument values for which:

"thefunction description's Retur ns clause explicitly specifiesa domain, and those argumentsfall outside the specified
domain; or

"the corresponding mathematical function value has a non-zero imaginary component; or
"the corresponding mathematical function is not mathematically defined.

"Note 2: A mathematical function is mathematically defined for a given set of argument values if it is explicitly
defined for that set of argument values or if its limiting value exists and does not depend on the direction of ap-
proach."

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format
recognised format specifier: the argument Val isinserted into the error message according to the specifier used.

For exampleif Message contains a"%1%" then it isreplaced by the value of Val to the full precision of T, where as "%.3g" would
contain the value of Val to 3 digits. See the Boost.Format documentation for more details.

Evaluation at a pole

When a special function is passed an argument that is at a pole without awell defined residual value, then the function returns the
result of:

boost:: math::policies::raise_pole_error<T>Functi onNane, Message, Val, Policy);

Where T isthe floating point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, val isthe value of the argument that is at a pole, and Policy isthe current policy in use for the function that
was called.

The default behaviour of this function isto throw a std::domain_error exception. But error handling policies can be used to change
this, for exampletoi gnor e_er r or and return NaN.

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format
recognised format specifier: the argument val isinserted into the error message according to the specifier used.

For exampleif Message containsa"%1%" then it isreplaced by the value of val tothefull precision of T, where as"%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.
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Numeric Overflow

When the result of a special function istoo large to fit in the argument floating-point type, then the function returns the result of:
boost::math::policies::raise_overflow error<T>(Functi onNane, Message, Policy);

Where T is the floating-point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, and Policy is the current policy in use for the function that was called.

Thedefault policy for thisfunctionisthat st d: : over f | ow_error C++ exceptionisthrown. But if, for example, ani gnore_err or

policy is used, then returns st d: : numeric_limi ts<T>::infinity().Inthissituation if the type T doesn't support infinities,
the maximum value for the type is returned.

Numeric Underflow

If the result of a special function is known to be non-zero, but the calculated result underflows to zero, then the function returns the
result of:

boost:: math:: policies::raise_underflow error<T>(Functi onName, Message, Policy);

Where T isthefloating point type passed to the function, Funct i onNane isthe name of the function, Message isan error message
describing the problem, and Policy is the current policy in use for the called function.

Thedefault version of thisfunction returns zero. But with another policy, liket hr ow_on_err or , throwsanst d: : under f | ow_error
C++ exception.

Denormalisation Errors

If the result of aspecial function is a denormalised value z then the function returns the result of:
boost::math::policies::raise_denormerror<T>(z, FunctionName, Message, Policy);

Where T isthe floating point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, and Policy is the current policy in use for the called function.

The default version of this function returns z. But with another policy, liket hr ow_on_err or throwsanst d: : under fl ow_error
C++ exception.

Evaluation Errors

When a special function calculates aresult that is known to be erroneous, or where the result is incalculable then it calls:
boost:: math:: policies::raise_evaluation_error<T>(FunctionName, Message, Val, Policy);

Where T isthe floating point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, Val isthe erroneous value, and Policy is the current policy in use for the called function.

The default behaviour of thisfunction isto throw aboost : : mat h: : eval uati on_error.

Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format re-
cognised format specifier: the argument val isinserted into the error message according to the specifier used.

For exampleif Message containsa"%1%" then it isreplaced by the value of val to thefull precision of T, where as"%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.
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Indeterminate Result Errors

When the result of a special function isindeterminate for the value that was passed to it, then the function returns the result of:

boost:: math::policies::raise_overflow error<T>(Functi onNane, Message, Val, Default, Policy);

Where T is the floating-point type passed to the function, Funct i onNane isthe name of the function, Message is an error message
describing the problem, Val is the value for which the result is indeterminate, Default is an alternative default result that must be
returned for i gnore_error anderrno_on_erro policies, and Policy isthe current policy in use for the function that was called.

The default policy for thisfunctionisi gnor e_er r or : notethat thiserror typeisreserved for situations where the result is mathem-
atically undefined or indeterminate, but there is none the less a convention for what the result should be: for example the C99
standard specifies that the result of 0°%is1, even though the result is actually mathematically indeterminate.

Rounding Errors

When one of the rounding functions round, trunc or modf is called with an argument that has no integer representation, or is too
large to be represented in the result type then the value returned is the result of acall to:

boost:: math:: policies::raise_rounding_error<T>(Functi onNane, Message, Val, Policy);

Where T isthefloating point type passed to the function, Funct i onNane isthe name of the function, Message isan error message
describing the problem, Val isthe erroneous argument, and Policy is the current policy in use for the called function.

The default behaviour of thisfunction isto throw aboost : : mat h: : r oundi ng_error.

Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format re-
cognised format specifier: the argument val isinserted into the error message according to the specifier used.

For exampleif Message containsa"%1%" then it isreplaced by the value of val tothe full precision of T, where as"%.3g" would
contain the value of val to 3 digits. See the Boost.Format documentation for more details.

Errors from typecasts

Many special functions evaluate their results at a higher precision than their arguments in order to ensure full machine precision in
theresult: for example, afunction passed afloat argument may evaluateits result using double precision internally. Many of the errors
listed above may therefore occur not during evaluation, but when converting the result to the narrower result type. The function:

templ ate <class T, class Policy, class U>
T checked_narrow ng_cast (U const& val, const char* function);

Is used to perform these conversions, and will call the error handlers listed above on overflow, underflow or denormalisation.
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Compilers

This section contains some information about how various compilers work with this library. It is not comprehensive and updated
experiences are always welcome. Some effort has been made to suppress unhel pful warnings but it is difficult to achieve thison all

systems.
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Table 9. Supported/Tested Compilers

Platform

Windows

Windows

Windows

Windows

Windows

Windows 7/Netbeans 7.2

Compiler Haslong double support
MSVC 7.1 and later Yes
Intel 8.1 and later Yes
GNU Mingw32 C++ Yes
GNU Cygwin C++ No

Borland C++5.8.2 (Developer No
studio 2006)

Clang 3.1 Yes

Notes

All tests OK.

We aim to keep our headers
warning free at level 4 with
this compiler.

All tests OK.

We aim to keep our headers
warning free at level 4 with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

Long double support has been
disabled because there are no
native long double C std lib-
rary functions available.

We have only partial compat-
ability with this compiler:

L ong double support has been
disabled because the native
long double C standard library
functions really only forward
to the double versions. This
can result in unpredictable be-
haviour when using the long
double overloads: for example
sqrtl applied to a finite
value, can result in an infinite
result.

Some functions till fail to
compile, there are no known
workarounds at present.

Spot examples OK. Expect all
tests to compile and run OK.

render
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Platform

Linux

Linux

Linux

Linux

Linux

Linux

Compiler

GNU C++ 3.4 and |ater

Clang 3.2

Intel C++ 10.0 and later

Intel C++8.1and 9.1

QLogic PathScale 3.0

Sun Studio 12

Haslong double support

Yes

Yes

Yes

No

Yes

Yes

Notes

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

All tests OK.
All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

All tests OK.

Long double support has been
disabled with these compiler
releases because caling the
standard library long double
math functions can result in a
segfault. The issue is Linux
distribution and glibc version
specificandisIntel bug report
#409291. Fully up to date re-
leasesof Intel 9.1 (post version
|_cc ¢ 9.1.046) shouldn't have
this problem. If you need long
double support with this com-
piler, then comment out the
define o f
BEHVAHNO OGO BEVAHRNG
TIONS a line 55 of
boost/math/tools/config.hpp.

We aim to keep our headers
warning free with -Wall with
this compiler. However, The
tests cases tend to generate a
lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

Sometestsinvolving conceptu-
al checks fail to build, other-
wise there appear to be no is-
sues.

Some tests involving function
overload resolution fal to
build, these issues should be
rairly encountered in practice.
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Platform

Solaris

Solaris

HP Truc4

HP-UX Itanium

HP-UX PA-RISC
Apple Mac OS X, Intel

Apple Mac OS X, PowerPC

Apple Mac OS X,

IBM AIX

Compiler

Sun Studio 12

GNU C++ 4.x

Compagq C++ 7.1

HP aCC 6.x

GNU C++ 34
Darwin/GNU C++ 4.x

Darwin/GNU C++ 4.x

Clang 3.2

IBM xIc 5.3

Table 10. Unsupported Compilers

Platform

Windows

Windows

Haslong double support

Yes

Yes

Yes

Yes

No
Yes

No

Yes

Yes

Compiler

Notes

Some tests involving function
overload resolution fail to
build, these issues should be
rairly encountered in practice.

All tests OK.

We aim to keep our headers
warning free with -Wall with
this compiler.

All tests OK.

All tests OK.

Unfortunately this compiler
emits quite a few warnings
from libraries upon which we
depend (TR1, Array etc).

All tests OK,
All tests OK.

All tests OK.

Long double support has been
disabled on this platform due
to the rather strange nature of
Darwin's 106-bit long double
implementation. It should be
possible to make this work if
someone is prepared to offer
assistance.

All tests expected to be OK.

All tests pass except for our
fpclassify tests which fail due
to a bug in std::numer-
ic_limts, the bug effects
the test code, not fpclassify it-
self. The IBM compiler group
are aware of the problem.

Borland C++ 5.9.2 (Borland Developer Studio 2007)

MSVC6and7

If your compiler or platform is not listed above, please try running the regression tests: cd into boost-root/libs/math/test and do a
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bj am nmyt ool set

where "mytoolset” is the name of the Boost.Build toolset used for your compiler. The chances are that many of the accuracy tests
will fail at this stage - don't panic - the default acceptable error tolerances are quite tight, especially for long double types with an
extended exponent range (these cause more extreme test cases to be executed for some functions). You will need to cast an eye over
the output from the failing tests and make a judgement as to whether the error rates are acceptable or not.

21

render

httpo://www.renderx.com/


http://www.boost.org/doc/html/bbv2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Configuration Macros

Almost all configuration details are set up automatically by <boost \ mat h\ t ool s\ confi g. hpp>.
In normal use, only policy configuration macros are likely to be used. See policy reference.

For reference, information on Boost.Math macros used internally are described briefly below.
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Table 11. Boost.M ath M acros

MACRO

BOOST_MATH_NO_LONG DOUBLE_MATH_FUNCTI ONS

BOOST_MATH_USE_FLOAT128

BOOST_MATH_DI SABLE_FLOAT128

BOOST_MATH_NO_REAL_CONCEPT_TESTS

BOOST_MATH_CONTROL_FP

BOOST_MATH_NO DEDUCED FUNCTI ON_POI NTERS

BOOST_MATH_USE_C99

BOOST_NO_NATI VE_LONG DOUBLE_FP_CLASSI FY

BOOST_MATH_SMALL_CONSTANT( X)

BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS

BOOST_MATH_STD_USI NG

BOOST_FPU_EXCEPTI ON_GUARD

BOOST_MATH_I NSTRUMENT

BOOST_MATH_| NSTRUVENT _CODE( X)

Notes

Do not produce or use long double functions: this macro gets
set when the platform's long double or standard library long
double support is absent or buggy.

When set the numeric constants support the __f | oat 128 data
type with constants having the Q suffix.

When set the numeric constants do not use the __ f 1 oat 128
datatype even if the compiler appears to support it.

Do not try to use real concept tests (hardware or software does
not support real_concept type).

Controls FP hardware exceptions - our tests don't support hard-
ware exceptions on MSVC. May get set to something like:
_control 87( MCW_EM MCW EM .

Thismacroisused by our test cases, it is set when an assignment
of a function template to a function pointer requires explicit
template arguments to be provided on the function name.

Use C99 math functions.

define if no native (or buggy) f pcl assi fy(1 ong doubl e)
even though the other C99 functions are present.

Helper macro used in our test casesto set underflowing constants
set to zero if thiswould cause compiler issues.

Set if constants too large for afloat, will cause "bad" values to
be stored in the data, rather than infinity or asuitably large value.

Provides usi ng statements for many std:: (abs to sqrt) and
boost::math (rounds, modf) functions. This allows these func-
tions to be called unqualified so that if argument-dependent
Argument Dependent Lookup fails to find a suitable overload,
then the std:: versions will also be considered.

Used at the entrypoint to each special function to reset all FPU
exception flags prior to internal calculations, and then merge
the old and new exception flags on function exit. Used as a
workaround on platforms or hardware that behave strangely if
any FPU exception flags are set when calling standard library
functions.

Define to output diagnostics for math functions. This is rather
‘global’ to Boost.Math and so coarse-grained that it will probably
produce copious output! (Especially becausefull precision values
areoutput). Designed primarily for internal use and devel opment.

Output  selected named  variable, for  example
BOOST_MATH_| NSTRUMENT _CODE( "guess = " << guess);
Used by BOOST_MATH_| NSTRUVENT

render
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MACRO Notes

BOOST_MATH_| NSTRUVENT _VARI ABLE( nane) Output selected variable, for example BOOST_MATH | NSTRU-
VENT_VARI ABLE(resul t); Usedby BOOST MATH | NSTRU-
MENT

BOOST_MATH_| NSTRUMENT _FPU Output the state of the FPU's control flags.

Table 12. Boost.M ath Tuning

Macros for Tuning performance options for specific com- Notes

pilers

BOOST_MATH POLY_METHOD See the performance tuning section.

BOOST_NMATH_RATI ONAL_METHOD See the performance tuning section.
BOOST_NVATH_MAX_PCOLY_ORDER See the performance tuning section.

BOOST_MATH_| NT_TABLE_TYPE See the performance tuning section.

BOOST_MATH | NT_VALUE_SUFFI X Helper macro for appending the correct suffix to integer con-

stants which may actually be stored as reals depending on the
value of BOOST_MATH_INT_TABLE_TYPE.
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Policies

Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs.
There is more information available in the policy tutorial and the policy reference.

Generally speaking, unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your
needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or at
the cal site.

Although the policy mechanism itself is rather complicated, in practiceit is easy to use, and very flexible.

Using policies you can control:

» How results from 'bad' arguments are handled, including those that cannot be fully evaluated.

* How accuracy is controlled by internal promotion to use more precise types.

» What working precision should be used to calculate results.

» What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?
* Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.

» How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives up
and raises an evaluation_error.

You can control policies:
» Using macros to change any default policy: the isthe prefered method for installation wide policies.

At your chosen namespace scope for distributions and/or functions: thisisthe prefered method for project, namespace, or trandation
unit scope poalicies.

* Inan ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.
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Thread Safety

Thelibrary isfully thread safe and re-entrant for all functions regards of the datatype they areinstantiated on. Thread safety limitations
relating to user defined types present in previous releases (prior to 1.50.0) have been removed.

26

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Overview

Performance

By and large the performance of thislibrary should be acceptable for most needs. However, you should note that thislibrary's primary
emphasisis on accuracy and numerical stability, and not speed.

In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle
difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where
as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are
perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current
compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The two most important things you can do to ensure the best performance from thislibrary are:
1. Turn on your compilers optimisations: the difference between "release” and "debug" builds can easily be afactor of 20.

2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some Windows compilers for
example.

The performance section contains more information on the performance of thislibrary, what you can do to fine tuneit, and how this
library compares to some other open source alternatives.
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If and How to Build a Boost.Math Library, and its Ex-
amples and Tests

Building a Library (shared, dynamic .dll or static .lib)

The first thing you need to ask yourself is"Do | need to build anything at all?* as the bulk of this library is header only: meaning
you can useit just by #including the necessary header(s).

For most simple uses, including a header (or few) is best for compile time and program size.
Refer to C99 and C++ TR1 C-style Functions for pros and cons of using the TR1 components as opposed to the header only ones.

The only time you need to build the library isif you want to usetheext ern " C' functions declared in <boost/ mat h/ tr 1. hpp>.
To build this using Boost.Build, from a commandline boost-root directory issue a command like:

bj am t ool set =gcc --with-math install

that will do the job on Linux, while:
bj am t ool set =msvc --with-math --buil d-type=conpl ete stage

will work better on Windows (leaving libraries built in sub-folder / st age below your Boost root directory). Either way you should
consult the getting started guide for more information.

You can also build the libraries from your favourite IDE or command line tool: each extern "C' function declared in
<boost/ mat h/ t r 1. hpp> hasitsown sourcefilewiththe samenameinl i bs/ mat h/ src/ t r 1. Just select the sources corresponding
to the functions you are using and build them into a library, or else add them directly to your project. Note that the directory
I'i bs/ mat h/ src/tr 1 will need to bein your compiler's #include path as well as the boost-root directory (MSVC Tools, Options,
Projects and Solutions, VC++ Directories, Include files).

E Note
If you are using a Windows compiler that supports auto-linking and you have built the sources yourself (or added
them directly to your project) then you will need to prevent <boost / mat h/ t r 1. hpp> from trying to auto-link to
the binaries that Boost.Build generates. You can do this by defining either BOOST_MATH_NO_LIB or
BOOST_ALL_NO LIB at project level (so the defines get passed to each compiler invocation).

Optionally the sourcesin | i bs/ mat h/ src/ t r 1 have support for using | i bs/ mat h/ src/tr 1/ pch. hpp asaprecompiled header
if your compiler supports precompiled headers. Note that normally this header is a do-nothing include: to activate the header so that
it #includes everything required by all the sources you will need to define BOOST_BUILD_PCH_ENABLED on the command line,
both when building the pre-compiled header and when building the sources. Boost.Build will do this automatically when appropriate.

Building the Examples

The examples are all located in | i bs/ mat h/ exanpl e, they can al be built without reference to any external libraries, either with
Boost.Build using the supplied Jamfile, or from your compiler's command line. The only requirement is that the Boost headers are
in your compilers #include search path.

Building the Tests

Thetestsarelocated inl i bs/ mat h/ t est and are best built using Boost.Build and the supplied Jamfile. If you plan to build them
separately from your favourite IDE then you will needto add | i bs/ mat h/ t est to thelist of your compiler's search paths.

You will al'so need to build and link to the Boost.Regex library for many of the tests: this can built from the command line by following
the getting started guide, using a command such as:
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bj am t ool set =gcc --wi th-regex install
or
bj am t ool set =msvc --with-regex --build-type=conplete stage

depending on whether you are on Linux or Windows.

Many of the tests have optional precompiled header support using the header | i bs/ mat h/ t est / pch. hpp. Note that normally this
header is a do-nothing include: to activate the header so that it #includes everything required by all the sources you will need to
define BOOST_BUILD _PCH_ENABLED on the command line, both when building the pre-compiled header and when building
the sources. Boost.Build will do this automatically when appropriate.
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History and What's New

Currently open bug reports can be viewed here.

All bug reportsincluding closed ones can be viewed here.

Math-2.2.1

Patch release for Boost-1.58:

Minor patch for Haiku support.
Fix the decimal digit count for 128-bit floating point types.

Fix afew documentation typos.

Math-2.2.0 (boost-1.58.0)

Added two new special functions - trigamma and polygamma.
Fixed namespace scope constants so they are constexpr on conforming compilers, see https://svn.boost.org/trac/boost/ticket/10901.

Fixed various cases of spurious under/overflow in theincompl ete betaand gammafunctions, plusthe elliptic integrals, with thanks
to Rocco Romeo.

Fix 3-arg legendre_p and legendre_g functions to not call the policy based overload if the final argument is not actually a policy.
Cleaned up some dead code in the incomplete beta function, see #10985.
Fixed extreme-value pdf for large valued inputs, see #10938.

Large update to the Elliptic integral codeto use Carlson'slatest algorithms - these should be more stable, more accurate and slightly
faster than before. Also added support for Carlson's RG integral.

Added ellint_d, jacobi_zeta and heuman_lambda elliptic integrals.

Switched documentation to use SV G rather than PNG graphs and equations - browsers seem to have finally caught up!

Math-2.1.0 (boost-1.57.0)

Added Hyperexponential Distribution.

Fix some spurious overflows in the incomplete gamma functions (with thanks to Rocco Romeo).

Fix bug in derivative of incomplete betawhen a=b = 0.5 - this also effects saveral non-central distributions, see 10480.
Fixed some corner cases in round.

Don't support 80-hit floats in cstdfl oat.hpp if standard library support is broken.

Math-2.0.0 (Boost-1.56.0)

Breaking change: moved a number of non-core headers that are predominantly used for internal maintenance into
| i bs/ mat h/incl ude_pri vat e. The headers effected areboost / mat h/ t ool s/ t est _dat a. hpp, boost/ mat h/ t ool s/ re-
nmez. hpp, boost/ mat h/ const ant s/ gener at e. hpp, boost/ mat h/ t ool s/ sol ve. hpp, boost/ mat h/ t ool s/t est. hpp.
You can continue to use these headers by adding | i bs/ mat h/ i ncl ude_pri vat e to your compiler's include path.

Breaking change: A number of distributions and special functions were returning the maximum finite value rather than raising
an overflow_error, this has now been fixed, which means these functions now behave as documented. However, since the default
behavior on raising an overflow_error isto throw ast d: : over f | ow_error exception, applications which have come to reply
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rely on these functions not throwing may experience exceptions where they did not before. The special functions involved are
gamma_p_inva, gamma_q_inva, ibeta inva, ibetac _inva, ibeta invb, ibetac_invb, gamma p_inv, gamma q_inv. Thedistributions
involved are Pareto Distribution, Beta Distribution, Geometric Distribution, Negative Binomial Distribution, Binomial Distribution,
Chi Squared Distribution, Gamma Distribution, Inverse chi squared Distribution, Inverse Gamma Distribution. See #10111.

Fix round and trunc functions so they can be used with integer arguments, see #10066.

Fix Halley iteration to handle zero derivative (with non-zero second derivative), see #10046.

Math-1.9.1

Fix Geometric distribution use of Policies, see #9833.
Fix corner casesin the negative binomial distribution, see #9834.

Fix compilation failures on Mac OS.

Math-1.9.0

Changed version number to new Boost.Math specific version now that we're in the modular Boost world.
Added Bernoulli numbers, changed arbitrary precision tgamma/lgammato use Sterling's approximation (from Nikhar Agrawal).

Added first derivatives of the Bessel functions: cyl_bessel_j_prime, cyl_neumann_prime, cyl_bessel_i_prime, cyl_bessel_k_prime,
sph_bessel_prime and sph_neumann_prime (from Anton Bikineev).

Fixed buggy Student'st example code, along with docs for testing sample means for equivalence.
Documented max_i t er parameter in root finding code better, see #9225,

Add option to explicitly enable/disable use of _ float128 in constants code, see #9240.

Cleaned up handling of negative valuesin Bessel 10 and 11 code (removed dead code), see #9512.

Fixed handling of very small values passed to tgamma and Igamma so they don't generate spurious overflows (thanks to Rocco
Romeo).

#9672 PDF and CDF of a Laplace distribution throwing domain_error Random variate can now be infinite.
Fixed several corner casesin rising_factorial, falling_factorial and tgamma_delta_ratio with thanks to Rocco Romeo.
Fixed several corner casesinrising_factorial, falling_factorial and tgamma._delta ratio (thanks to Rocco Romeo).

Removed constant pow23_f our _mi nus_pi  whose value did not match the name (and was unused by Boost.Math), see #9712.

Boost-1.55

Suppress numerous warnings (mostly from GCC-4.8 and MSV C) #8384, #8855, #9107, #9109..
Fixed PGI compilation issue #8333.

Fixed PGI constant value initialization issue that caused erf to generate incorrect results #8621.
Prevent macro expansion of some C99 macros that are also C++ functions #8732 and #8733..

Fixed Student's T distribution to behave correctly with huge degrees of freedom (larger than the largest representable integer)
#8837.

Make some core functions usable with | ong doubl e even when the platform has no standard library | ong doubl e support
#8940.
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Fix error handling of distributions to catch invalid scale and location parameters when the random variable is infinite #9042 and
#9126.

Add workaround for broken <tuple> in Intel C++ 14 #9087.
Improve consistency of argument reduction in the elliptic integrals #9104.

Fix bug in inverse incomplete beta that results in cancellation errors when the beta function is really an arcsine or Student's T
distribution.

Fix issuein Bessel | and K function continued fractions that causes spurious over/underflow.

Add improvement to non-central chi squared distribution quantile due to Thomas L uu.

Boost-1.54

Major reorganization to incorporate other Boost.Math like Integer Utilities Integer Utilities (Greatest Common Divisor and Least
Common Multiple), quaternions and octonions. Making new chapter headings.

Added many references to Boost.Multiprecision and cpp_dec_f | oat _50 as an example of a User-defined Type (UDT).
Added Clang to list of supported compilers.
Fixed constants to use a thread-safe cache of computed values when used at arbitrary precision.

Added finding zeros of Bessel functionscy! _bessel _j _zer o, cyl _neumann_zero,airy_ai _zeroandairy_bi _zero(by
Christopher Kormanyos).

More accuracy improvements to the Bessel Jand Y functions from Rocco Romeo.

Fixed nasty cyclic dependency bug that caused some headers to not compile #7999.

Fixed bug in tgammathat caused spurious overflow for arguments between 142.5 and 143.

Fixed bug in raise_rounding_error that caused it to return an incorrect result when throwing an exception is turned off #7905.
Added minimal __ float128 support.

Fixed bug in edge-cases of poisson quantile #8308.

Adjusted heuristics used in Halley iteration to cope with inverting the incomplete beta in tricky regions where the derivative is
flatlining. Example is computing the quantile of the Fisher F distribution for probabilities smaller than machine epsilon. See
ticket #8314.

Boost-1.53

Fixed issues #7325, #7415 and #7416, #7183, #7649, #7694, #4445, #7492, #7891, #7429.

Fixed mistake in calculating pooled standard deviation in two-sample students t example #7402.

Improve complex acos/asin/atan, see #7290, #7291.

Improve accuracy in some corner cases of cyl_bessel_j and gamma_p/gamma_q thanks to suggestions from Rocco Romeo.

Improve accuracy of Bessel JandY for integer orders thanks to suggestions from Rocco Romeo.

Boost-1.52

Corrected moments for small degrees of freedom #7177 (reported by Thomas Mang).

Added Airy functions and Jacobi Elliptic functions.
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 Corrected failure to detect bad parameters in many distributions #6934 (reported by Florian Schoppmann) by adding a function
check _out_of rangeto test many possible bad parameters. Thistest revealed several distributions where the checks for bad para-
meters were ineffective, and these have been rectified.

» Fixed issue in Hankel functions that causes incorrect values to be returned for x < 0 and v odd, see #7135.
» Fixed issues #6517, #6362, #7053, #2693, #6937, #7099.
» Permitted infinite degrees of freedom #7259 implemented using the normal distribution (requested by Thomas Mang).

» Much enhanced accuracy for large degrees of freedom v and/or large non-centrality 6 by switching to use the Studentst distribution
(or Normal distribution for infinite degrees of freedom) centered at delta, when &/ (4 * v) < epsilon for the floating-point typein
use. #7259. It was found that the incomplete beta was suffering from serious cancellation errors when degrees of freedom was
very large. (That has now been fixed in our code, but any code based on Didonato and Morris's original papers (probably every
implementation out there actually) will have the same issue).

Boost-1.51

See Boost-1.52 - some items were added but not listed in time for the release.

Boost-1.50

» Promoted math constantsto be 1st class citizens, including convenient access to the most widely used built-in float, double, long
double via three namespaces.

» Added the Owen's T function and Skew Normal distribution written by Benjamin Sobotta: see OwensT and skew_normal_distrib.
» Added Hankel functions cyl_hankel_1, cyl_hankel_2, sph_hankel_1 and sph_hankel_2.
 Corrected issue #6627 nonfinite_num_put formatting of 0.0 isincorrect based on a patch submitted by K R Walker.

» Changed constant initialization mechanism so that it is thread safe even for user-defined types, also so that user defined types get
the full precision of the constant, even when | ong doubl e does not. So for example 128-hit rational approximations will work
with UDT's and do the right thing, even though | ong doubl e may be only 64 or 80 hits.

» Fixedissueinbessel _j y which causesY g5(4m) to yield a NaN.
Boost-1.49
 Deprecated wrongly named t wot hi r ds math constant in favour of t wo_t hi r ds (with underscore separator). (issue #6199).

» Refactored test dataand some special function code to improve support for arbitary precision and/or expression-template-enabled
types.

» Added new faster zeta function evaluation method.

Fixed issues:

* Corrected CDF complement for Laplace distribution (issue #6151).

» Corrected branch cuts on the complex inverse trig functions, to handle signed zeros (issue #6171).

» Fixed bug inbessel _yn which caused incorrect overflow errors to be raised for negative n (issue #6367).
* Also fixed minor/cosmetic/configuration issues #6120, #6191, #5982, #6130, #6234, #6307, #6192.
Boost-1.48

» Added new series evaluation methods to the cyclic Bessel |, J, K and Y functions. Also taken great care to avoid spurious over
and underflow of these functions. Fixes issue #5560
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» Added an example of using Inverse Chi-Squared distribution for Bayesian statistics, provided by Thomas Mang.
» Added tests to use improved version of lexical _cast which handles C99 nonfinites without using globale facets.
* Corrected wrong out-of-bound uniform distribution CDF complement values #5733.

 Enabled long double support on OpenBSD (issue #6014).

» Changed nextafter and related functionsto behave in the same way as other implementations - so that nextafter(+INF, 0) isafinite
value (issue #5832).

» Changed tuple include configuration to fix issue when using in conjunction with Boost.Tr1 (issue #5934).
» Changed class eps _tolerance to behave correctly when both ends of the range are zero (issue #6001).

* Fixed missing include guards on prime.hpp (issue #5927).

* Removed unused/undocumented constants from constants.hpp (issue #5982).

* Fixed missing std:: prefix in nonfinite_num_facets.hpp (issue #5914).

» Minor patches for Cray compiler compatibility.

Boost-1.47

» Added changesign function to sign.hpp to facilitate addition of nonfinite facets.

» Addition of nonfinite facets from Johan Rade, with tests, examples of use for C99 format infinity and NaN, and documentation.
» Added tests and documentation of changesign from Johan Rade.

Boost-1.46.1

* Fixed issues #5095, #5113.

Boost-1.46.0

e Added Wald, Inverse Gaussian and geometric distributions.

» Added information about configuration macros.

» Added support for mpreal as area-numbered type.

Boost-1.45.0

» Added warnings about potential ambiguity with std random library in distribution and function names.
» Added inverse gamma distribution and inverse chi_sguare and scaled inverse chi_square.

« Editorial revision of documentation, and added FAQ.

Boost-1.44.0

* Fixed incorrect range and support for Rayleigh distribution.

 Fixed numerical error in the quantile of the Student's T distribution: the function was returning garbage values for non-integer
degrees of freedom between 2 and 3.

Boost-1.41.0

* Significantly improved performance for the incomplete gammafunction and itsinverse.
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Boost-1.40.0

Added support for MPFR as a bignum type.

Added some full specializations of the policy classes to reduce compile times.

Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.

Added Laplace distribution submitted by Thijs van den Berg.

Updated performance test code to include new distributions, and improved the performance of the non-central distributions.
Added SSE2 optimised Lanczos approximation code, from Gautam Sewani's Google Summer of Code project.

Fixed bug in cyl_bessel_i that used an incorrect approximation for v = 0.5, also effects the non-central Chi Square Distribution
when v = 3, see bug report #2877.

Fixed minor bugs #2873.

Boost-1.38.0

Added Johan Rade's optimised floating point classification routines.

Fixed code so that it compilesin GCC's -pedantic mode (bug report #1451).

Boost-1.37.0

Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.36.0

Added Noncentral Chi Squared Distribution.
Added Noncentral Beta Distribution.

Added Noncentral F Distribution.

Added Noncentral T Distribution.

Added Exponential Integral Functions.
Added Zeta Function.

Added Rounding and Truncation functions.
Added Compile time powers of runtime bases.

Added SSE2 optimizations for Lanczos eval uation.

Boost-1.35.0: Post Review First Official Release

Added Policy based framework that alows fine grained control over function behaviour.

Breaking change: Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review
feedback), this behaviour can be customised using Policy's.

Breaking change: Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

Breaking change: Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the
true root, this behaviour can be customised using Policy's.
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 Polynomial/rational function evaluation is now customisable and hopefully faster than before.

» Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)

» Moved Xiaogang Zhang's Bessal Functions code into the library, and brought them into line with the rest of the code.
» Added C# "Distribution Explorer" demo application.

Milestone 3: First Review Candidate (31st Dec 2006)

 Implemented the main probability distribution and density functions.

* Implemented digamma.

» Added more factoria functions.

Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.

Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.

» Moved Hubert Holin's existing Boost.Math special functionsinto thislibrary and brought them into line with the rest of the code.

Milestone 2: Released September 10th 2006

» Implement preview release of the statistical distributions.

» Added statistical distributions tutorial.

 Implemented root finding algorithms.,

» Implemented the inverses of the incomplete gamma and beta functions.
* Rewrite erf/erfc as rational approximations (valid to 128-bit precision).

* Integrated the statistical results generated from the test data with Boost. Test: uses a database of expected results, indexed by test,
floating point type, platform, and compiler.

» Improved Igammanear 1 and 2 (rational approximations).

* Improved erf/erfc inverses (rational approximations).

» Implemented Rational function generation (the Remez method).

Milestone 1: Released March 31st 2006

» Implement gamma/beta/erf functions along with their incomplete counterparts.

» Generate high quality test data, against which future improvements can be judged.

Provide tools for the evaluation of infinite series, continued fractions, and rational functions.

Provide tools for testing against tabulated test data, and collecting statistics on error rates.

Provide sufficient docs for people to be able to find their way around the library.
SVN Revisions:

Sandbox and trunk last synchonised at revision: .
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C99 and C++ TR1 C-style Functions

Many of the special functions included in this library are also a part of the either the C99 Standard ISO/IEC 9899:1999 or the
Technical Report on C++ Library Extensions. Therefore this library includes a thin wrapper header boost / mat h/ t r 1. hpp that
provides compatibility with these two standards.

There are various pros and cons to using the library in this way:

Pros:

* The header to includeis lightweight (i.e. fast to compile).

e Thefunctions have extern "C" linkage, and so are usable from other languages (not just C and C++).
» C99 and C++ TR1 Standard compatibility.

Cons:

 You will need to compile and link to the external Boost.Math libraries.

 Limited to support for the types, f | oat , doubl e and | ong doubl e.

* Error handling is handled via setting ::errno and returning NaN's and infinities: this may be less flexible than an C++ exception
based approach.

S Note
The separate libraries are required only if you choose to use boost/math/tr1.hpp rather than some other Boost.Math
header, the rest of Boost.Math remains header-only.

The separate libraries required in order to use tr1.hpp can be compiled using bjam from within the libs/math/build directory, or from
the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in libs/math/src and
each have the same name as the function they implement. The various libraries are named as follows:

Name Type Functions

boost_math_c99f-<suffix> float C99 Functions
boost_math_c99-<suffix> double C99 Functions
boost_math_c99l-<suffix> long double C99 Functions
boost_math_trif-<suffix> float TR1 Functions
boost_math_tr1-<suffix> double TR1 Functions
boost_math_trll-<suffix> long double TR1 Functions

Where<suf f i x> encodesthe compiler and build options used to build thelibraries: for example "libboost_math_tr1-vc80-mt-gd.lib"
would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++ runtime,
where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with the release
multithreaded DLL VC++ runtime. Refer to the getting started guide for afull explanation of the <suf f i x> meanings.
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S Note
Visual C++ userswill typically havethe correct library variant to link against selected for them by boost/math/tr1.hpp
based on your compiler settings.

Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against
the DLL versions of these libraries rather than the static versions.

Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only
used when linking against a customised build of the libraries.

S Note
Linux and Unix users will generally only have one variant of these libraries installed, and can generally just link
against -lboost._ math_trl etc.

Usage Recomendations

Thislibrary now presents the user with a choice:

» Toinclude the header only versions of the functions and have an easier time linking, but alonger compile time.
* Toinclude the TR1 headers and link against an external library.

Which option you choose depends largely on how you prefer to work and how your system is set up.

For exampleacasua user who just needs the acosh function, would probably be better off including <boost / mat h/ speci al _f unc-
ti ons/ acosh. hpp>and using boost : : mat h: : acosh(x) intheir code.

However, for large scale software development where compile times are significant, and where the Boost libraries are already built
and installed on the system, then including <boost / mat h/ t r 1. hpp> and using boost : : mat h: : tr 1: : acosh(x) will speed up
compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up debugging
runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the difference in
performance between release and debug builds can be as much as 20 times, so for complex applications this can be a big win.

Supported C99 Functions

See also the quick reference guide for these functions.
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nanespace boost{ nanespace math{ nanespace trl{ extern "C'{

t ypedef unspecified float_t;
t ypedef unspecified double_t;

doubl e acosh(doubl e x);
float acoshf(float x);
| ong doubl e acoshl (1 ong doubl e x);

doubl e asi nh(doubl e x);
float asinhf(float x);
| ong doubl e asinhl (1 ong doubl e x);

doubl e at anh(doubl e x);
float atanhf(float x);
| ong doubl e atanhl (1 ong doubl e x);

doubl e cbrt (double x);
float cbrtf(float x);
| ong double cbrtl (long double x);

doubl e copysi gn(doubl e x, double vy);
float copysignf(float x, float y);
| ong doubl e copysignl (I ong double x, |ong double y);

doubl e erf(double x);
float erff(float x);
| ong double erfl(long double x);

doubl e erfc(double x);
float erfcf(float x);
| ong double erfcl (long double x);

doubl e expni(double x);
float expmif(float x);
| ong doubl e expmil (1 ong doubl e x);

doubl e frmax(doubl e x, double y);
float frmaxf(float x, float y);
| ong doubl e frmaxl (1 ong double x, |ong double y);

doubl e fm n(double x, double y);
float fmnf(float x, float y);
| ong double fminl(long double x, |ong double y);

doubl e hypot (doubl e x, double y);
float hypotf(float x, float y);
| ong doubl e hypotl (1 ong double x, |ong double y);

doubl e | gamma(doubl e Xx);
float | ganmmaf (float x);
| ong doubl e | ganmal (| ong doubl e x);

long long |l round(double x);
long long |Iroundf(float Xx);
long long |lroundl (I ong double x);

doubl e | oglp(double x);
float |oglpf(float Xx);
| ong doubl e | oglpl (I ong double x);

 ong | round(double x);
l ong | roundf(float x);
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| ong Iroundl (1 ong doubl e x);

doubl e nextafter(double x, double y);
float nextafterf(float x, float y);

| ong doubl e nextafterl (long double x, |ong double y);

doubl e nexttoward(doubl e x, |ong double y);
float nexttowardf(float x, |ong double y);
| ong double vy);

| ong doubl e nexttowardl (| ong doubl e x,

doubl e round(doubl e x);
float roundf(float x);
| ong doubl e roundl (1 ong doubl e x);

doubl e t gamma(doubl e Xx);

float tgammaf (float Xx);

| ong doubl e tganmal (| ong doubl e x);
doubl e trunc(doubl e x);

float truncf(float x);

| ong doubl e truncl (I ong double x);

}1}} 11 nanespaces

Supported TR1 Functions

See also the quick reference guide for these functions.
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nanespace boost{ nanespace math{ nanespace trl{ extern "C'{

/1 [5.2.1.1] associated Laguerre pol ynomi als

doubl e assoc_I| aguerre(unsi gned n, unsigned m double x)

float assoc_l aguerref(unsigned n, unsigned m float Xx);

| ong doubl e assoc_I| aguerrel (unsigned n, unsigned m |ong double x)

/1 [5.2.1.2] associated Legendre functions

doubl e assoc_I| egendre(unsi gned |, unsigned m double x)
float assoc_Il egendref(unsigned |, unsigned m float x)
| ong doubl e assoc_I| egendrel (unsigned |, unsigned m |ong double x)

/1 [5.2.1.3] beta function

doubl e beta(doubl e x, double y)

float betaf(float x, float y);

| ong doubl e betal (I ong double x, |ong double vy)

/1 [5.2.1.4] (conplete) elliptic integral of the first kind
doubl e conp_ellint_1(double k)

float conp_ellint_1f(float k);

| ong doubl e conp_ellint_1I (1 ong doubl e k)

/1 [5.2.1.5] (conplete) elliptic integral of the second kind
doubl e conp_el lint_2(doubl e k)

float conp_ellint_2f(float k);

| ong doubl e conp_ellint_2I(long double k)

/1 [5.2.1.6] (conplete) elliptic integral of the third kind
doubl e conp_ellint_3(doubl e k, double nu)

float conp_ellint_3f(float k, float nu);

| ong double conp_ellint_3I(long double k, |ong double nu)

/1 [5.2.1.8] regular nodified cylindrical Bessel functions
doubl e cyl _bessel _i (doubl e nu, double x)

float cyl _bessel _if(float nu, float x)

| ong doubl e cyl bessel _il (1 ong double nu, |ong double x)

/1 [5.2.1.9] cylindrical Bessel functions (of the first kind):
doubl e cyl _bessel _j (doubl e nu, double x)

float cyl _bessel jf(float nu, float x);

| ong doubl e cyl _bessel jl(long double nu, |ong double x)

/1 [5.2.1.10] irregular nodified cylindrical Bessel functions:
doubl e cyl _bessel _k(doubl e nu, double x);

float cyl _bessel _kf(float nu, float x)

| ong doubl e cyl bessel kil (1 ong double nu, |ong double x)

/1 [5.2.1.11] cylindrical Neunann functions;

/1l cylindrical Bessel functions (of the second kind):
doubl e cyl _neumann(doubl e nu, double x)

float cyl _neumannf(float nu, float x);

| ong doubl e cyl _neunannl (I ong doubl e nu, |ong double x)

/1 [5.2.1.12] (inconplete) elliptic integral of the first Kkind:
doubl e ellint_1(double k, double phi)

float ellint_1f(float k, float phi)

| ong double ellint_11(long double k, |ong double phi)

/1 [5.2.1.13] (inconplete) elliptic integral of the second kind
doubl e el lint_2(double k, double phi)

float ellint_2f(float k, float phi)

| ong double ellint_2l(long double k, |ong double phi)
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/1 [5.2.1.14] (inconplete) elliptic integral of the third kind:

doubl e el lint_3(double k, double nu, double phi);

float ellint_3f(float k, float nu, float phi);

| ong double ellint_3l(long double k, |ong double nu, |ong double phi);

/1 [5.2.1.15] exponential integral:
doubl e expi nt (doubl e x);

float expintf(float x);

| ong doubl e expintl (long double x);

/1 [5.2.1.16] Hermite polynom al s:

doubl e hernite(unsigned n, double x);

float hermtef(unsigned n, float Xx);

| ong doubl e hermtel (unsigned n, |ong double x);

/1 [5.2.1.18] Laguerre polynon al s:

doubl e | aguerre(unsi gned n, double x);

float |aguerref(unsigned n, float Xx);

| ong doubl e | aguerrel (unsigned n, |ong double x);

/1 [5.2.1.19] Legendre polynon als:

doubl e | egendre(unsi gned |, double x);
float |egendref(unsigned |, float Xx);
| ong doubl e | egendrel (unsigned |, |ong double x);

/1 [5.2.1.20] Riemann zeta function:
doubl e ri emann_zet a(doubl e);

float riemann_zetaf(float);

| ong doubl e riemann_zetal (1 ong double);

/1 [5.2.1.21] spherical Bessel functions (of the first kind):
doubl e sph_bessel (unsi gned n, double x);

float sph_bessel f(unsigned n, float x);

| ong doubl e sph_bessel | (unsigned n, |ong double x);

/1 [5.2.1.22] spherical associated Legendre functions:

doubl e sph_l egendre(unsigned |, unsigned m double theta);
float sph_l egendref(unsigned |, unsigned m float theta);
| ong doubl e sph_l egendrel (unsigned |, unsigned m |ong double theta);

/1 [5.2.1.23] spherical Neunmann functions;

/'l spherical Bessel functions (of the second kind):
doubl e sph_neumann(unsi gned n, double x);

fl oat sph_neumannf (unsigned n, float Xx);

| ong doubl e sph_neunmannl (unsi gned n, |ong double x);

}1}} 11 nanespaces

In addition sufficient additional overloads of the doubl e versions of the above functions are provided, so that calling the function
with any mixtureof f | oat ,doubl e, ong doubl e, or integer argumentsis supported, with the return type determined by the result
type calculation rules.
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Currently Unsupported C99 Functions

doubl e exp2(doubl e x);
float exp2f(float x);
| ong doubl e exp2l (I ong doubl e x);

doubl e fdi m double x, double y);
float fdinf(float x, float y);
| ong doubl e fdim (Il ong double x, |ong double y);

doubl e frma(doubl e x, double y, double z);
float frmaf (float x, float y, float z);

| ong doubl e fmal (1 ong double x, long double y, |ong double z);

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

long long Ilrint(double x);
long long Ilrintf(float x);
long long Ilrintl(long double x);

doubl e | og2(doubl e x);
float |og2f(float x);
| ong doubl e | 0g2l (I ong doubl e x);

doubl e | ogb(doubl e x);
float |ogbf(float x);
| ong doubl e | ogbl (I ong doubl e x);

long Irint(double x);
long lrintf(float x);
long Irintl(long double x);

doubl e nan(const char *str);
fl oat nanf(const char *str);
| ong doubl e nanl (const char *str);

doubl e near byi nt (doubl e x);
float nearbyintf(float x);
| ong doubl e nearbyintl (1 ong double x);

doubl e renni nder (doubl e x, double y);
float remainderf(float x, float y);

| ong doubl e remai nderl (1 ong doubl e x, |ong double y);

doubl e renguo(doubl e x, double y, int *pquo);
float renguof (float x, float y, int *pquo);

| ong doubl e renquol (1 ong doubl e x, |ong double y, int

doubl e rint(double x);
float rintf(float Xx);
I ong double rintl(long double Xx);

doubl e scal bl n(doubl e x, |ong ex);
float scalblnf(float x, |long ex);
| ong doubl e scal bl nl (I ong double x, |ong ex);

doubl e scal bn(doubl e x, int ex);
float scal bnf(float x, int ex);
| ong doubl e scal bnl (1 ong double x, int ex);

“pquo) ;
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Currently Unsupported TR1 Functions

/1 [5.2.1.7] confluent hypergeonetric functions:

doubl e conf_hyperg(doubl e a, double c, double x);

float conf_hypergf(float a, float c, float x);

| ong doubl e conf_hypergl (I ong double a, |ong double c, |ong double x);

/1 [5.2.1.17] hypergeonetric functions:
doubl e hyperg(doubl e a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);

| ong doubl e hypergl (1 ong doubl e a, |ong double b, |ong double c,
| ong doubl e x);
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Frequently Asked Questions FAQ

1

I'm a FORTRAN/NAG/SPSSSAS Cephes/MathCad/R user and | don't see where the functions like dnorm(mean, sd) are in
Boost.Math?

Nearly al are provided, and many more like mean, skewness, quantiles, complements ... but Boost.Math makes full use of C++,
and it looks a bit different. But do not panic! See section on construction and the many examples. Briefly, the distribution is
constructed with the parameters (like location and scale) (things after the | in representation like P(X=k|n, p) or ; in a common
represention of pdf f(x; poz). Functions like pdf, cdf are called with the name of that distribution and the random variate often
called x or k. For example, normal ny_norn(0, 1); pdf(ny_norm 2.0);

. I'mauser of New SAS Functions for Computing Probabilities.

You will find the interface more familar, but to be able to select a distribution (perhaps using a string) see the Extras/Future Dir-
ections section, and /boost/libs/math/dot_net_example/boost_math.cpp for an example that is used to create a C# (C sharp) utility
(that you might also find useful): see Statistical Distribution Explorer.

. I'mallegic to reading manuals and prefer to learn from examples.

Fear not - you are not alone! Many examples are available for functions and distributions. Some are referenced directly from the
text. Others can be found at \boost_latest_rel ease\libs\math\example. If you are aVisual Studio user, you should be able to create
projects from each of these, making sure that the Boost library isin the include directories|ist.

. How do | make sure that the Boost library is in the Visual Sudio include directorieslist?

You can add an include path, for example, your Boost place /boost-latest_release, for example X: / boost _1_45_0/ if you have
a separate partition X for Boost releases. Or you can use an environment variable BOOST_ROOT set to your Boost place, and
include that. Visual Studio before 2010 provided Tools, Options, VC++ Directories to control directories: Visual Studio 2010
instead provides property sheets to assist. You may find it convenient to create a new one adding \boost-latest_release; to the ex-
isting include items in $(IncludePeath).

. I'ma FORTRAN/NAG/SPSYSAS Cephes/MathCad/R user and | don't see where the propertieslike mean, median, mode, variance,

skewness of distributions are in Boost.Math?

They are all available (if defined for the parameters with which you constructed the distribution) via Cumulative Distribution
Function, Probability Density Function, Quantile, Hazard Function, Cumul ative Hazard Function, mean, median, mode, variance,
standard deviation, skewness, kurtosis, kurtosis_excess, range and support.

.  ama C programmer. Can | user Boost.Math with C?

Yesyou can, including al the specia functions, and TR1 functions like isnan. They appear as C functions, by being declared as
"extern C".

. | ama C# (Basic? F# FORTRAN? Other CLI?) programmer. Can | use Boost.Math with C#? (or ...)?

Yesyou can, including all the special functions, and TR1 functionslikeisnan. But you must build the Boost.M ath asa dynamic
library (.dIl) and compile with the /CL1 option. See the boost/math/dot_net_example folder which contains an example that
builds a simple statistical distribution app with a GUI. See Statistical Distribution Explorer

. What these "policies' things for?

Policiesare apowerful (if necessarily complex) fine-grain mechanism that allow you to customi se the behaviour of the Boost.Math
library according to your precise needs. See Palicies. But if, very probably, the default behaviour suits you, you don't need to
know more.

. l ama C user and expect to see global C-style: : er r no set for overflow/errors etc?

You can achieve what you want - see error handling policies and user error handling and many examples.

10 1 ama C user and expect to silently return a max value for overflow?

You (and C++ users too) can return whatever you want on overflow - see overflow_error and error handling policies and several
examples.

11 | don't want any error message for overflow etc?

You can control exactly what happens for all the abnormal conditions, including the values returned. See domain_error, over-
flow_error error handling policies user error handling etc and examples.

12 My environment doesn't allow and/or | don't want exceptions. Can | still user Boost.Math?
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Yes but you must customise the error handling: see user error handling and changing policies defaults .

13 The docs are several hundreds of pages long! Can | read the docs off-line or on paper?
Yes- you can download the Boost current release of most documentation asazip of pdfs (including Boost.Math) from Sourceforge,
for example https.//sourceforge.net/proj ects/boost/files/boost-docs/1.45.0/boost_pdf 1 45 0.tar.gz/download. And you can print
any pagesyou need (or even print all pages - but be warned that there are several hundred!). Both html and pdf versions are highly
hyperlinked. The entire Boost.Math pdf can be searched with Adobe Reader, Edit, Find ... This can often find what you seek, a
partia substitute for afull index.

14. 1 want a compact version for an embedded application. Can | use float precision?
Yes - by selecting Real Type template parameter as float: for example normal_distribution<float> your_normal (mean, sd); (But
double may still be used internally, so space saving may be less that you hope for). You can aso change the promotion policy,
but accuracy might be much reduced.

15. | seemto get somewnhat different results compared to other programs. Why? We hope Boost.Math to be more accurate: our priority
is accuracy (over speed). See the section on accuracy. But for evaluations that require iterations there are parameters which can
change the required accuracy (see Policies). You might be able to squeeze alittle more (or less) accuracy at the cost of runtime.

16 Wi my program run more slowly compared to other math functions and statistical libraries? Probably, thought not always, and
not by too much: our priority isaccuracy. For most functions, making sure you have thelatest compiler version with all optimisations
switched on is the key to speed. For evaluations that require iteration, you may be able to gain alittle more speed at the expense
of accuracy. See detailed suggestions and results on performance.

17. How do | handle infinity and NaNs portably?
See nonfinite fp_facets for Facets for Floating-Point Infinities and NaNs.

18 Where are the pre-built libraries?
Good news - you probably don't need any! - just #i ncl ude <boost/ math/distribution_you_want>. But in the unlikely event
that you do, see building libraries.

19 | don't see the function or distribution that | want.
You could try an email to ask the authors - but no promises!

2. | need more decimal digits for values/computations.
You can use Boost.Math with Boost.Multiprecision: typically cpp_dec float is a useful user-defined type to provide a fixed
number of decimal digits, usually 50 or 100.

21. Why can't | write something really simple like cpp_i nt one(1); cpp_dec_float 50 two(2); one * two; Because
cpp_i nt might bebigger thancpp_dec_fl oat can hol d, soyou must make an explicit conversion. See mixed multiprecision
arithmetic and conversion.
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Contact Info and Support

The main support for thislibrary is viathe Boost mailing lists:
 Usethe boost-user list for general support questions.
» Use the boost-devel oper list for discussion about implementation and or submission of extensions.

You can aso find JM at john - at - johnmaddock.co.uk and PAB at pbristow - at - hetp.u-net.com.
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Rounding Truncation and Integer Conversion

Rounding Functions

#i ncl ude <boost/ mat h/ speci al _functi ons/round. hpp>
tenpl ate <class T>
T round(const T& v)

tenplate <class T, class Policy>
T round(const T& v, const Policyé&);

tenpl ate <class T>
int iround(const T& v)

tenplate <class T, class Policy>
int iround(const T& v, const Policy&)

tenpl ate <class T>
I ong I round(const T& v)

tenplate <class T, class Policy>
I ong Iround(const T& v, const Policy&);

tenpl ate <class T>
long long Il round(const T& v);

tenplate <class T, class Policy>
long long Ilround(const T& v, const Policy&);

These functions return the closest integer to the argument v.
Halfway cases are rounded away from zero, regardless of the current rounding direction.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.

Truncation Functions

#i ncl ude <boost/ mat h/ speci al _functions/trunc. hpp>
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tenpl ate <class T>
T trunc(const T& v);

tenpl ate <class T,
T trunc(const T& v,

class Policy>
const Policy&);

tenpl ate <class T>
int itrunc(const T& v);

tenpl ate <class T,
i nt

class Policy>
itrunc(const T& v, const Policyé&);

tenpl ate <class T>
long lItrunc(const T& v);

tenpl ate <class T,
long Itrunc(const T& v,

class Policy>
const Policy&);

tenpl ate <class T>
long long Iltrunc(const T& v);

tenplate <class T, class Policy>

long long Iltrunc(const T& v, const Policy&);

The trunc functions round their argument to the integer value, nearest to but no larger in magnitude than the argument.
For examplei t runc(3. 7) wouldreturn3 and | t r unc( - 4. 6) would return - 4.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.

Integer and Fractional Part Splitting (modf)

#i ncl ude <boost/ mat h/ speci al _functi ons/ modf . hpp>

tenpl ate <class T>
T modf (const T& v, T* ipart);
tenpl ate <class T, class Policy>

T modf (const T& v, T* ipart, const Policy&):;
tenpl ate <class T>

T modf (const T& v, int* ipart);

tenpl ate <class T, class Policy>

T modf (const T& v, int* ipart, const Policyé&);
tenpl ate <class T>

T modf (const T& v, long* ipart);

tenpl ate <class T, class Policy>

T modf (const T& v, long* ipart, const Policy&);
tenpl ate <class T>

T modf (const T& v, long |long* ipart);

tenpl ate <class T, class Policy>

T modf (const T& v, long |long* ipart, const Policy&);
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The nodf functions store the integer part of vin *i part and return the fractional part of v. The sign of the integer and fractional
parts are the same asthe sign of v.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost::math::rounding_error.
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Floating-Point Classification: Infinities and NaNs

Synopsis
#def i ne FP_ZERO /* inplenentation specific value */
#def i ne FP_NORMAL /* inplenentation specific value */
#define FP_I NFI NI TE /* inplenentation specific value */
#defi ne FP_NAN /* inplenentation specific value */
#def i ne FP_SUBNORVAL /* inplenentation specific value */

tenpl ate <class T>
int fpclassify(T t);

tenpl ate <class T>
bool isfinite(T z); // Neither infinity nor NaN

tenpl ate <class T>
bool isinf(T t); // Infinity (+ or -).

tenpl ate <class T>
bool isnan(T t); // NaN

tenpl ate <class T>
bool isnormal (T t); // isfinite and not denornalised

#i ncl ude <boost\ mat h\ speci al _functi ons\fpcl assify. hpp>

to use these functions.
Description

These functions provide the same functionality as the macros with the same name in C99, indeed if the C99 macros are available,
then these functions are implemented in terms of them, otherwise they rely on std::numeric_limits<> to function.

Note that the definition of these functions does not suppress the definition of these names as macros by math.h on those platforms
that already provide these as macros. That mean that the following have differing meanings:
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usi ng nanmespace boost: : nmat h;

/1 This mght call a global macro if defined,

/1 but mght not work if the type of z is unsupported

/1 by the std lib nacro:

i snan(z);

I

/1 This calls the Boost version

/1 (found via the "using nanespace boost:: math" declaration)

/1 it works for any type that has nuneric_linmts support for type z:
(isnan)(z);

I

/1 As above but with explicit nanespace qualification.
(boost::math::isnan)(z);

I

/1 This will cause a conpiler error if isnan is a native nacro:
boost::math::isnan(z);

/1 So al ways use instead:

(boost::math::isnan)(z);

I

/1 You can al so add a using statenent,

/1l globally to a .cpp file, or to a local function in a .hpp file.
usi ng boost:: math::isnan;

/1l so you can wite the shorter and less cluttered

(isnan)(z)

/1 But, as above, if isnan is a native nmacro, this causes a conpiler error,
/'l because the nmacro always 'gets' the nane first, unless enclosed in () brackets.

Detailed descriptions for each of these functions follows:

tenpl ate <class T>
int fpclassify(T t);

Returns an integer value that classifiesthe valuet:

fpclassify value classof t.

FP_ZERO If tiszero.

FP_NORMAL If t isanon-zero, non-denormalised finite value.
FP_INFINITE If tisplusor minusinfinity.

FP_NAN If tisaNaN.

FP_SUBNORMAL If t isadenormalised number.

tenpl ate <class T>
bool isfinite(T z);

Returnstrue only if zisnot an infinity or a NaN.

tenpl ate <class T>
bool isinf(T t);

Returnstrue only if zis plus or minus infinity.
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tenpl ate <class T>
bool isnan(T t);

Returnstrue only if zisaNaN.

tenpl ate <class T>
bool isnormal (T t);

Returnstrue only if zisanormal number (not zero, infinite, NaN, or denormalised).

Floating-point format

If you wish to find details of the floating-point format for any particular processor, there is a program
inspect_fp.cpp

by Johan Rade which can be used to print out the processor type, endianness, and detailed bit layout of a selection of floating-point
values, including infinity and NaNs.
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Sign Manipulation Functions
Synopsis

#i ncl ude <boost/ mat h/ speci al _functi ons/ si gn. hpp>

namespace boost{ nanmespace mat h{

t enpl at e<cl ass T>
int signbit(T x);

tenpl ate <class T>
int sign (const T& z);

tenpl ate <class T, class U>
T copysign (const T& x, const U& y);

tenpl ate <class T>
cal cul ated-resul t-type changesign (const T& z);

}} /1 nanespaces

Description

tenpl at e<cl ass T>
int signbit(T x);

Returns anon-zero value if the sign bit is set in variable x, otherwise 0.

2 I mportant
The return value from this function is zero or not-zero and not zero or one.

tenpl ate <class T>
int sign (const T& z);

Returns1if x> 0,-1if x< 0,and 0 if xis zero.

tenpl ate <class T, class U>
cal cul ated-result-type copysign (const T& x, const U& vy);

Sets the sign of x to be the same asthe sign of .

See C99 7.12.11.1 The copysign functions for more detail.

tenpl ate <class T>
T changesign (const T& z);

Returns a floating point number with a binary representation where the signbit is the opposite of the sign bit in x, and where the
other bits are the same asin x.

Thisfunction iswidely available, but not specified in any standards.

Rationale: Not specified by TR1, but changesi gn(x) isboth easier to read and more efficient than
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copysign(x, signbit(x) 2 1.0 : -1.0);

For finite values, this function has the same effect as simple negation, the assignment z = -z, but for nonfinite values, infinities and
NaNs, the changesi gn(x) function may be the only portable way to ensure that the sign hit is changed.

Sign bits

One of the bitsin the binary representation of afloating-point number gives the sign, and the remaining bits give the absolute value.
That bit is known as the sign bit. The sign bit is set = 1 for negative numbers, and is not set = O for positive numbers. (Thisis true
for al binary representations of floating point numbers that are used by modern microprocessors.)

C++ TR1 specifies copysi gn functions and function templates for accessing the sign bit.

For user-defined types (UDT), the sign may be stored in some other way. They may also not provide infinity or NaNs. To use these
functionswith aUDT, it may be necessary to explicitly specialize then for UDT typeT.

Examples

signbit(3.5) is zero (or false)
signbit(-7.1) is 1 (or true)
copysign(4.2, 7.9) is 4.2
copysign(3.5 -1.4) is -3.5
copysign(-4.2, 1.0) is 4.2
copysign(-8.6, -3.3) is -8.6
changesign(6.9) is -6.9
changesign(-1.8) is 1.8

Portability

The library supports the following binary floating-point formats:

IEEE 754 single precision

» |EEE 754 double precision

» |EEE 754 extended double precision with 15 exponent bits
* Intel extended double precision

» PowerPC extended double precision

» Motorola 68K extended double precision

Thelibrary does not support the VAX floating-point formats. (These are available on VMS, but the default on VMS s the IEEE 754
floating-point format.)

The main portability issues are:
» Unsupported floating point formats
» Thelibrary depends on the header boost/detail/endian.hpp

» Codesuchas#if defined(__ia64) || defined(__ia64__) || defined(_M.| A64) isusedtodeterminethe processor
type.

Thelibrary has passed all tests on the following platforms:
* Win32/MSVC 7.1/10.0/ x86

* Win32/Intel C++7.1,8.1,9.1/x86
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Mac OS X / GCC 3.3, 4.0/ ppc

Linux / Intel C++ 9.1/ x86, iab4

Linux / GCC 3.3/ x86, x64, iab4, ppc, hppa, mips, m68k
Linux / GCC 3.4/ x64

HP-UX / aCC, GCC 4.1/ ia64

HP-UX / aCC/ hppa

Tru64 / Compag C++ 7.1/ alpha

VMS/HP C++ 7.1/ adpha (in | EEE floating point mode)

VMS/ HP C++ 7.2/ ia64 (in |EEE floating point mode)
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Facets for Floating-Point Infinities and NaNs
Synopsis

namespace boost{ namespace math
{

/'l Values for flags.

const int |egacy;

const int signed_zero;

const int trap_infinity;

const int trap_nan;

t enpl at e<
cl ass Char Type,
class Qutputlterator = std::ostreanbuf _iterator<Char Type>

>
class nonfinite_numput : public std::num put<CharType, Qutputlterator>
{
public:
explicit nonfinite_numput(int flags = 0);
}s
tenpl at e<
cl ass Char Type,
class Inputlterator = std::istreanbuf_iterator<CharType>
>
class nonfinite_numget : public std::num.get<CharType, |Inputlterator>
{
public:
explicit nonfinite_numget(int flags = 0); // legacy, sign_zero ...
}s

}} /1 nanespace boost nanespace nath

To use these facets

#i ncl ude <boost\ mat h\ speci al _functi ons\ nonfinite_num facets. hpp>

Introduction

The Problem

The C++98 standard does not specify how infinity and NaN are represented in text streams. As aresult, different platforms use dif-
ferent string representations. This can cause undefined behavior when text files are moved between different platforms. Some platforms
cannot even input parse their own output! So "route-tripping' or loopback of output to input isnot possible. For instance, the following
test failswith MSVC:

stringstream ss;

double inf = numeric_limts<double>: :infinity();
doubl e r;

ss << inf; // Wite out.

ss >>r; // Read back in.

cout << "infinity output was " << inf << endl; // 1. #INF
cout << "infinity input was " << r << endl; // 1

assert(inf ==1vy); // Fails!
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The Solution

Thefacetsnonfi ni t e_num put andnonfi ni t e_num get format and parseall floating-point numbers, includingi nf i ni ty and
NaN, in aconsistent and portable manner.

The following test succeeds with MSVC.

| ocal e ol d_I ocal e;
| ocal e tnp_l ocal e(ol d_I ocal e, new nonfinite_num put <char>);
| ocal e new_| ocal e(tnp_Il ocal e, new nonfinite_num get <char>);

I
To add two facets, nonf i ni t e_num put and nonfi ni te_num get, you may haveto add one at atime, using a
temporary locale.

Or you can create anew locale in one step

std::locale new | ocal e(std::local e(std::local e(std::|ocal e(), new boost::math::nonfin-
i te_num put <char>), new boost:: nmath::nonfinite_num get<char>));

and, for example, use it to imbue an input and output stringstream.

@ Tip
Tojust change an input or output stream, you can concisely writecout . i mbue (std:: 1 ocal e(std::local e(),

new boost::math::nonfinite_numput<char>)); or cin.inmbue (std::locale(std::locale(),
new boost: : mat h: : nonfi ni te_num get <char>));

stringstream ss;

ss. i mbue(new_| ocal e) ;

doubl e inf = numeric_limts<double> :infinity();
ss << inf; /] Wite out.

assert(ss.str() == "inf");

doubl e r;

ss >> r; // Read back in.

assert(inf ==r); // Confirns that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;

cout << "infinity input was " << r << endl;

/1 But the string representation of r displayed will be the native type
/'l because, when it was constructed, cout had NOT been inbued

/1 with the new | ocal e containing the nonfinite_nunput facet.

/1 So the cout output will be "1.# NF on MS platforns

/1 and may be "inf" or other string representation on other platforns.

C++0X standard for output of infinity and NaN

C++0X (final) draft standard does not explicitly specify the representation (and input) of nonfinite values, leaving it implementation-
defined. So without some specific action, input and output of nonfinite valuesis not portable.

C99 standard for output of infinity and NaN

The C99 standard does specify how infinity and NaN are formatted by printf and similar output functions, and parsed by scanf and
similar input functions.

The following string representations are used:
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Table 13. C99 Representation of Infinity and NaN

number string

Positive infinity "Iinf" or "infinity"
Positive NaN "nan" or "nan(...)"
Negative infinity "-inf" or "-infinity"
Negative NaN "-nan" or "-nan(...)"

So following C99 provides a sensible 'standard’ way of handling input and output of nonfinites in C++, and this implementation
follows most of these formats.

Signaling NaNs

A particular type of NaN isthe signaling NaN. The usual mechanism of signaling is by raising afloating-point exception. Signaling
NaNs are defined by |EEE 754-2008.

Floating-point valueswith layout s111 11171 1axX XXXX XXXX XXXX XXXX XXXX where sisthe sign, x isthe payload, and bit a determines
the type of NaN.

If bita=1,itisaquiet NaN.
If bit ais zero and the payload x is nonzero, then it isa signaling NaN.

Although there has been theoretical interest in the ability of asignaling NaN to raise an exception, for example to prevent use of an
uninitialised variable, in practice there appears to be no useful application of signaling NaNs for most current processors. C++0X
18.3.2.2 still specifies a (implementati on-defined) representation for signaling NaN, and st at i ¢ const expr bool has_si gnal -
i ng_NaN amethod of checking if afloating-point type has a representation for signaling NaN.

But in practice, most platforms treat signaling NaNs in the same as quiet NaNs. So, for example, they are represented by "nan" on
output in C99 format, and output as 1. #QNAN by Microsoft compilers.

S Note
The C99 standard does not distinguish between the quiet NaN and signaling NaN values. A quiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.

C99 specification does not define the behavior of signaling NaNs. NaNs created by | EC 60559 operations are always
quiet. Therefore thisimplementation follows C99, and treats the signaling NaN bit as just apart of the NaN payload
field. So thisimplementation does not distinguish between the two classes of NaN.

@ Note
An implementation may give zero and hon-numeric values (such asinfinities and NaNs) a sign or may leave them
unsigned. Wherever such values are unsigned, any regquirement in the C99 Standard to retrieve the sign shall produce
an unspecified sign, and any requirement to set the sign shall be ignored.

This might apply to user-defined types, but in practice built-in floating-point types f | oat , doubl e and | ong
doubl e have well-behaved signs.

The numbers can be of typef | oat , doubl e and | ong doubl e. An optional + sign can be used with positive numbers (controlled
by ios manipulator showpos). The function pri nt f and similar C++ functions use standard formatting flags to put all lower or all
upper case (controlled by st d: : i os manipulator upper case and | ower case).
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The function scanf and similar input functions are case-insensitive.

Thedotsinnan(. . .) standfor an arbitrary string. The meaning of that string isimplementation dependent. It can be used to convey
extrainformation about the NaN, from the 'payload'. A particular value of the payload might be used to indicate a missing value, for
example.

Thislibrary uses the string representations specified by the C99 standard.

An example of animplementation that optionally includesthe NaN payload informationisat AIX NaN fprintf. That implementation
specifies for Binary Floating Point NANS:

» A NaN ordinal sequence is aleft-parenthesis character '(’, followed by a digit sequence representing an integer n, where 1 <=n
<=INT_MAX-1, followed by aright-parenthesis character ")".

» Theinteger value, n, is determined by the fraction bits of the NaN argument value as follows:

» For asignalling NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an even integer value,
2*n. Then formatted output functions produce a (signalling) NaN ordinal sequence corresponding to the integer value n.

» For aquiet NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an odd integer value, 2*n-1.
Then formatted output functions produce a (quiet) NaN ordinal sequence corresponding to the integer value n.

O Warning
Thisimplementation does not (yet) provide output of, or access to, the NaN payload.

Reference

The Facet nonfinite_num put

tenpl at e<

cl ass CharType, class Qutputlterator = std::ostreanbuf_iterator<Char Type>
>

cl ass nonfinite_num put;

Thecl ass nonfinite_num put <Char Type, Qutputlterator>isderivedfromstd:: num put <Char Type, CQutputlter-
at or>. Thus it is a facet that formats numbers. The first template argument is the character type of the formatted strings, usually
char orwchar _t . The second template argument isthe type of iterator used to writethe strings. It isrequired to be an output iterator.
Usually the default st d: : ost reanbuf _i t er at or isused. The public interface of the class consists of a single constructor only:

nonfinite_numput(int flags = 0);

The flags argument (effectively optional because a default of no_f | ags isprovided) is discussed below. The class template non-
finite_num put isdefinedintheheader boost / mat h/ nonfi ni t e_num f acet s. hpp and livesinthe namespaceboost : : nat h.

Unlike the C++ Standard facet st d: : num put , the facet nonfi ni t e_num put formatsi nfi ni ty and NaN in a consistent and
portable manner. It uses the following string representations:
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Number String
Positive infinity inf
Positive NaN nan
Negative infinity -inf
Negative NaN -han

The numbers can be of typef | oat, doubl e and | ong doubl e. The strings can bein all lower case or all upper case. An optional
+ sign can be used with positive numbers. This can be controlled with the upper case, | ower case, showpos and noshowpos
manipulators. Formatting of integers, boolean values and finite floating-point numbers is ssmply delegated to the normal
std:: num put.

Facet nonfi ni te_num get

t enpl at e<cl ass Char Type, class Inputlterator = std::istreanbuf_iterator<CharType> > cl ass nonfinQO
ite_numget;

Theclassnonfi ni t e_num get <Char Type, | nputlterator>isderivedfromst d: : num get <Char Type, |ntputlterator>.
Thusit is afacet that parses strings that represent numbers. The first template argument is the character type of the strings, usually
char orwchar _t . The second template argument is the type of iterator used to read the strings. It is required to be an input iterator.
Usually the default is used. The public interface of the class consists of a single constructor only:

nonfinite_numaget(int flags = 0);

The flags argument is discussed below. The class tenplate nonfinite_numget is defined in the header
boost / mat h/ nonfini te_num facets. hpp and livesinthe namespace boost: : mat h.

Unlike the facet st d: : num get , the facet nonf i ni t e_num get parses strings that represent i nfi ni t y and NaN in a consistent
and portable manner. It recognizes precisely the string representations specified by the C99 standard:

Number String
Positive infinity inf, infinity
Positive NaN nan, nan(...)
Negative infinity -inf, -infinity
Negative NaN -nan, -nan(...)

The numbers can be of typef | oat , doubl e and| ong doubl e. The facet is case-insensitive. An optional + sign can be used with
positive numbers. Thedotsin nan(...) stand for an arbitrary string usually containing the NaN payload. Parsing of strings that represent
integers, boolean values and finite floating-point numbersis delegated to st d: : num get .

When the facet parses a string that representsi nf i ni t y on aplatform that lacks infinity, then the fail bit of the stream is set.
When the facet parses a string that represents NaN on a platform that lacks NaN, then the fail bit of the stream is set.
Flags

The constructorsfor nonf i ni t e_num put and nonfi ni t e_num get takean optional bit flags argument. There are four different
bit flags:
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* legacy

 signed zero

trap_infinity

* trap_nan

The flags can be combined with the OR oper at or | .

The flags are defined in the header boost / mat h/ nonfi ni t e_num f acet s. hpp and livein the namespace boost : : mat h.
legacy

The legacy flag has no effect with the output facet nonf i ni t e_num put .

If the legacy flag is used with thenonf i ni t e_num get input facet, then the facet will recognize all the following string represent-
ationsof i nfi ni ty and NaN:

Number String

Positive infinity inf, infinity, one#inf

Positive NaN nan, nan(...), nang, nans, gnan, snan, one#ind, onetgnan,
oneftsnan

Negative infinity -inf, -infinity, -one#inf

Negative NaN -nan, -nan(...), -nang, -nans, -gnan, -snan, -one#ind, - onetgnan,
-one#snan

* The numbers can be of typef | oat, doubl e and | ong doubl e.

» Thefacet is case-insensitive.

An optional + sign can be used with the positive values.

Thedotsinnan(...) stand for an arbitrary string.
» one standsfor any string that st d: : num get parses asthe number 1, typically "1#NF", "1.QNAN" but also "000001.#INF"...

Thelist includes anumber of non-standard string representations of infinity and NaN that are used by various existing implementations
of the C++ standard library, and also string representations used by other programming languages.

signed_zero

If thesi gned_zer o flag isused with nonf i ni t e_num put , then the facet will always distinguish between positive and negative
zero. It will format positive zero as"0" or "+0" and negative zero as"-0". The string representation of positive zero can be controlled
with the showpos and noshowpos manipulators.

Thesi gned_zero fl ag hasno effect with the input facet nonf i ni t e_num get . The input facet nonfi ni t e_num get aways
parses"0" and "+0" as positive zero and "-0" as negative zero, as do most implementations of st d: : num get .

S Note
If thesi gned_zer o flag isnot set (the default), then anegative zero value will be displayed on output in whatever
way the platform normally handlesit. For most platforms, thisit will format positive zero as"0" or "+0" and negative
zero as"'-0". But setting the si gned_zer o flag may be more portable.
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Il
A negative zero value can be portably produced using the changesign function ( changesi gn) (st ati ¢_cast <Val -
Type>(0)) where Val Type isfl oat, doubl e or | ong doubl e, or a User-Defined floating-point type (UDT)

provided that this UDT has a sign and that the changesign function isimplemented.

trap_infinity

If the trap_infinity flag is used with nonfinite_num put, then the facet will throw an exception of type
std::ios_base:: fail ure when an attempt is made to format positive or negative infinity. If the facet is called from a stream
insertion operator, then the stream will catch that exception and set either itsf ai | bi t oritsbad bit.Which bitissetisplatform
dependent.

If thetrap_i nfinity flagisusedwithnonfi ni te_num get , thenthefacet will setthef ai | bit of the stream when an attempt
is made to parse a string that represents positive or negative infinity.

(See Design Rationale below for a discussion of this inconsistency.)
trap_nan

Sameastrap_i nfinity, but positive and negative NaN are trapped instead.

Examples

Simple example with std::stringstreams

| ocal e ol d_I ocal g;
|l ocale tnp_l ocal e(ol d_|l ocal e, new nonfinite_num put<char>);
| ocal e new_ | ocal e(tnp_l ocal e, new nonfinite_num get<char>);

stringstream ss;

ss. i mbue(new_| ocal e) ;

doubl e inf = numeric_limts<double> :infinity();
ss << inf; /] Wite out.

assert(ss.str() == "inf");

doubl e r;

ss >>r; // Read back in.

assert(inf ==r); // Confirns that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;

cout << "infinity input was " << r << endl;

/1 But the string representation of r displayed will be the native type
/'l because, when it was constructed, cout had NOT been inbued

/1 with the new | ocal e containing the nonfinite_nunput facet.

/1 So the cout output will be "1.# NF on MS platforns

/1 and may be "inf" or other string representation on other platforns.

Use with lexical_cast

@ Note
From Boost 1.48, lexical_cast no longer uses stringstreams internally, and is now able to handle infinities and NaNs
natively on most platforms.

Without using a new locale that contains the nonfinite facets, previous versions of | exi cal _cast using stringstream were not
portable (and often failed) if nonfinite values are found.
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| ocal e ol d_I ocal ¢;
| ocal e tnp_l ocal e(ol d_|l ocal e, new nonfinite_num put<char>);
| ocal e new_| ocal e(tnp_l ocal e, new nonfinite_num get<char>);

Although other examplesimbueindividual streamswith the new locale, for the streams constructed inside lexical_cadt, it was necesary
to assign to aglobal locale.

| ocal e: : gl obal (new_| ocal e) ;
| exi cal _cast then works as expected, even with infinity and NaNs.

doubl e x = boost: : | exical _cast<double>("inf");
assert(x == std::nuneric:limts<double> :infinity());

string s = boost::lexical_cast<string>(numeric_limts<double>: :infinity());
assert(s == "inf");

O Warning
If you use stringstream inside your functions, you may still need to use aglobal local e to handle nonfinites correctly.
Or you need to imbue your stringstream with suitable get and put facets.

O Warning
You should be aware that the C++ specification does not explicitly require that input from decimal digits strings
converts with rounding to the nearest representable floating-point binary value. (In contrast, decimal digits read by
the compiler, for example by an assignment likedoubl e d = 1. 234567890123456789, are guaranteed to assign
the nearest representable value to double d). This implies that, no matter how many decimal digits you provide,
thereis a potential uncertainty of 1 least significant bit in the resulting binary value.

See for more information on nearest representable and rounding.

Most iostream libraries do in fact achieve the desirable nearest representable floating-point binary value for al values of input.
However one popular STL library does not quite achieve this for 64-bit doubles. See Decimal digit string input to double may be 1
bit wrong for the bizarre full details.

If you are expecting to 'round-trip' | exi cal _cast orseri al i zat i on, for examplearchiving and loading, and want to be absolutely
certain that you will always get an exactly identical double value binary pattern, you should use the suggested ‘workaround'
below that is believed to work on all platforms.

You should output using all potentially significant decimal digits, by setting stream precision to std::numeric_lim
i t s<doubl e>: : max_di gi t s10, (or for the appropriate floating-point type, if not double) and crucialy, require sci entific
format, not f i xed or automatic (default), for example:

doubl e out put _val ue = any val ue;

std::stringstreams;

s << setprecison(std::numeric_|imts<double>: :max_digitsl0) << scientific << output_val ue;
s >> input_val ue;

Use with serialization archives

It isvital that the same locale is used when an archive is saved and when it is loaded. Otherwise, loading the archive may fail. By
default, archives are saved and loaded with aclassic C locale with aboost : : archi ve: : codecvt _nul | facet added. Normally
you do not have to worry about that.
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The constructors for the archive classes, as a side-effect, imbue the stream with such alocale. However, if you want to use the facets
nonfini te_num put and nonfi nite_num get with archives, then you have to manage the locale manually. That is done by
calling the archive constructor with the flag boost : : ar chi ve: : no_codecvt , thereby ensuring that the archive constructor will
not imbue the stream with a new locale.

The following code shows how to use nonf i ni t e_num put withat ext _oarchi ve.

| ocal e default_l ocal e(locale::classic(), new boost::archive::codecvt_null <char>);
| ocal e ny_l ocal e(default_Iocal e, new nonfinite_num put<char>);

of streamofs("test.txt");
of s. i mbue(ny_Il ocal e);

boost: :archive::text_oarchive oa(ofs, no_codecvt);

double x = nuneric_limts<double> :infinity();
oa & X;

The same method works with nonf i ni t e_num get andt ext _i archi ve.

If you use the nonfi nit e_num put withtrap_i nfinity and/ortrap_nan flag with a serialization archive, then you must set
the exception mask of the stream. Serialization archives do not check the stream state.

Other examples

nonfinite_facet_simple.cpp give some more simple demonstrations of the difference between using classic C locale and constructing
aC99 infinty and NaN compliant locale for input and output.

See nonfinite facet sstream.cpp for this example of use with st d: : stri ngst r eans.

For an example of how to enforcethe MSV C 'legacy’ "1.#INF" and "1.#QNAN" representations of infinity and NaNs, for input and
output, see nonfinite_|legacy.cpp.

Treatment of signaling NaN is demonstrated at ../../example/nonfinite_signaling_NaN.cpp

Example ../../example/nonfinite_loopback ok.cpp shows loopback works OK.

Example ../../example/nonfinite_num_facet.cpp shows output and re-input of various finite and nonfinite values.
A simple example of trapping nonfinite output is at nonfinite_num_facet_trap.cpp.

A very basic example of using Boost.Archiveisat ../../example/nonfinite_serialization archives.cpp.

A full demonstration of serialization by Francois Mauger isat ../../example/nonfinite_num_facet_serialization.cpp

Portability

This library uses the floating-point number classification and sign-bit from Boost.Math library, and should work on all platforms
where that library works. See the portability information for that library.

Design Rationale

» Theflagsareimplemented asaconst datamember of the facet. Facets are reference counted, and locales can share facets. Therefore
changing the flags of a facet would have effects that are hard to predict. An aternative design would be to implement the flags
usingstd: :ios_base::xall oc andstd::ios_base: :iword. Then onecould safely modify the flags, and one could define
manipulators that do so. However, for that to work with dynamically linked libraries, a. cpp file would have to be added to the
library. It was judged be more desirable to have a headers only library, than to have mutable flags and manipulators.
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e Thefacetnonfi ni te_num put throwsan exception whenthetrap_i nfinity ortrap_nan flagisset and an attempt is made
toformat infinity or NaN. It would be better if the facet set thefail bit of the stream. However, facets derived fromst d: : num put
do not have access to the stream state.

67

render

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Floating-Point Representation Distance (ULP), and
Finding Adjacent Floating-Point Values

Unit of Least Precision or Unit in the Last Place is the gap between two different, but as close as possible, floating-point numbers.

Most decimal values, for example 0.1, cannot be exactly represented as floating-point values, but will be stored as the closest repres-
entable floating-point.

Functions are provided for finding adjacent greater and | esser floating-point values, and estimating the number of gaps between any
two floating-point values.

The floating-point type FPT must have has a fixed number of bits in the representation. The number of bits may set at runtime, but
must be the same for all numbers. For example, NTL::quad_float type (fixed 128-hit representation) or NTL::RR type (arbitrary but
fixed decimal digits, default 150) but not a type that extends the representation to provide an exact representation for any number,
for example XRC eXact Real in C.

Finding the Next Representable Value in a Specific Direction
(nextafter)

Synopsis

#i ncl ude <boost/ mat h/ speci al _functi ons/ next. hpp>

namespace boost{ nanmespace mat h{

tenpl ate <cl ass FPT>
FPT nextafter(FPT val, FPT direction);

}} /1 nanespaces

Description - nextafter

Thisisan implementation of the next af t er function included in the C99 standard. (It is also effectively an implementation of the
C99 'nexttoward' legacy function which differs only having along double direction, and can generally servein its place if required).

g Note
The C99 functions must use suffixes f and | to distinguish float and long double versions. C++ uses the template
mechanism instead.

Returns the next representable value after x in the direction of y. If x ==y then returns x. If x is non-finite then returns the result
of adomain_error. If there is no such valuein the direction of y then returns an overflow_error.

O Warning
The template parameter FTP must be a floating-point type. An integer type, for example, will produce an unhelpful
€rror message.
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Il
Nearly always, you just want the next or prior representable value, so instead use f | oat _next or f| oat _pri or
below.

Examples - nextafter

The two representations using a 32-bit float either side of unity are:

The nearest (exact) representation of 1.F is 1. 00000000
nextafter(1.F, 999) is 1. 00000012
nextafter(1/f, -999) is 0. 99999994

The nearest (not exact) representation of 0.1F is 0.100000001
nextafter(0.1F, 10) is . 100000009
nextafter(0.1F, 10) is 0. 099999994

o

Finding the Next Greater Representable Value (float_next)
Synopsis
#i ncl ude <boost/ mat h/ speci al _functi ons/ next . hpp>

nanespace boost{ nanespace math{

tenpl ate <cl ass FPT>
FPT fl oat_next (FPT val)

}} /1 nanespaces

Description - float_next

Returns the next representable value which is greater than x. If x is non-finite then returnsthe result of adomain_error. If thereisno
such value greater than x then returns an overflow_error.

Has the same effect as

nextafter(val, (std::nunmeric_limts<FPT>: :max)());

Finding the Next Smaller Representable Value (float_prior)
Synopsis
#i ncl ude <boost/ mat h/ speci al _functi ons/ next. hpp>

nanespace boost{ nanespace math{

tenpl ate <cl ass FPT>
FPT fl oat _prior (FPT val)

}} /1 nanespaces
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Description - float_prior

Returns the next representable value which is less than x. If x is non-finite then returns the result of a domain_error. If thereis no
such value less than x then returns an overflow_error.

Has the same effect as

nextafter(val, -(std::nuneric_limts<FPT>::max)()); // Note nobst negative val ue -nax.

Calculating the Representation Distance Between Two Floating
Point Values (ULP) float_distance

Function float_distance finds the number of gaps/bitsyUL P between any two floating-point values. If the significands of floating-
point numbers are viewed as integers, then their difference is the number of UL P/gaps/bits different.

Synopsis

#i ncl ude <boost/ mat h/ speci al _functi ons/ next . hpp>

nanespace boost{ nanespace math{

tenpl ate <cl ass FPT>
FPT fl oat_di stance(FPT a, FPT b);

}} /1 nanespaces

Description - float_distance

Returns the distance between a and b: the result is always a signed integer value (stored in floating-point type FPT) representing the
number of distinct representations between a and b.

Note that

e float_distance(a, a) awaysreturnsO.

e float_distance(fl oat_next(a), a) awaysreturns-1.
» float_distance(float_prior(a), a) awaysreturns1.

The function f | oat _di st ance is equivalent to calculating the number of ULP (Units in the Last Place) between a and b except
that it returns a signed value indicating whether a > b or not.

If the distance is too great then it may not be able to be represented as an exact integer by type FPT, but in practice thisis unlikely
to be aissue.

Advancing a Floating Point Value by a Specific Representation
Distance (ULP) float_advance

Function float_advance advances a floating point number by a specified number of ULP.
Synopsis

#i ncl ude <boost/ mat h/ speci al _functi ons/ next. hpp>
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nanmespace boost{ nanespace math{

tenpl ate <cl ass FPT>
FPT fl oat_advance( FPT val, int distance);

}} /1 nanespaces

Description - float_advance

Returns a floating point number r such that f | oat _di stance(val, r) == distance.
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Floating-point Comparison

Comparison of floating-point values has always been a source of endless difficulty and confusion.

Unlike integral values that are exact, although the bit-pattern binary-representation is exact (at least within a platform), usually the
representation of a decimal digit string cannot be exactly represented as a binary floating-point. So assignment usually involves
rounding.

Floating-point computations a so involve rounding so that some ‘computational noise' is added, and hence results are also not exact
(although repeatable, at least under identical platforms and compile options).

Sadly, this conflicts with the expectation of most users, as many articles and innumerable cries for help show all too well.

Fortunately, some convenient tools for comparing inexact floating-point values are available from Boost.

Boost.Test floating-point comparison and Boost.Math floating-point utilities floating-point comparison allow

» Relative comparison between two floating-point values.

 Absolute comparison of one value with zero.

@ Tip

Relative comparison with values close to zero is usually misleading; it is better to compare each value with zero. If
both are 'near enough zero' then they are 'equal enough'.

The comparisons are only for floating-point values and are 'fuzzy', with atolerance provided by the user.

Some background reading is:

» Knuth D.E. The art of computer programming, vol 11, section 4.2, especially Floating-Point Comparison 4.2.2, pages 198-220.

 Alberto Squassabia, Comparing floats listing

Alberto Squassabia, Comparing floats, part 1

Alberto Squassabia, Comparing floats, part 2

Google Floating-Point_Comparison guide
» Boost.Test Floating-Point_Comparison
Relative Comparison of Floating-point Values

Synopsis

#i ncl ude <boost/test/fl oating_point_conparison. hpp>
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nanespace boost { nanmespace math {
nanmespace fpc { // Note floating-point conparison nanespace.

t enpl at e<t ypenane FPT1, typenane FPT2, typenane Tol eranceType>

bool is_close to( FPT1 left, FPT2 right, Tol eranceType tol erance );

/1 Test if two values are cl ose enough,

/1 (using the default FPC_STRONG or 'essentially equal' criterion).

enum strength

{

FPC_STRONG // "Very close" "essentially equal" - Knuth equation 1' in docs (default).
FPC_WVEAK /1 "C ose enough" "approxi mately equal" - equation 2' in docs.

b

t enpl at e<t ypenane Tol eranceType>
explicit close_at_tol erance(Tol eranceType tol erance, fpc::strength fpc_strength = FPC_STRONG ) ;

Comparisons are most simply made using the functioni s_cl ose_t o.

Thereisasoatemplated classcl ose_at _t ol er ance that can be convenient for multiple tests with the sametolerance and strength.
(These are used by the popular MACRO versions in Boost.Test like BOOST_CHECK_CLOSE).

For most applications, the default strength parameter can be |eft at the default 'strong'.

The Tol er ance_t ype isthe same as floating-point type FPT, often abuilt-in typelikef | oat , doubl e or | ong doubl e, but also
Boost.Multiprecision types like cpp_bin_float or cpp_dec float.

The constructor sets the fractional tolerance and the equality strength.

Two member functions allow access to the chosen tolerance and strength.

FPT fraction_tol erance() const;
strength strength() const; // weak or strong.

the oper at or () functor carries out the comparison, and returnst r ue if essentially equal elsef al se.
bool operator()(FPT left, FPT right) const; // true if close or 'equal'.

Comparison tolerances can be very small, near the machine epsilon or Unit in Last Place (ULP), typically for measuring ‘computa-
tional' noise from multiple rounding or iteration, or can be a much bigger value like 0.01 (equivalent to a 1% tolerance), typically
from measurement uncertainty.

After (but not before) a comparison of values u and v has been made by a call of the functor oper at or () , the access function

FPT failed_fraction() const;
returns the fraction
abs(u-v) / abs(v) or abs(u-v) / abs(u)
that failed the test.

Some using statements will ensure that the classes, functions and enums are accessible.

usi ng namespace boost: :math:: fpc;
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or

usi ng boost::math::fpc::close_at_tol erance
usi ng boost::math::fpc::small_wth_tol erance
usi ng boost::mth::fpc::is_close_to

usi ng boost::math::fpc::is_small

usi ng boost:: math: :fpc:: FPC_STRONG

usi ng boost:: math::fpc:: FPC_WEAK

The following examples display values with al possibly significant digits. Newer compilers should providest d: : nunmeric_l i m
i t sFPT>: : max_di gi t s10 for this purpose, and here we use f | oat precision where max_di gi t s10 = 9 to avoid displaying a
distracting number of decimal digits.

Note
S Older compilerscan usethisformulato calculatemax_di gi t s10 fromst d: : nuneri c_I i mi t s<FPT>: : di gi t s10:
int max_digitsl0 = 2 + std::nuneric_limts<FPT>::digitsl0 * 3010/ 10000;

One can set the display including all trailing zeros (helpful for this example to show all potentialy significant digits), and also to
display bool values aswords rather than integers:

std::cout.precision(std::nunmeric_limts<float>::nmax_digitsl0);
std::cout << std::boolal pha << std::showpoint << std::endl;

When comparing valuesthat are quite close or approximately equal, it is convenient to use the appropriate epsi | on for the floating-
point type FPT, here, for example, f | oat :

float epsilon = std::nunmeric_limts<float>::epsilon();
std::cout << "float epsilon =" << epsilon << std::endl; // +1.1920929e-007

The simplest use is to compare two values with a tolerance thus:

bool is_close = is_close_to(1l.F, 1.F + epsilon, epsilon); // One epsilon apart is close enough.
std::cout << "is close to(l.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // true

is_close =is_close_to(1.F, 1.F + 2 * epsilon, epsilon); // Two epsilon apart isn't close enough.
std::cout << "is_close_to(l1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // false

S Note
The type FPT of the tolerance and the type of the values must match.

Sois_close(0.1F, 1., 1.) will fal to compile because "template parameter 'FPT" is ambiguous'. Always
provide the same type, using st at i ¢c_cast <FPT> if necessary.

Aninstance of classcl ose_at _t ol er ance is more convenient when multiple tests with the same conditions are planned. A class
that stores atolerance of three epsilon (and the default strong test) is:

cl ose_at_tol erance<float> three_rounds(3 * epsilon); // 'strong' by default.

and we can confirm these settings:
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std::cout << "fraction_tolerance ="
<< three_rounds. fraction_tol erance()
<< std::endl; // +3.57627869e-007
std::cout << "strength ="
<< (three_rounds. strength() == FPC_STRONG ? "strong" : "weak")
<< std::endl; // strong

To start, let us use two values that are truly equal (having identical bit patterns)

float a
float b

1. 23456789F
1. 23456789F

and make a comparison using our 3*epsilont hr ee_r ounds functor:

bool close = three_rounds(a, b);
std::cout << "three_rounds(a, b) =" << close << std::endl; // true

Unsurprisingly, the result istrue, and the failed fraction is zero.

std::cout << "failed fraction =" << three_rounds.failed fraction() << std::endl

To get some nearby values, it is convenient to use the Boost.Math Adjacent Floating-Point VValues functions, for which we need an

include
#i ncl ude <boost/ mat h/ speci al _functi ons/ next. hpp>
and some using declarations:

usi ng boost:: math::float_next;
usi ng boost::math::float_prior;
usi ng boost:: math::nextafter;
usi ng boost:: math::float_distance

To add afew Unit in the last place (ULP) to one value:

float _next(a); // Add just one ULP to a.
float_next(b); // Add another one ULP.
float_next(b); // Add another one ULP.
/ 3 epsilon would pass.

= float_next(b); // Add anot her one ULP

b
b
b
/
b

and repeat our comparison:

close = three_rounds(a, b);

std::cout << "three_rounds(a, b) =" << close << std::endl; // false

std::cout << "failed fraction =" << three_rounds.failed fraction()
<< std::endl; // abs(u-v) / abs(v) = 3.86237957e-007

We can also 'measure’ the number of bits different using thef | oat _di st ance function:

std::cout << "float _distance = " << float_distance(a, b) << std::endl

1 4

Now consider two values that are much further apart than one might expect from computational noise, perhaps the result of two
measurements of some physical property like length where an uncertainty of a percent or so might be expected.
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float fpl
float fp2

0. 01000F;
0. 01001F; // Slightly different.

float tolerance = 0.0001F;
cl ose_at _tol erance<float> strong(epsilon); // Default is strong.

bool rs = strong(fpl, fp2);
std::cout << "strong(fpl, fp2) is " << rs << std::endl;

Or we could contrast using the weak criterion:;

cl ose_at _tol erance<fl oat> weak(epsilon, FPC WEAK); // Explicitly weak.
bool rw = weak(fpl, fp2); //
std::cout << "weak(fpl, fp2) is " << rw << std::endl;

We can also construct, setting tolerance and strength, and compare in one statement:

std::cout << a << " #=" << b << " is "
<< cl ose_at _tol erance<fl oat >(epsilon, FPC_STRONG (a, b) << std::endl;
std::cout << a << " ~=" << b << " is "

<< cl ose_at _tol erance<fl oat >(epsilon, FPC WEAK)(a, b) << std::endl;

but this has little advantage over using functioni s_cl ose_t o directly.
Comparing small values near zero

When the floating-point values become very small and near or at zero, using arel ative test becomes unhel pful because oneisdividing
by atiny value, or worse, by zero. Instead, an absolute test is needed, comparing one (or usually both) values with zero, using a
tolerance. If both are near zero, then they can be considered ‘equal enough'.

Absolute comparisons are conveniently made with thesmal | _wi t h_t ol erance classandi s_smal | function.

Synopsis

nanespace boost {
namespace math {
nanmespace fpc {

t enpl at e<t ypenane FPT>
class small _with_tol erance
{

publi c:

/1 Public typedefs.

t ypedef bool result_type;

/'l Constructor.
explicit small_w th_tol erance(FPT tolerance); // tolerance >= 0

/1 Functor
bool operator()(FPT value) const; // return true if <= absolute tolerance (near zero).
b

t enpl at e<t ypenane FPT>
bool
is_small (FPT value, FPT tolerance); // return true if value <= absolute tol erance (near zero).

}1} /1 namespace fpc, nanmespace nath, nanepace boost.
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@ Note
The type FPT of the tolerance and the type of the value must match.

Sois_smal | (0. 1F, 0.000001) will fail to compile because "template parameter 'FPT' is ambiguous'. Always
provide the same type, using st at i ¢c_cast <FPT>(val ue) if necessary.

A few values near zero are tested with varying tolerance bel ow.

float ¢ = 0
std::cout << "0 is_small " << is_small(c, epsilon) << std::endl; // true

¢ = std::nuneric_limts<float> :denormmn(); // 1.40129846e-045
std::cout << "denorm_ mn =" << c << ", is_ small is " <<is_small(c, epsilon) << std::endl; // true

c = std::nurmeric_limts<float> :min(); // 1.17549435e-038
std::cout << "min =" << c¢c << ", is_small is " << is_small(c, epsilon) << std::endl; // true

c =1* epsilon; // 1.19209290e-007
std::cout << "epsilon =" << c¢c << ", is small is " <<is_small(c, epsilon) << std::endl; // false

c =1* epsilon; // 1.19209290e-007
std::cout << "2 epsilon =" <<c¢c << ", is_snmall is " <<is_small(c, 2 * epsilon) << std::endl; // O
true

c =2 * epsilon; //2.38418579e-007
std::cout << "4 epsilon =" <<c¢c << ", is_snmall is " <<is_small(c, 2 * epsilon) << std::endl; // O
fal se

c = 0.00001F

std::cout << "0.00001 =" << ¢ << ", is_small is " <<is_small(c, 0.0001F) << std::endl; // true
c = -0.00001F
std::cout << "0.00001 =" << ¢ << ", is_small is " <<is_small(c, 0.0001F) << std::endl; // true

Usingtheclasssnal | _wi t h_t ol er ance allows storage of the tolerance, convenient if you make repeated tests with the same tol-
erance.

smal | _wi th_tol erance<fl oat>nmy_test(0.01F);

std::cout << "ny test(0.001lF) is " << my_test(0.001F) << std::endl; // true
std::cout << "ny test(0.001lF) is " << my_test(0.01F) << std::endl; // false

A sample output from the whole exampleis:
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Conpare floats using Boost. Test functions/classes

float epsilon = 1.19209290e- 007
is_close_to(1.F, 1.
fraction_tol erance 3.57627869e- 007
strength = strong

three_rounds(a, b) = true
failed_fraction = 0.000000000
three_rounds(a, b) = false

failed _fraction = 3.86237957e-007

fl oat _di stance = 4. 00000000
strong(fpl, fp2) is false

weak(fpl, fp2) is false

1.23456788 #= 1.23456836 is false
1.23456788 ~= 1.23456836 is false

0O is_small true

denorm_mn =1.40129846e-045, is_snall

F + epsilon, epsilon);
is_close to(1l.F, 1.F + epsilon, epsilon);

is true

mn = 1. 17549435e-038, is_small is true
epsilon = 1.19209290e-007, is_small is false

2 epsilon
4 epsilon

1.19209290e-007, is_snall
2.38418579e- 007, is_small

is true
is fal se

0. 00001 = 9.99999975e-006, is_snall is true
0. 00001 = -9.99999975e-006, is_small is true

ny_test(0.001F) is true

ny_test(0.001F) is false

Seefloat_comparison_example.cpp for full example code.

is true
is fal se
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Overview

The header <boost / cst df | oat . hpp> provides optional standardized floating-point t ypedef s having specified widths. These
are useful for writing portable code because they should behave identically on all platforms. Theset ypedef s are the floating-point
analog of specified-width integersin <cst di nt > and st di nt . h.

Thet ypedef s are based on N3626 proposed for a new C++14 standard header <cst df | oat > and N1703 proposed for anew C
language standard header <st df | oat . h>.

All t ypedef sarein nanmespace boost (would bein namespace st d if eventually standardized).

Thet ypedef sincludef | oat 16_t, float32_t, float64_t, float80_ t, float128_t, their corresponding least and fast
types, and the corresponding maximum-width type. Thet ypedef sare based on underlying built-in types such asf | oat , doubl e,
or |l ong doubl e, or based on other compiler-specific non-standardized typessuch as__f | oat 128. The underlying types of these
t ypedef smust conform with the corresponding specifications of binary16, binary32, binary64, and binary128in |EEE_floating_point
floating-point format.

The 128-bit floating-point type (of great interest in scientific and numeric programming) is not required in the Boost header, and
may not be supplied for all platforms/compilers, because compiler support for a 128-hit floating-point typeis not mandated by either
the C standard or the C++ standard.

See Jahnke-Emden-Lambda function example for an example using both a CMath function and a Boost.Math function to evaluate
amoderately interesting function, the Jahnke-Emden-L ambda function and normal distribution an example of astatistical distribution
from Boost.Math
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Rationale

Theimplementation of <boost / cst df | oat . hpp>isdesignedto utilize<f | oat . h>, defined in the 1989 C standard. The preprocessor
isused to query certain preprocessor definitionsin <f | oat . h> such as FLT_MAX, DBL_MAX, etc. Based on the results of these
queries, an attempt is made to automatically detect the presence of built-in floating-point types having specified widths. An unegui-
vocal test regarding conformancewith | EEE_floating_point (IEC599) basedonst d: : nuneri c_l i m ts<>::is_i ec559isperformed
with BOOST_STATI C_ASSERT.

In addition, this Boost implementation <boost / cst df | oat . hpp> supports an 80-bit floating-point t ypedef if it can be detected,
and a 128-hit floating-point t ypedef if it can be detected, provided that the underlying types conform with |EEE-754 precision
extension (ifstd: : numeric_limts<>::is_iec559 istruefor thistype).

The header <boost / cst df | oat . hpp> makes the standardized floating-point t ypedef s safely available in nanmespace boost
without placing any namesin namespace st d. Theintention isto complement rather than compete with a potential future C/C++
Standard Library that may containtheset ypedef s. Should somefuture C/C++ standard include <st df | oat . h>and <cst df | oat >,
then <boost / cst df | oat . hpp> will continue to function, but will become redundant and may be safely deprecated.

Because <boost / cst df | oat . hpp> is a Boost header, its name conforms to the boost header naming conventions, not the C++
Standard Library header naming conventions.

S Note
<boost / cst df | oat . hpp> cannot synthesize or create at ypedef if the underlying typeisnot provided by
the compiler. For example, if a compiler does not have an underlying floating-point type with 128 bhits (highly
sought-after in scientific and numeric programming), then f | oat 128_t and its corresponding least and fast types
are not provided by <boost / cst df | oat . hpp>.

O Warning
If <boost / cst df | oat . hpp> usesacompiler-specific non-standardized type (not derived fromf | oat, doubl e,
orl ong doubl e) for one or more of itsfloating-point t ypedef s, then there is no guarantee that specializations of
numeri c_I i mi t s<>will be available for these types. Typically, specializations of nuneri c_| i nmi t s<>will only
be available for these types if the compiler itself supports corresponding specializations for the underlying type(s),
exceptionsare GCC's__f | oat 128 type and Intel's_Quad type which are explicitly supported via our own code.

o Warning
As an implementation artifact, certain C macro names from <f | oat . h> may possibly be visible to users of
<boost / cst df | oat . hpp>. Don't rely on using these macros; they are not part of any Boost-specified interface.
Usestd:: nuneric_|inmts<>for floating-point ranges, etc. instead.

For best results, <boost / cst df | oat . hpp> should be #i ncl uded before other headers that define generic code
making use of standard library functions defined in <cmath>.

This is because <boost / cst df | oat . hpp> may define overloads of standard library functions where a non-
standard type (i.e. other than f | oat , doubl e, or | ong doubl €) is used for one of the specified width types. If
generic code (for examplein another Boost.Math header) calls a standard library function, then the correct overload
will only be found if these overloads are defined prior to the point of use. See implementation for more details.

For this reason, making #i ncl ude <boost/cstdf | oat. hpp> thefirst includeisusually best.
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Specified-width floating-point typedefs

Exact-Width Floating-Point :,pecer S

Thetypedef float#_t,with# replaced by the width, designates a floating-point type of exactly # bits. For examplef | oat 32_t
denotes a single-precision floating-point type with approximately 7 decimal digits of precision (equivalent to binary32 in
|EEE_floating_point).

Floating-point types in C and C++ are specified to be allowed to have (optionally) implementation-specific widths and formats.
However, if a platform supports underlying floating-point types (conformant with IEEE_floating_point) with widths of 16, 32, 64,
80, 128 hits, or any combination thereof, then <boost / cst df | oat . hpp> does provide the correspondingt ypedef sfl oat 16_t
float32_t, float64 t, float80 t, float128 t, theircorrespondingleast and fast types, and the corresponding maximum-
width type.

How to tell which widths are supported

The definition (or not) of afloating-point constant macro is the way to test if a specific width is available on a platform.

#i f defined( BOOST_FLOAT16_C)
/'l Can use boost::floatl16_t.
#endi f

#i f defined( BOOST_FLOAT32_C)
/1 Can use boost::float32_t.
#endi f

#i f defined( BOOST_FLOAT64_C)
/1 Can use boost::float64_t.
#endi f

#i f defined( BOOST_FLOAT80_C)
/1 Can use boost::float80_t.
#endi f

#i f defi ned( BOOST_FLQOAT128_C)

/1 Can use boost::float128_t.
#endi f

This can be used to write code which will compile and run (albeit differently) on several platforms. Without these tests, if awidth,
say f 1 oat 128_t isnot supported, then compilation would fail. (It is of course, rare for f | oat 64_t or f | oat 32_t not to be sup-
ported).

The number of bitsin just the significand can be determined using:
std::nunmeric_|limts<boost::floatnax_t>::digits

and from this one can safely infer the total number of bits because the type must be IEEE754 format, so, for example, if st d: : nu-
neric_limts<boost::floatmax_t>::digits == 113,thenfl oatmax_t mustbe fl oat 128 t.

Thetotal number of bitsusing f | oat max_t can be found thus:

const int fpbits =

(std::nunmeric_limts<boost::floatmax_t>::digits == 113) ? 128 :
(std::nunmeric_limts<boost::floatmax_t>::digits == 64) ? 80 :
(std::nunmeric_limts<boost::floatmax_t>::digits == 53) ? 64 :
(std::nunmeric_limts<boost::floatmax_t>::digits == 24) ? 32 :
(std::nunmeric_limts<boost::floatmax_t>::digits == 11) ? 16 :

0; // Unknown - not | EEE754 format.
std::cout << fphits << " bits." << std::endl;
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Specified-width floating-point typedefs

and the number of 'guaranteed' decimal digits using
std::numeric_limts<boost::floatmax_t>::digitsl0

and the maximum number of possibly significant decimal digits using
std::numeric_limts<boost::floatmax_t>::max_digitsl0

@ Tip

max_di gi t s10 is not always supported, but can be calculated at compile-time using the Kahan formula.

S Note
One could test
std::is_same<boost::floatmax_t, boost::float128 t>::value == true

but this would fail to compile on a platform where boost : : f| oat 128_t is not defined. So use the MACROs
BOOST_FLOATnnn_C.
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Specified-width floating-point typedefs

Minimum-width floating-point :yperS

Thetypedef float_| east#_t, with# replaced by the width, designates a floating-point type with a width of at least # bits,
such that no floating-point type with lesser size has at least the specified width. Thus, f | oat _| east 32_t denotes the smallest
floating-point type with awidth of at least 32 hits.

Minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if a platform supportsfl oat 32_t and fl oat 64_t, thenfl oat _| east32_t and f| oat _| east 64_t will also be
supported, etc.
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Specified-width floating-point typedefs

Fastest floating-point typeaerS

Thetypedef float_fast#_t,with# replaced by the width, designates the fastest floating-point type with awidth of at least #
bits.

There is no absolute guarantee that these types are the fastest for all purposes. In any case, however, they satisfy the precision and
width requirements.

Fastest minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if aplatform supportsf | oat 32_t andf | oat 64_t ,thenfl oat _fast32_t andfl oat _f ast 64_t will aso be sup-
ported, etc.
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Specified-width floating-point typedefs

Greatest-width floating-point typedef

Thetypedef fl oat max_t designatesafloating-point type capable of representing any value of any floating-point typein agiven
platform most precisely.

The greatest-width t ypedef isprovided for all platforms, but, of course, the size may vary.
To provide floating-point constants most precisely for af | oat max_t type, use the macro BOOST _FLOATMAX_C.

For example, replace aconstant 123. 4567890123456789012345678901234567890 with

BOOST_FLOATMAX_C(123. 4567890123456789012345678901234567890)

If, for example, f | oat max_t isfl oat 64_t thentheresult will beequivalenttoal ong doubl e suffixedwithL, butif f | oat max_t
isfl oat 128_t thentheresult will be equivalentto aquad t ype suffixed with Q (assuming, of course, that f | oat 128 issupported).

If we display with max_di gi t s10, the maximum possibly significant decimal digits:

#i f def BOOST_FLQOAT32_C
std:: cout. precision(boost:: max_di gi t sl0<boost::float32_t>()); // Show all significant deciml O
digits,
std::cout.setf(std::ios::showoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT32_C(123. 4567890123456789012345678901234567890) << std::endl;

/1 BOOST_FLOAT32_(C(123. 4567890123456789012345678901234567890) = 123. 456787
#endi f

then on a 128-hit platform (GCC 4.8.1. with quadmath):

BOOST_FLOAT32_C(123. 4567890123456789012345678901234567890)
BOOST_FLOAT64_C(123. 4567890123456789012345678901234567890) 123.45678901234568
BOOST_FLOAT80_C(123. 4567890123456789012345678901234567890) 123. 456789012345678903
BOOST_FLOAT128_(C(123. 4567890123456789012345678901234567890) = 123. 456789012345678901234567890123453

123. 456787
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Specified-width floating-point typedefs

Floating-Point Constant Macros

All macros of the type BOOST_FLOAT16_C, BOOST FLOAT32_C, BOOST_FLOAT64_C, BOOST_FLOAT80_C,
BOOST_FLOAT128_C, and BOOST_FLOATMAX_C are always defined after inclusion of <boost / cst df | oat . hpp>.

These allow floating-point constants of at least the specified width to be declared:

/'l Decl are Archinedes' constant using float32_t with approximately 7 decinal digits of precision.
static const boost::float32_t pi = BOOST_FLOAT32_C(3.1415926536);

/1 Declare the Eul er-gamma constant with approxi mately 15 decimal digits of precision.

static const boost::float64 t euler =
BOOST_FLOAT64_C(0.57721566490153286060651209008240243104216) ;

/1 Declare the Golden Ratio constant with the maxi numdecimal digits of precision that the platOd

form supports.

static const boost::floatmax_t golden_ratio =
BOOST_FLOATMVAX_C( 1. 61803398874989484820458683436563811772) ;

@ Tip

Boost.Math provides many constants 'built-in', so always use Boost.Math constants if available, for example:

/1 Display the constant pi to the nmaxi mum avail abl e preci sion.
boost::floatmax_t pi_nmax = boost::math::constants:: pi <boost::floatmax_t>();
std::cout.precision(std::numeric_limts<boost::floatmax_t>::digitsl0);
std::cout << "Most precise pi =" << pi_max << std::endl;

/1 If floatnmax_t is float_128 t, then

/1 Most precise pi = 3.141592653589793238462643383279503

from cstdfloat_example.cpp.
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Specified-width floating-point typedefs

Examples

Jahnke-Emden-Lambda function

Thefollowing code uses<boost / cst df | oat . hpp>incombinationwith <boost / mat h/ speci al _f uncti ons. hpp> to compute
a simplified version of the Jahnke-Emden-Lambda function. Here, we specify a floating-point type with exactly 64 bits (i.e.,
float64_t). If we were to use, for instance, built-in doubl e, then there would be no guarantee that the code would behave
identically on al platforms. With f | oat 64_t from <boost/ cst df | oat . hpp>, however, it isvery likely to be identical.

Using f | oat 64_t , we know that this code is as portable as possible and uses a floating-point type with approximately 15 decimal
digits of precision, regardless of the compiler or version or operating system.

#i ncl ude <boost/cstdfloat. hpp> // For float_64 t. Mist be first include!
#i nclude <cmath> // for pow function.
#i ncl ude <boost/ mat h/ speci al _functions. hpp> // For gamm function.

boost:: float64_t jahnke_enden_| anbda(boost::float64_t v, boost::float64_t x)
{

const boost::float64_t game_v_pl us_one
const boost::float64_t x_hal f_pow v

boost:: math::tganma(v + 1);
std::pow(x /2, v);

return gamma_v_pl us_one * boost::math::cyl _bessel _j(x, v) / x_half_pow v;

}
Ensure that al possibly significant digits (17) including trailing zeros are shown.

std::cout.precision(std::nunmeric_limts<boost::float64_t>::max_digitsl0);
std::cout.setf(std::ios::showoint); // Show trailing zeros.

try
{ Il Always use try'n'catch blocks to ensure any error nessages are displayed.

/1l Evaluate and display an evaluation of the Jahnke-Enden | anbda functi on:
boost::float64 t v = 1.;

boost::float64 t x = 1.;
std::cout << jahnke_enden_| anbda(v, x) << std::endl; // 0.88010117148986700

For details, see cstdfloat_example.cpp - a extensive example program.

Normal distribution table
This example shows printing tables of a normal distribution's PDF and CDF, using boost : : mat h implmentation of normal.
A function templated on floating-point type prints atable for arange of z values.

The example shows use of the specified-width typedefsto either use a specific width, or to use the maximum avail able on the platform,
perhaps a high as 128-hit.

The number of digits displayed is controlled by the precision of the type, so there are no spurious insignificant decimal digits:

float_32_t 0 0. 39894228
float_128_t O 0.398942280401432702863218082711682655

Some sample output for two different platforms is appended to the code at normal _tables.cpp.
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Specified-width floating-point typedefs

#i f def BOOST_FLQOAT32_C

nor mal _t abl e<boost :: float32_t>();
#endi f

nor mal _t abl e<boost::float64_t>(); // Assune that float64_t is always avail able.
#i f def BOOST_FLQAT80_C

nor mal _t abl e<boost:: float80_t>();
#endi f
#i f def BOOST_FLOAT128_C

nor mal _t abl e<boost:: float128_t>();
#endi f

nor mal _t abl e<boost : : fl oat max_t >();
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Implementation of Float128 type

Since few compilers implement a true 128-hit floating-point, and language features like the suffix Q, and C++ Standard library
functions are as-yet missing or incomplete in C++11, this Boost.Math implementation wraps __f | oat 128 provided by the GCC
compiler or the _Quad type provided by the Intel compiler.

Thisis provided to in order to demonstrate, and users to evaluate, the feasibility and benefits of higher-precision floating-point, es-
pecialy to allow use of the full Boost.Math library of functions and distributions at high precision.

(It is aso possible to use Boost.Math with Boost.Multiprecision decimal and binary, but since these are entirely software solutions,
allowing much higher precision or arbitrary precision, they are likely to be slower).

We a'so provide (we believe full) support for <l i nmi t s>, <cmat h>, /O stream operationsin <i ost r eanw, and <conpl ex>.

As a prototype for a future C++ standard, we place all these in nanespace st d. This contravenes the existing C++ standard of
course, so selecting any compiler that promisesto check conformance will fail.

@ Tip
For GCC, compile with - st d=gnu++11 or - st d=gnu++03 and do not use - st d=st dc++110r any 'strict’ options
as these turn off full support for __f | oat 128. These requirements also apply to the Intel compiler on Linux, for
Intel on Windows you need to compile with -Qoption,cpp,--extended_float_type

- DBOOST_MATH_USE_FLQAT128 in order to activate 128-bit floating point support.
The__fl oat 128 typeis provided by the libquadmath library on GCC or by Intel's FORTRAN library with Intel C++.
A typical invocation of the compiler is
g++ - O3 -std=gnu++11 test.cpp -1/c/ nmodul ar-boost -1l quadmath -o test.exe
Tip
If you aretrying to usethe devel op branch of Boost.Math, then make- I / ¢/ nodul ar - boost / | i bs/ mat h/ i ncl ude

the fir st include directory.

g++ -3 -std=gnu++11 test.cpp -1/c/ nmodul ar-boost/Iibs/ math/include -1/c/nodul ar-boost -1 quadd
math -o test.exe

E Note
So far, the only missing detail that we have noted isin trying to use <t ypei nf o>, for examplefor st d: : cout <<
typei d<__fl oat _128>. name(); . Link fails: undefined referencetot ypei nfo for _ fl oat 128. See GCC
Bug 43622 - no C++ typeinfo for __float128.

Overloading template functions with float128 t

Anartifact of providing C++ standard library support for quadmath may mandate theinclusion of <boost / cst df | oat . hpp> before
theinclusion of other headers.

Consider afunction that callsf abs(x) and has previously injected st d: : f abs() into local scope viaausi ng directive:
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tenpl ate <class T>
bool unsigned_conpare(T a, T b)

{
usi ng std::fabs;
return fabs(a) == fabs(b);

Inthisfunction, the correct overload of f abs may be found viaargument-dependent-lookup (ADL) or by calling oneof thest d: : f abs
overloads. There is akey difference between them however: an overload in the same namespace as T and found viaADL need not
be defined at the time the function is declared. However, al the types declared in <boost / cst df | oat . hpp> are fundamental
types, so for these types we are relying on finding an overload declared in namespace st d. In that case however, all such overloads
must be declared prior to the definition of function unsi gned_conpar e otherwise they are not considered.

In the event that <boost / cst df | oat . hpp> has been included after the definition of the above function, the correct overload of
f abs, while present, issimply not considered as part of the overload set. So the compiler triesto downcast thef | oat 128_t argument
firsttol ong doubl e, thento doubl e, thentof | oat ; the compilation fails because the result is ambiguous. However the compiler
error message will appear cruelly inscrutable, at an apparently irelevant line number and making no mention of f | oat 128: theword
ambiguous is the clue to what iswrong.

Provided you #i ncl ude <boost/ cst df | oat . hpp> beforetheinclusion of the any header containing generic floating point code
(such asother Boost.Math headers, then the compiler will know about and usethest d: : f abs(st d: : f| oat 128_t ) that we provide
in#i ncl ude <boost/cstdfl oat. hpp>.

Exponential function

There is abug whe using any quadmath expq function on GCC:
GCC bug #60349
mingw-64 bug #368

To work round this defect, an alternative implementation of 128-bit exp istemporarily provided by boost / cst df | oat . hpp.

typei nfo

Itisnot yet possible to uset ypei nf o for float_128 on GCC: see GCC 43622

sothisfailstolink undef i ned reference to typeinfo for __float128
std::cout << typeid(boost::floatl28_t).name() << std::endl;

This prevent using the existing tests for Boost.Math distributions, (unless a few lines are commented out) and if a MACRO
BOOST_MATH_INSTRUMENT controlling them is defined then some diagnostic displays in Boost.Math will not work.

However thisis only used for display purposes and can be commented out until thisis fixed.

91

httpo://www.renderx.com/


http://en.wikipedia.org/wiki/Argument-dependent_name_lookup
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60349
http://sourceforge.net/p/mingw-w64/bugs/368/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

v

Mathematical Constants

92

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Mathematical Constants

Introduction

Boost.Math provides a collection of mathematical constants.

Why use Boost.Math mathematical constants?

Readable. For the very many jobs just using built-in like doubl e, you can just write expressions like
double area = pi *r * r;

(If that's all you want, jump direct to use in non-template code!)
Effortless - avoiding a search of reference sources.

Usable with both builtin floating point types, and user-defined, possibly extended precision, types such as NTL, MPFR/GMP,
mp_float: in the latter case the constants are computed to the necessary precision and then cached.

Accurate - ensuring that the values are as accurate as possible for the chosen floating-point type

« Nolossof accuracy from repeated rounding of intermediate computations.

* Result is computed with higher precision and only rounded once.

» Lessrisk of inaccurate result from functions pow, trig and log at corner cases.

 Lessrisk of cancellation error.

Portable - as possible between different systems using different floating-point precisions: see use in template code.
Tested - by comparison with other published sources, or separately computed at long double precision.

Faster - can avoid (re-)calculation at runtime.

« If the value returned is a builtin type then it's returned by value asaconst expr (C++11 feature, if available).

« If the value is computed and cached (or constructed from a string representation and cached), then it's returned by constant
reference.
This can be significant if:

< Functions pow, trig or log are used.
¢ Inside an inner loop.
» Using ahigh-precision UDT like Boost.Multiprecision.

« Compiler optimizations possible with built-in types, especialy doubl e, are not available.
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Tutorial

Use in non-template code

When using the math constants at your chosen fixed precision in non-template code, you can simply add ausi ng nanespace de-
claration, for example, usi ng nanespace boost: : mat h: : doubl e_const ant s, to make the constants of the correct precision
for your code visible in the current scope, and then use each constant as a simple variable - sans brackets:

#i ncl ude <boost/ mat h/ const ants/ constants. hpp>

doubl e area(double r)

{
usi ng nanespace boost:: math::doubl e_constants;
return pi *r * r;

Had our function been written astaking af | oat rather than adoubl e, we could have written instead:

#i ncl ude <boost/ mat h/ const ants/ constants. hpp>

float area(float r)

{
usi ng nanespace boost:: math::fl oat_constants;
return pi *r * r;

Likewise, constants that are suitable for use a long double precison are available in the namespace
boost:: mat h: : | ong_doubl e_const ant s.

You can see the full list of available constants at math_toolkit.constants.

Some examples of using constants are at constants_egl.

Use in template code

When using the constantsinside afunction templ ate, we need to ensure that we use a constant of the correct precision for our template
parameters. We can do this by calling the function-template versions, pi <FPType>() , of the constants like this:

#i ncl ude <boost/ mat h/ const ants/ constants. hpp>

tenpl ate <cl ass Real >
Real area(Real r)

{
usi ng namespace boost::math::constants;
return pi<Real >() * r * r;

Although this syntax is alittle less "cute" than the non-template version, the code is no less efficient (at least for the built-in types
f1 oat,doubl e andl ong doubl e) : thefunction template versions of the constants are simpleinlinefunctionsthat return aconstant
of the correct precision for the type used. In addition, these functions are declared const exp for those compilers that support this,
allowing the result to be used in constant-expressions provided the template argument is a literal type.
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Tip
Keep in mind the difference between the variable version, just pi , and the template-function version: the template-

function requires both a<f | oat i ng- poi nt -t ype> and function call () brackets, for example: pi <doubl e>().
You cannot write doubl e p = pi<>(),nordouble p = pi().

Note

You can aways use both variable and template-function versions provided calls are fully qualified, for example:

double ny_pi 1l
doubl e ny_pi 2

boost: : mat h: : const ant s: : pi <doubl e>();
boost : : mat h: : doubl e_constants: : pi

Warning
It may be tempting to ssmply define

usi ng nanmespace boost:: math::doubl e_constants
usi ng namespace boost::math::constants

but if you do define two namespaces, thiswill, of course, create ambiguity!

double my_pi = pi(); // error C2872: 'pi' : anbiguous synbol
double nmy_pi2 = pi; // Context does not allow for disanbiguation of overloaded funcO
tion

Although the mistake above is fairly obvious, it is also not too difficult to do this accidentally, or worse, create it
in someone el ses code.

Thereforeisit prudent to avoid thisrisk by localising the scope of such definitions, as shown above.

Tip
Be very careful with the type provided as parameter. For example, providing an integer instead of afloating-point
type can be disastrous (a C++ feature).
cout << "Area = " << area(2) << endl; // Area = 12!!
You should get a compiler warning

warning : 'return' : conversion from'double' to 'int', possible |oss of data

Failure to heed this warning can lead to very wrong answers!

You can aso avoid this by being explicit about the type of Ar ea.

cout << "Area = " << area<double>(2) << endl; // Area = 12.566371
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Use With User-Defined Types

The most common example of a high-precision user-defined type will probably be Boost.Multiprecision.

The syntax for using the function-call constants with user-defined typesisthe same asit isin the template class, which isto say we
use:

#i ncl ude <boost/ mat h/ const ant s/ constants. hpp>

boost : : mat h: : const ants: : pi <User Def i nedType>() ;
For example:
boost: : mat h: : constants: : pi <boost:: multiprecision::cpp_dec_float_50>();

giving Ttwith a precision of 50 decimal digits.

However, since the precision of the user-defined type may be much greater than that of the built-in floating point types, how the
valuereturned is created is as follows:

« If the precision of the type is known at compile time;

* Iftheprecisionislessthan or equal tothat of af | oat and thetypeisconstructablefromaf | oat then our codereturnsaf | oat
literal. If the user-defined typeis aliteral type then the function call that returns the constant will be aconst exp.

« If the precision is less than or equal to that of adoubl e and the type is constructable from a doubl e then our code returns a
doubl e literal. If the user-defined type is aliteral type then the function call that returns the constant will be aconst exp.

« If the precision is less than or equal to that of al ong doubl e and the type is constructable from al ong doubl e then our
codereturnsal ong doubl e literal. If the user-defined typeisalitera type then the function call that returns the constant will
beaconst exp.

« If theprecisionislessthan or equal tothat of a__f | oat 128 (and the compiler supports such atype) and thetypeis constructable
froma__fl oat 128 then our codereturnsa__f | oat 128 literal. If the user-defined typeisaliteral type then the function call
that returns the constant will be aconst exp.

« If the precision islessthan 100 decimal digits, then the constant will be constructed (just the once, then cached in athread-safe
manner) from a string representation of the constant. In this case the value is returned as a const reference to the cached value.

« Otherwise the value is computed (just once, then cached in a thread-safe manner). In this case the value is returned as a const
reference to the cached value.

* If the precision is unknown at compile time then:

* |If theruntime precision (obtained from acall toboost : : mat h: : t ool s: : di gi t s<T>() ) islessthan 100 decimal digits, then
the constant is constructed "on the fly" from the string representation of the constant.

« Otherwise the value is constructed "on the fly" by calculating then value of the constant using the current default precision of
the type. Note that this can make use of the constants rather expensive.

In addition, it is possible to pass a Pol i cy type as a second template argument, and use this to control the precision:

#i ncl ude <boost/ mat h/ const ants/ constants. hpp>

t ypedef boost::math::policies::policy<boost::math::policies::digits2<80> > ny_policy_type;
boost:: math:: constants:: pi <M/Type, ny_policy_type>();
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S Note
Boost.Math doesn't know how to control the internal precision of My Ty pe, the policy just controls how the selection
process above is carried out, and the calculation precision if the result is computed.

Itisalso possibleto control which method is used to construct the constant by specialising thetraitsclassconstruction_traits:

nanmespace boost{ nanespace math{ nanespace constant{

tenplate <class T, class Policy>
struct construction_traits

{
I

typedef npl::int_<N> type;

11} /1 nanespaces
Where N takes one of the following values:

N Meaning

0 The precision is unavailable at compile time; either construct
from a decimal digit string or calculate on the fly depending
upon the runtime precision.

1 Return afloat precision constant.

2 Return a double precision constant.

3 Return along double precision constant.

4 Construct the result from the string representation, and cache
the result.

Any other value N Sets the compile time precision to N hits.

Custom Specializing a constant

In addition, for user-defined types that need special handling, it's possible to partially-specialize the internal structure used by each
constant. For example, suppose we're using the C++ wrapper around MPFR npf r _cl ass: thishasits own representation of Pi which
we may well wish to use in place of the above mechanism. We can achieve this by specialising the class template
boost:: math::constants::detail::constant_pi:
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nanespace boost{ nanespace mat h{ nanespace constants{ nanespace detail{

tenpl at e<>
struct constant_pi <npfr_cl ass>
{
tenpl ate<int N>
static npfr_class get(const npl::int_<N=&)

{
/1 The tenplate param N is one of the values in the table above,
/1 we can either handle all cases in one as is the case here,
/'l or overload "get" for the different options.
npfr_class result;
npfr_const _pi(result.get_npfr_t(), GVP_RNDN);
return result;
}

I

}1}} 11 nanespaces

Diagnosing what meta-programmed code is doing

Finally, since it can be tricky to diagnose what meta-programmed code is doing, there is a diagnostic routine that printsinformation
about how this library will handle a specific type, it can be used like this:

#i ncl ude <boost/ mat h/ const ants/i nfo. hpp>

int main()

{
}

boost::math::constants::print_info_on_type<MyType>();

If you wish, you can also pass an optional std::ostream argument tothepri nt _i nf o_on_t ype function. Typical output for a user-
defined type looks like this:

Information on the I nplenmentati on and Handl i ng of
Mat hermat i cal Constants for Type cl ass boost:: math::concepts::real _concept

Checking for std::nuneric_limts<class boost::math::concepts::real _concept> specialisation: no
boost:: math:: policies::precision<class boost::math::concepts::real _concept, Policy>
reports that there is no conpile type precision avail able.

boost:: math::tool s::digits<class boost::math::concepts::real _concept>()

reports that the current runtime precision is

53 binary digits.

No conpile time precision is avail able, the construction nethod

will be decided at runtine and results will not be cached

- this may lead to poor runtime perfornance.

Current runtine precision indicates that

the constant will be constructed froma string on each call.
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The Mathematical Constants

This section lists the mathematical constants, their use(s) (and sometimes rationale for their inclusion).
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Mathematical Constants

Table 14. Mathematical Constants

name formula Value (6 decimals) Uses and Rationale

Rational fractions

half 12 0.5

third 3 0.333333
two_thirds 2/3 0.66667
three_quarters 3/4 0.75

two and related

root_two V2 1.41421

root_three V3 1.73205

half_root_two v2/2 0.707106

In_two In(2) 0.693147

In_ten In(10) 2.30258

In_In_two In(In(2)) -0.366512 Gumbel distribution median

root_In_four VIn(4) 1.177410

one_div_root_two w2 0.707106

mtand related

pi pi 3.14159 Ubiquitous. Archimedes con-
stant 1t

half_pi w2 1.570796

third_pi U3 1.04719

sixth_pi 76 0.523598

two_pi 2n 6.28318 Many uses, most simply, cir-
cumference of acircle

two_thirds pi 2131 2.09439 volume of ahemi-sphere=4/3
T

three_quarters pi 34T 2.35619 =3/4n

four_thirds pi 4/31 4.18879 volume of asphere=4/3 113

one_div_two_pi 1(2m) 1.59155 Widely used

root_pi VI 1.77245 Widely used

root_half pi V12 1.25331 Widely used

100

httpo://www.renderx.com/


http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere
http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

name formula Value (6 decimals) Uses and Rationale
root_two_pi V2 2.50662 Widely used
one_div_root_pi VT 0.564189
one_div_root_two_pi w(Een 0.398942
root_one_div_pi V(U 0.564189
pi_minus_three T3 0.141593
four_minus_pi 4 -1 0.858407
pi_pow_e ™ 22.4591
pi_sqr g 9.86960
pi_sqr_div_six 0/6 1.64493
pi_cubed e 31.00627
cbrt_pi Vi 1.46459
one_div_cbrt_pi V3T 0.682784
Euler'seand related
e e 2.71828 Euler's constant e
exp_minus_half g2 0.606530
e _pow_pi e’ 23.14069
root_e Ve 1.64872
logl0 e log10(e) 0.434294
one div_logl0 e 1/1og10(e) 2.30258
Trigonometric
degree radians = 11/ 180 0.017453
radian degrees=180/T1t 57.2957
sin_one sin(1) 0.841470
cos_one cos(1) 0.54030
sinh_one sinh(1) 1.17520
cosh_one cosh(1) 1.54308
Phi Phidias golden ratio Phidias golden ratio
phi 1+v5)/2 1.61803 finance
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name formula Value (6 decimals) Uses and Rationale
In_phi In(¢p) 0.48121
one_div_In_phi Vin(ep) 2.07808

Euler's Gamma

euler euler 0.577215 Euler-Mascheroni gamma
constant

one_div_euler Ll/euler 1.73245

euler_sgr euler? 0.333177

Misc

zeta two (2 1.64493 Riemann zeta function

zeta three (3) 1.20205 Riemann zeta function

catalan K 0.915965 Catalan (or Glaisher) combin-
atorial constant

glaisher A 1.28242 Decimal expansion of Glaish-
er-Kinkelin constant

khinchin k 2.685452 Decimal expansion of
Khinchin constant

extreme value _skewness 12v6 (3)/ e 1.139547 Extreme value distribution

rayleigh_skewness 2Vm(re3)/(4 - m)¥? 0.631110 Rayleigh distribution skewness

rayleigh_kurtosis_excess -(6TC-24T1+16)/(4-TD)? 0.245089 Rayleigh distribution kurtosis
EXCESS

rayleigh_kurtosis 3+(6TC-2418+16)/(4-T0)? 3.245089 Rayleigh distribution kurtosis

@ Note
Integer values are not included in this list of math constants, however interesting, because they can be so easily
and exactly constructed, even for UDT, for example: st ati c_cast <cpp_f | oat >(42).

If you know the approximate value of the constant, you can search for the value to find Boost.Math chosen name
inthistable.

@ Tip

Bernoulli numbers are available at Bernoulli numbers.
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@ Tip

Factorials are available at factorial.
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Mathematical Constants

Defining New Constants

The library provides some helper code to assist in defining new constants; the process for defining a constant called my_const ant
goes likethis:

1. Define a function that calculates the value of the constant. This should be a template function, and be placed in
boost / mat h/ const ant s/ cal cul at e_const ant s. hpp if the constant isto be added to thislibrary, or else defined at the top of

your source fileif not.

The function should look like this:

nanespace boost{ nanespace mat h{ nanespace constants{ nanespace detail{

tenpl ate <cl ass Real >

tenplate <int N>
Real constant_ny_const ant <Real >: : conput e( BOOST_MATH EXPLI CI T_TEMPLATE_TYPE_SPEC( npl : : i nt _<N>))

{
int required_precision = N? N: tools::digits<Real >();
Real result = /* value conputed to required_precision bits */
return result;

}

++}} /1 nanespaces
Then define a placeholder for the constant itself:

namespace boost{ namespace mat h{ nanespace constant s{

BOOST_DEFI NE_MATH_CONSTANT(ny_constant, 0.0, "0");
138

For example, to calculate T¥2, add to boost / mat h/ const ant s/ cal cul at e_const ant s. hpp

tenpl ate <class T>
tenpl ate<i nt N>
inline T constant_hal f_pi <T>:: conput e( BOOST_MATH_EXPLI Cl T_TEMPLATE_TYPE_SPEC(npl : :i nt _<N>))

{
BOOST_MATH_STD_USI NG
return pi <T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);

Thentoboost/ mat h/ const ant s/ const ant s. hpp add:

BOOST_DEFI NE_MATH_CONSTANT( hal f _pi, 0.0, "0"); // Actual values are tenporary, we'll replace O
them | ater.

S Note
Previously defined constantslike pi and e can be used, but by not simply calling pi <T>() ; specifying the precision
viathepolicy pi <T, policies::policy<policies::digits2<N> > >() isessential to ensurefull accuracy.
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O Warning
Newly defined constants can only be used oncethey areincluded in boost / mat h/ const ant s/ const ant s. hpp.
Soif youaddtenpl ate <class T, class N> T constant_ny_constant{. ..}, then you cannot define
const ant _my_const ant until you add thetemporary BOOST_DEFI NE_MATH_CONSTANT( ny_const ant, 0.0,
"0") . Failing to do thiswill result in surprising compile errors:

error C2143: syntax error : mssing ';' before '<
error C2433: 'constant_root _two_div_pi' : "inline' not permtted on data declarations
error C2888: 'T constant_root_two_div_pi' : synbol cannot be defined withQO

i n namespace 'detail’
error C2988: unrecogni zabl e tenpl ate decl arati on/ definition

2. You will need an arbitrary precision type to use to calculate the value. This library currently supports either cpp_f | oat,
NTL: : RRor npfr _cl ass used viathe bindingsin boost / mat h/ bi ndi ngs. The default isto use NTL: : RR unless you define an
alternate macro, for example, USE_MPFR or USE_CPP_FLOAT at the start of your program.

3. Itis necessary to link to the Boost.Regex library, and probably to your chosen arbitrary precision type library.

4.You need to add | i bs\ mat h\ i ncl ude_pri vat e to your compiler's include path as the needed header is not installed in the
usual places by default (this avoids a cyclic dependency between the Math and Multiprecision library's headers).

5. The compl ete program to generate the constant hal f _pi using function cal cul at e_hal f _pi isthen:

#define USE_CPP_FLOAT // If required.
#i ncl ude <boost/ mat h/ const ant s/ gener at e. hpp>

int main()

{
}

BOOST_CONSTANTS_GENERATE( hal f_pi ) ;

The output from the program is a snippet of C++ code (actually a macro call) that can be cut and pasted into boost / nat h/ con-
st ant s/ const ant s. hpp or elseinto your own code, for example:

BOOST_DEFI NE_MATH_CONSTANT( hal f _pi, 1.570796326794896619231321691639751442e+00, 0O
" 1. 57079632679489661923132169163975144200858469968755291048747229615390820314310449931401741267105853399107404326e+00" ) ;

This macro BOOST_DEFINE_MATH_CONSTANT inserts a C++ struct code snippet that declaresthef | oat , doubl e and | ong
doubl e versionsof the constant, plusadecimal digit string representation correct to 100 decimal digits, and all the meta-programming
machinery needed to select between them.

The result of an expanded macro for Pi is shown below.
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/'l Preprocessed pi constant, annotated

nanmespace boost
{
nanespace nath
{
namespace constants
{
nanespace detail
{
tenpl ate <class T> struct constant_pi
{
private:
/1 Default inplenmentations fromstring of decimal digits
static inline T get_fromstring()
{
static const T result
= detail::conO
vert_framstri ng<T("3. 1415926535897932334626433332795028841971693993751068209749445923078164062862089986280348253421 1706 /98214808661 +00,
boost: :is_convertibl e<const char*, T>())
return result

}
tenplate <int N> static T conpute();

public:
/1 Default inplenmentations fromstring of decinmal digits
static inline T get(const npl::int_<construct_fromstring>&)
{

constant _initializer<T, & constant_pi<T>::get_fromstring >::do_nothing()
return get_fromstring()

3/ Fl oat, double and | ong doubl e versions:

static inline T get(const npl::int_<construct_fromfl oat>)

{ return 3.141592653589793238462643383279502884e+00F

itatic inline T get(const npl::int_<construct_fromdoubl e>&)

{ return 3.141592653589793238462643383279502884e+00

itatic inline T get(const npl::int_<construct_from.| ong_doubl e>&)
i return 3.141592653589793238462643383279502884e+00L

/1 For very high precision that is nonetheless can be cal cul ated at conpile tine:

tenplate <int N> static inline T get(const npl::int_<N>& n)

{

constant_initializer2<T, N, & constant_pi <T>::tenplate conpute<N> >::do_nothing();
return conmput e<N>();

}

/1l For true arbitrary precision, which may well vary at runtine.
static inline T get(const npl::int_<0>&)

{
return tools::digits<T>() > max_string digits ? conpute<0>() : get(npl::int_<conO
struct_fromstring>())
}

}; I/l tenplate <class T> struct constant_p
} I/ nanespace detai

/1 The actual forwarding function (including policy to control precision).
tenplate <class T, class Policy> inline T pi( )

{

return detail:: constant_pi <T>::get(typenane construction_traits<T, Policy>: :type())
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}
/'l The actual forwarding function (using default policy to control precision).
tenplate <class T> inline T pi()

{
return pi<T, boost::math::policies::policy<> >()
}
oIl nanespace constants

/'l Nanmespace specific versions, for the three built-in floats:
nanespace float_constants

{ static const float pi = 3.141592653589793238462643383279502884e+00F
Lanespace doubl e_constants

{ static const double pi = 3.141592653589793238462643383279502884e+00
Lanespace | ong_doubl e_constant s

i static const |ong double pi = 3.141592653589793238462643383279502884e+00L

namespace constants{;
} I/ nanespace constants
} I/ nanmespace nmath
} I/ nanmespace boost
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FAQs

Why are these Constants Chosen?

Itis, of course, impossible to please everyone with alist like this.
Some of the criteriawe have used are:

* Used in Boost.Math.

e Commonly used.

» Expensive to compute.

* Requested by users.

» Used in science and mathematics.

» Nointeger values (because so cheap to construct).
(You can easily define your own if found convenient, for example: FPT one =stati c_cast <FPT>(42);).

How are constants named?

 Not macros, so no upper case.

 All lower case (following C++ standard names).

* No CamelCase.

e Underscore as _ delimiter between words.

» Numbers spelt as words rather than decimal digits (except following pow).
* Abbreviation conventions:

 root for square root.

cbrt for cube root.
 pow for pow function using decimal digits like pow23 for n?3,
« div for divided by or operator /.
< minus for operator -, plus for operator +.
» sgr for squared.
« cubed for cubed n°.
< wordsfor greek, liket, and I".
» words like half, third, three_quarters, sixth for fractions. (Digit(s) can get muddled).
 loglOforlogg
* Infor loge
How are the constants derived?

The constants have all been calculated using high-precision software working with up to 300-bit precision giving about 100 decimal
digits. (The precision can be arbitrarily chosen and is limited only by compute time).
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How Accurate are the constants?

The minimum accuracy chosen (100 decimal digits) exceeds the accuracy of reasonably-foreseeable floating-point hardware (256-
bit) and should meet most high-precision computations.

How are the constants tested?

1. Comparison using Boost. Test BOOST _CHECK_CLOSE FRACTION using long double literals, with at least 35 decimal digits,
enough to be accurate for all long double implementations. The tolerance is usually twicel ong doubl e epsi | on.

2. Comparison with calculation at long double precision. This often requires aslightly higher tolerance than two epsilon because of
computational noise from round-off etc, especially when trig and other functions are called.

3. Comparison with independent published values, for example, using The On-Line Encyclopedia of Integer Sequences (OEIS)
again using at least 35 decimal digits strings.

4. Comparison with independely calculated values using arbitrary precision tools like Mathematica, again using at least 35 decimal
digitsliteral strings.

O Warning
We have not yet been able to check that all constants are accurate at the full arbitrary precision, at present 100
decimal digits. But certain key values like e and pi appear to be accurate and internal consistencies suggest that
others are this accurate too.

Why is Portability important?
Code written using math constantsis easily portable even when using different floating-point types with differing precision.

It is a mistake to expect that results of computations will be identical, but you can achieve the best accuracy possible for the
floating-point typein use.

Thishas no extracost to the user, but reducesirritating, and often confusing and very hard-to-trace effects, caused by theintrinsically
limited precision of floating-point calculations.

A harmless symptom of thislimit isaspurious|east-significant digit; at worst, dightly inaccurate constants sometimes causeiterating
algorithms to diverge wildly because internal comparisons just fail.

What is the Internal Format of the constants, and why?
See tutorial above for normal use, but this FAQ explains the internal details used for the constants.

Constants are stored as 100 decimal digit values. However, some compilers do not accept decimal digits strings as long as this. So
the constant is split into two parts, with thefirst containing at least 128-bit |ong double precision (35 decimal digits), and for consistency
should be in scientific format with a signed exponent.

The second part isthe value of the constant expressed asastring literal, accurate to at least 100 decimal digits (in practice that means
at least 102 digits). Again for consistency use scientific format with a signed exponent.

For typeswith precision greater than along double, then if T isconstructible T isconstructiblefromaconst char * thenit'sdirectly
constructed from the string, otherwise we fall back on lexical_cast to convert to type T. (Using a string is necessary because you
can't use a numeric constant since even al ong doubl e might not have enough digits).

So, for example, a constant like pi isinternally defined as
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In this case the significand is 109 decimal digits, ensuring 100 decimal digits are exact, and exponent is zero.
See defining new constants to cal culate new constants.

A macro definition like this can be pasted into user code where convenient, or into boost / mat h/ const ant s. hpp if itisto be added
to the Boost.Math library.

What Floating-point Types could | use?

Apart from the built-in floating-point types f | oat, doubl e, | ong doubl e, there are several arbitrary precision floating-point
classes available, but most are not licensed for commercial use.

Boost.Multiprecision by Christopher Kormanyos

Thiswork isbased on an earlier work called e-float: Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function
Calculations, inACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
e float but is now re-factored and available under the Boost license in the Boost-sandbox at multiprecision whereit is being refined
and prepared for review.

Boost.cpp_float by John Maddock using Expression Templates
Big Number which isareworking of e float by Christopher Kormanyos to use expression templates for faster execution.
NTL class quad_float

NTL by Victor Shoup has fixed and arbitrary high precision fixed and floating-point types. However none of these are licenced for
commercia use.

#i ncl ude <NTL/quad_float.h> // quad precision 106-bit, about 32 decinal digits.
using NTL::to_quad float; // Less precise than arbitrary precision NTL::RR

NTL classquad_f | oat , which gives aform of quadruple precision, 106-bit significand (but without an extended exponent range.)
With an IEC559/IEEE 754 compatible processor, for example Intel X86 family, with 64-bit double, and 53-bit significand, using
the significands of two 64-bit doubles, if st d: : nuneri c_I i m t s<doubl e>: : di gi t s10is16, thenwe get about twicethe precision,
sostd::nuneric_limts<quad_float>::digitsl0() shouldbe32.(thedefaultst d: : nuneric_limts<RR>::digitsl0()
should be about 40). (which seems to agree with experiments). We output constants (including some noisy hits, an approximation
tostd: :numeric_linits<RR>::max_digitsl10())byadding2extradecimal digits, sousingquad_f | oat : : Set Qut put Pr e-
cision(32 + 2);

Apple Mac/Darwin uses a similar doubledouble 106-bit for its built-in| ong doubl e type.

S Note
The precision of al doubl edoubl e floating-point types is rather odd and values given are only approximate.

New projects should use Boost.Multiprecision.
NTL class RR

Arbitrary precision floating point with NTL class RR, default is 150 bit (about 50 decimal digits) used here with 300 bit to output
100 decimal digits, enough for many practical non-"number-theoretic' C++ applications.

NTL A Library for doing Number Theory isnot licenced for commercial use.
Thisclassisused in Boost.Math and is an option when using big_number projectsto calculate new math constants.

New projects should use Boost.M ultiprecision.
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Mathematical Constants

GMP and MPFR

GMP and MPFR have also been used to compute constants, but are licensed under the Lesser GPL license and are not licensed for
commercial use.

What happened to a previous collection of constants proposed for Boost?

A review concluded that the way in which the constants were presented did not meet many peoples needs. None of the methods
proposed met many users' essential requirement to allow writing ssimply pi rather than pi () . Many science and engineering equations
look difficult to read when because function call brackets can be confused with the many other brackets often needed. All the
methods then proposed of avoiding the brackets failed to meet all needs, often on grounds of complexity and lack of applicability
to various realistic scenarios.

So the simple namespace method, proposed on its own, but rejected at the first review, has been added to allow users to have con-
venient access to float, double and long double values, but combined with template struct and functions to allow simultaneous use
with other non-built-in floating-point types.

Why do the constants (internally) have a struct rather than a simple function?
A function mechanism was provided by in previous versions of Boost.Math.

The new mechanism is to permit partial specialization. See Custom Specializing a constant above. It should also allow use with
other packages like ttmath Bignum C++ library.

Where can | find other high precision constants?

1. Constants with very high precision and good accuracy (>40 decimal digits) from Simon Plouffe's web based collection
http://pi.lacim.ugam.ca/eng/.

2. The On-Line Encyclopedia of Integer Sequences (OEIS)

3. Checks using printed text optically scanned values and converted from: D. E. Knuth, Art of Computer Programming, Appendix
A, Table 1, Vol 1, ISBN 0 201 89683 4 (1997)

4. M. Abrahamovitz & |. E. Stegun, National Bureau of Standards, Handbook of Mathematical Functions, a reference source for
formulae now superceded by

5. Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, CharlesW. Clark, NIST Handbook of Mathemetical Functions, Cambridge
University Press, ISBN 978-0-521-14063-8, 2010.

6. John F Hart, Computer Approximations, Kreiger (1978) ISBN 0 88275 642 7.

7. Some values from Cephes Mathematical Library, Stephen L. Moshier and CALC100 100 decimal digit Complex Variable Calcu-
lator Program, a DOS tility.

8. Xavier Gourdon, Pascal Sebah, 50 decimal digits constants at Number, constants and computation.
Where are Physical Constants?

Not here in this Boost.Math collection, because physical constants:

* Are measurements, not truely constants.

» Arenot truly constant and keeping changing as mensuration technology improves.

» Haveainstrinsic uncertainty.

» Mathematical constants are stored and represented at varying precision, but should never be inaccurate.

Some physical constants may be available in Boost.Units.
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Statistical Distributions and Functions

Statistical Distributions Tutorial

Thislibrary is centred around statistical distributions, this tutorial will give you an overview of what they are, how they can be used,
and provides afew worked examples of applying the library to statistical tests.

Overview of Distributions

Headers and Namespaces

All the code in this library is inside namespace boost::math.

In order to use a distribution my_distribution you will need to include either the header <boost/math/my_distribution.hpp> or the
"include all the distributions" header: <boost/math/distributions.hpp>.

For example, to use the Students-t distribution include either <boost/math/students_t.hpp> or <boost/math/distributions.hpp>
You also need to bring distribution names into scope, perhapswith ausi ng nanespace boost: : mat h; declaration,

or specific usi ng declarationslikeusi ng boost : : mat h: : nor mal ; (recommended).

ﬂ Caution
Some math function names are also used in hamespace std so including <random> could cause ambiguity!

Distributions are Objects
Each kind of distribution in thislibrary is a classtype - an object.

Policies provide fine-grained control of the behaviour of these classes, allowing the user to customise behaviour such as how errors
are handled, or how the quantiles of discrete distribtions behave.

Tip

If you arefamiliar with statisticslibraries using functions, and 'Distributions as Objects seem alien, see the compar-
ison to other statistics libraries.

Making distributions class types does two things:

* It encapsulates the kind of distribution in the C++ type system; so, for example, Students-t distributions are aways a different
C++ type from Chi-Squared distributions.

» Thedistribution objects store any parameters associated with the distribution: for example, the Students-t distribution has adegrees
of freedom parameter that controlsthe shape of the distribution. This degrees of freedom parameter hasto be provided to the Students-
t object when it is constructed.

Although the distribution classes in this library are templates, there are typedefs on type double that mostly take the usual name of
the distribution (except where there is a clash with a function of the same name: beta and gamma, in which case using the default
template arguments - Real Type = doubl e - isnearly as convenient). Probably 95% of uses are covered by these typedefs:

113

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/
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/1 using nanespace boost::math; // Avoid potential anbiguity with nanes in std <randon
/'l Safer to declare specific functions with using statenent(s):

usi ng boost::math::beta_distribution;
usi ng boost:: math:: bi nom al _di stribution;
usi ng boost:: math::students_t;

/1 Construct a students_t distribution with 4 degrees of freedom
students_t dl(4);

/'l Construct a doubl e-precision beta distribution

/1 with paranmeters a = 10, b = 20
beta_distribution<> d2(10, 20); // Note: _distribution<> suffix !

If you need to use the distributions with a type other than doubl e, then you can instantiate the template directly: the names of the
templates arethe same asthe doubl e typedef but with _di st ri but i on appended, for example: Studentst Distribution or Binomial
Distribution:

/1l Construct a students_t distribution, of float type,
/1 with 4 degrees of freedom
students_t _distribution<float> d3(4);

/1 Construct a binom al distribution, of |ong double type,
/1 with probability of success 0.3

/1 and 20 trials in total:

bi nom al _di stri bution<l ong doubl e> d4(20, 0.3);

The parameters passed to the distributions can be accessed via getter member functions:

dl. degrees_of _freedom(); // returns 4.0

Thisisall well and good, but not very useful so far. What we often want isto be ableto cal culate the cumul ative distribution functions
and quantiles etc for these distributions.

Generic operations common to all distributions are non-member functions

Want to calculate the PDF (Probability Density Function) of a distribution? No problem, just use:
pdf (my_dist, x); [// Returns PDF (density) at point x of distribution nmy_dist.
Or how about the CDF (Cumulative Distribution Function):

cdf (my_dist, x); // Returns CDF (integral from-infinity to point x)
/1 of distribution nmy_dist.

And quantiles are just the same:

quantile(ny_dist, p); // Returns the value of the random variable x
/1 such that cdf(nmy_dist, x) ==

If you're wondering why these aren't member functions, it'sto make the library more easily extensible: if you want to add additional
generic operations - let's say the n'th moment - then all you have to do is add the appropriate non-member functions, overloaded for
each implemented distribution type.
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@ Tip

Random number sthat approximate Quantiles of Distributions

If you want random numbers that are distributed in a specific way, for example in a uniform, normal or triangular,
see Boost.Random.

Whilst in principal there's nothing to prevent you from using the quantile function to convert auniformly distributed
random number to another distribution, in practice there are much more efficient algorithms available that are spe-
cific to random number generation.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of successon any onetrial).
Thebi nomi al _di st ri buti on constructor therefore has two parameters:
bi nom al _di stri buti on(Real Type n, Real Type p);

For this distribution the random variate is k: the number of successes observed. The probability density/mass function (pdf) is
therefore written as f(k; n, p).

@ Note
Random Variates and Distribution Parameters

The concept of arandom variableis closely linked to theterm random variate: arandom variate is a particular value
(outcome) of a random variable. and distribution parameters are conventionally distinguished (for example in
Wikipedia and Wolfram MathWorld) by placing a semi-colon or vertical bar) after the random variable (whose
value you ‘choose), to separate the variate from the parameter(s) that defines the shape of the distribution.

For example, the binomia distribution probability distribution function (PDF) is written as f(k| n, p) = Pr(K = kjn,
p) = probability of observing k successes out of n trials. K is the random variable, k is the random variate, the
parameters are n (trials) and p (probability).

E Note
By convention, random variate are lower case, usuadly k isintegral, x if real, and random variable are upper case,
K if integral, X if real. But this implementation treats al as floating point values Real Type, so if you really want
anintegral result, you must round: see note on Discrete Probability Distributions below for details.

As noted above the non-member function pdf has one parameter for the distribution object, and a second for the random variate.
So taking our binomial distribution example, we would write:

pdf (bi nom al _di stri buti on<Real Type>(n, p), k);
The ranges of random variate values that are permitted and are supported can be tested by using two functionsr ange and support .

The distribution (effectively the random variate) is said to be 'supported’ over arangethat is"the smallest closed set whose complement
has probability zero". MathWorld uses the word 'defined’ for this range. Non-mathematicians might say it means the ‘interesting'
smallest range of random variate x that has the cdf going from zero to unity. Outside are uninteresting zones where the pdf is zero,
and the cdf zero or unity.

For most distributions, with probability distribution functions one might describe as ‘well-behaved', we have decided that it is most
useful for the supported range to exclude random variate values like exact zero if the end point is discontinuous. For example, the
Weibull (scale 1, shape 1) distribution smoothly heads for unity as the random variate x declines towards zero. But at x = zero, the
value of the pdf is suddenly exactly zero, by definition. If you are plotting the PDF, or otherwise calculating, zero is not the most
useful value for the lower limit of supported, as we discovered. So for this, and similar distributions, we have decided it is most nu-

115

httpo://www.renderx.com/


http://www.boost.org/libs/random/
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

merically useful to use the closest value to zero, min_value, for the limit of the supported range. (Ther ange remains from zero, so
you will still get pdf (wei bul I, 0) == 0). (Exponential and gamma distributions have similarly discontinuous functions).

Mathematically, the functions may make sense with an (+ or -) infinite value, but except for afew special cases (in the Normal and
Cauchy distributions) this implementation limits random variates to finite values from the max to mi n for the Real Type. (See
Handling of Floating-Point Infinity for rational€).

S Note
Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathem-
atically defined as discrete functions: that is to say the functions cdf and pdf are only defined for integral values
of the random variate.

However, because the method of cal culation often uses continuous functionsit is convenient to treat them asif they
were continuous functions, and permit non-integral values of their parameters.

Users wanting to enforce a strict mathematical model may use f | oor or cei | functions on the random variate
prior to calling the distribution function.

The quantile functions for these distributions are hard to specify in a manner that will satisfy everyone al of the
time. The default behaviour is to return an integer result, that has been rounded outwards: that is to say, lower
guantiles - where the probablity is less than 0.5 are rounded down, while upper quantiles - where the probability is
greater than 0.5 - are rounded up. This behaviour ensures that if an X% quantile is requested, then at least the re-
quested coverage will be present in the central region, and no more than the requested coverage will be present in
thetails.

This behaviour can be changed so that the quantile functions are rounded differently, or return a real-valued result
using Palicies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distributions
before using the quantile function on a discrete distribtion. The reference docs describe how to change the rounding
policy for these distributions.

For similar reasons continuous distributions with parameters like "degrees of freedom” that might appear to be in-
tegral, are treated asreal values (and are promoted from integer to floating-point if necessary). In this case however,
there are a small number of situations where non-integral degrees of freedom do have a genuine meaning.

Complements are supported too - and when to use them

Often you don't want the value of the CDF, but its complement, which isto say 1- p rather than p. It istempting to calculate the CDF
and subtract it from 1, but if p isvery closeto 1 then cancellation error will cause you to lose accuracy, perhaps totally.

See below "Why and when to use complements?"

In this library, whenever you want to receive a complement, just wrap all the function argumentsin acall to conpl ement (.. .),
for example:

students_t dist(5);
cout << "CDF at t = 1 is " << cdf(dist, 1.0) << endl;
cout << "Conplenent of CDF at t = 1 is " << cdf(conmplenment(dist, 1.0)) << endl;

But wait, now that we have a complement, we have to be ableto useit aswell. Any function that accepts a probability as an argument
can also accept a complement by wrapping all of its argumentsin acall to conpl enent (. . . ), for example:
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students_t dist(5);
for(double i = 10; i < 1el0; i *= 10)
{

/1 Calculate the quantile for a 1 in i chance:

double t = quantil e(conplenent(dist, 1/i));

/1 Print it out:

cout << "Quantile of students-t with 5 degrees of freedom n"
"for alin" <<i << " chance is " <<t << endl;

@ Tip

Critical valuesarejust quantiles

Some texts talk about quantiles, or percentiles or fractiles, others about critical values, the basic ruleis:
Lower critical values are the same as the quantile.

Upper critical values are the same as the quantile from the complement of the probability.

For example, suppose we have a Bernoulli process, giving rise to abinomial distribution with successratio 0.1 and
100 trialsin total. The lower critical value for a probability of 0.05 is given by:

quanti | e(bi nom al (100, 0.1), 0.05)
and the upper critical valueis given by:
quanti |l e( conpl ement ( bi nom al (100, 0.1), 0.05))

which return 4.82 and 14.63 respectively.
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Tip
Why bother with complements anyway?

It'svery tempting to dispense with complements, and simply subtract the probability from 1 when required. However,
consider what happens when the probability isvery closeto 1: let's say the probability expressed at float precision
iS0. 999999940f ,then1 - 0.999999940f = 5.96046448e- 008, but theresult isactually accurateto just one
single bit: the only bit that didn't cancel out!

Or tolook at this another way: consider that we want the risk of falsely rejecting the null-hypothesisin the Student's
ttest to be 1 in 1 billion, for a sample size of 10,000. This gives a probability of 1 - 10°°, which is exactly 1 when
calculated at float precision. In this case calculating the quantile from the complement neatly solves the problem,
so for example:

quanti |l e(conpl ement (st udents_t (10000), 1le-9))
returns the expected t-stetistic 6. 00336, where as:

quantil e(students_t (10000), 1-1e-9f)

raises an overflow error, sinceit isthe same as:

quantil e(students_t (10000), 1)

Which has no finite result.

With all distributions, even for more reasonable probability (unless the value of p can be represented exactly in the
floating-point type) the loss of accuracy quickly becomes significant if you simply calculate probability from 1 -p
(because it will be mostly garbage digitsfor p ~ 1).

So always avoid, for example, using a probability near to unity like 0.99999

quantil e(ny_distribution, 0.99999)

and instead use

quantil e(conpl emrent (ny_di stri bution, 0.00001))

since 1 - 0.99999 is not exactly equal to 0.00001 when using floating-point arithmetic.

Thisassumesthat the 0.00001 valueis either aconstant, or can be computed by some manner other than subtracting
0.99999 from 1.

Parameters can be calculated

Sometimesit'sthe parametersthat define the distribution that you need to find. Suppose, for example, you have conducted a Students-
t test for equal means and the result is borderline. Maybe your two samples differ from each other, or maybe they don't; based on
the result of the test you can't be sure. A legitimate question to ask then is "How many more measurements would | have to take
before would get an X% probability that the differenceisreal ?' Parameter finders can answer questionslikethis, and are necessarily
different for each distribution. They are implemented as static member functions of the distributions, for example:

students_t::find_degrees_of freedom

1.3,
0. 05
0.1,
0.13);

/1 difference fromtrue nean to detect

/1 maximumrisk of falsely rejecting the null-hypothesis.

/1 maximumrisk of falsely failing to reject the null-hypothesis.
/'l sanpl e standard deviation

Returns the number of degrees of freedom required to obtain a 95% probability that the observed differencesin means is not down
to chance alone. In the case that a borderline Students-t test result was previously obtained, this can be used to estimate how large
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the sample size would have to become before the observed difference was considered significant. It assumes, of course, that the
sample mean and standard deviation are invariant with sample size.

Summary

+ Distributions are objects, which are constructed from whatever parameters the distribution may have.

» Member functions allow you to retrieve the parameters of a distribution.

» Generic non-member functions provide access to the properties that are common to all the distributions (PDF, CDF, quantile etc).
» Complements of probabilities are calculated by wrapping the function's argumentsin a call to conpl ement (.. .).

 Functions that accept a probability can accept a complement of the probability as well, by wrapping the function's arguments in
acdl toconpl enent (...).

» Static member functions allow the parameters of a distribution to be found from other information.

Now that you have the basics, the next section looks at some worked examples.

Worked Examples

Distribution Construction Examples

The structure of distributionsisrather different from some other statistical libraries, for example, those written in less object-oriented
language like FORTRAN and C: these provide a few arguments to each free function.

Boost.Math library provides each distribution as atemplate C++ class. A distribution is constructed with afew arguments, and then
member and non-member functions are used to find values of the distribution, often afunction of arandom variate.

For this demonstration, first we need some includes to access the negative binomial distribution (and the binomial, beta and gamma
distributions too).

To demonstrate the use with a high precision User-defined floating-point type cpp_dec_f | oat we aso need an include from
Boost.Multiprecision.

#i

ncl ude <boost/ math/di stributions/negative_binom al.hpp>// for negative_binomial _distribution
usi ng boost::nmath::negative_binom al _distribution; // default type is double

usi ng boost::nmath::negative_binomal; // typedef provides default type is double

#i ncl ude <boost/ math/ di stributions/binom al.hpp> // for binom al_distribution.

#i ncl ude <boost/math/distributions/beta. hpp> // for beta_ distribution.

#i ncl ude <boost/math/distributions/ ganma. hpp> // for ganmma_di stribution.

#i ncl ude <boost/math/distributions/normal.hpp> // for normal _distribution.

#i ncl ude <boost/multiprecision/cpp_dec_float.hpp> // for cpp_dec_float_100

Several examples of constructing distributions follow:

First, a negative binomial distribution with 8 successes and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
boost:: mat h: : negati ve_bi nom al _di stri buti on<doubl e> nydi st0(8., 0.25)

But thisisinconveniently long, so we might be tempted to write
usi ng nanmespace boost: : mat h;

but this might risk ambiguity with namesinst d r andomso much better isexplicit usi ng boost : : mat h: : statements, for example:

119

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

usi ng boost:: math:: negative_binoni al _distribution;

and we can till reduce typing.

Since the vast magjority of applications use will be using doubl e precision, the template argument to the distribution (Real Type)
defaults to type doubl e, so we can aso write:

negati ve_bi nom al _di stribution<> nmydist9(8., 0.25); // Uses default "Real Type = double’.

Butthenamenegat i ve_bi nomi al _di st ri buti onisstill inconveniently long, so, for most distributions, aconveniencet ypedef
is provided, for example:

t ypedef negative_bi nom al _di stributi on<doubl e> negative_binom al; // Reserved nanme of type doubl e.

‘g Caution
This convenience typedef is not provided if a clash would occur with the name of afunction: currently only bet a

and gamma fall into this category.
So, after ausing statement,
usi ng boost: : math::negative_bi nom al ;
we have a convenient typedef to negat i ve_bi noni al _di st ri buti on<doubl e>:
negative_binom al nydist(8., 0.25);
Some more examples using the convenience typedef:
negati ve_bi nom al nydist10(5., 0.4); // Both argunents doubl e.
And automatic conversion takes place, so you can use integers and floats:

negati ve_bi nonmi al nydist11(5, 0.4); // Using provided typedef double, int and doubl e argunents.

Thisis probably the most common usage.

negative_bi nom al nydist12(5., 0.4F); // Double and float argunents.
negative_binom al nydist13(5, 1); // Both argunents integer.

Similarly for most other distributions like the binomial.

bi nom al nmybinom al (1, 0.5); // is nore concise than
bi nom al _di stribution<> nybi nond1(1, 0.5);

For cases when the typdef distribution name would clash with a math specia function (currently only beta and gamma) the typedef
is deliberately not provided, and the longer version of the name must be used. For example do not use:

usi ng boost:: nath:: beta;
beta nmybetadO(1, 0.5); // Error beta is a nath FUNCTI ON!
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Which produces the error messages:

error C2146: syntax error : missing ';' before identifier 'nybetadO
war ni ng C4551: function call missing argument |i st
error C3861: 'mybetad0' : identifier not found

Instead you should use:

usi ng boost::math::beta_distribution;
beta_di stribution<> nybetadl(1l, 0.5);

or for the gamma distribution:
ganma_di stri buti on<> mygammadl(1l, 0.5);
We can, of course, still provide the type explicitly thus:

/'l Explicit double precision: both arguments are doubl e
negati ve_bi nomi al _di stri buti on<doubl e> nydi st 1(8., 0.25)

/'l Explicit float precision, double arguments are truncated to float:
negati ve_bi nomi al _di stri buti on<fl| oat> nydi st2(8., 0.25)

/'l Explicit float precision, integer & double argunents converted to float:
negati ve_bi nom al _di stribution<fl oat> nydi st 3(8, 0.25);

/1 Explicit float precision, float argunents, so no conversion
negati ve_bi nomi al _di stri buti on<fl| oat> nydi st4(8. F, 0.25F)

/'l Explicit float precision, integer arguments pronoted to float.
negati ve_bi nomi al _di stri buti on<fl oat> nydi st5(8, 1)

/'l Explicit double precision
negati ve_bi nomi al _di stri buti on<doubl e> nydi st6(8., 0.25)

/1l Explicit |ong double precision:
negati ve_bi nom al _di stribution<l ong doubl e> nydi st7(8., 0.25);

And you can use your own Real Type, for example, boost : : mat h: : cpp_dec_f | oat _50 (an arbitrary 50 decimal digits precision
type), then we can write:

usi ng nanespace boost::multiprecision;

negati ve_bi nom al _di stribution<cpp_dec_float_50> nydist8(8, 0.25);
/1 “integer® argunents are pronpbted to your Real Type exactly, but
/1 " doubl e’ argument are converted to Real Type

/'l possibly losing precision, so don't wite:

negative_bi nom al _di stribution<cpp_dec_float_50> nydist20(8, 0.23456789012345678901234567890) ;
/1 to avoid truncation of second paranmeter to "~ 0.2345678901234567"

negati ve_bi nom al _di stribution<cpp_dec_float_50> O
mydi st 21(8, cpp_dec_float 50("0.23456789012345678901234567890") )

/1 Ensure that all potentially significant digits are shown.
std::cout.precision(std::nuneric_limts<cpp_dec_float_50>::digitsl0);
cpp_dec_float 50 x("1.23456789012345678901234567890")

std::cout << pdf(mydist8, x) << std::endl;
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Statistical Distributions and Functions

showi ng 0.00012630010495970320103876754721976419438231705359935

O Warning
When using multiprecision, it isall too easy to get accidental truncation!

For example, if you write

std::cout << pdf(nydist8, 1.23456789012345678901234567890) << std::endl

showing 0.00012630010495970318465064569310967179576805651692929, which iswrong at about the 17th decimal digit!
Thisis because the value provided istruncated to adoubl e, effectively doubl e x = 1.23456789012345678901234567890;
Then the now doubl e x ispassed to function pdf , and this truncated doubl e value isfinally promoted to cpp_dec_f | oat _50.

Another way of quietly getting the wrong answer isto write;

std::cout << pdf(mydist8, cpp_dec_float_50(1.23456789012345678901234567890)) << std::endl
A correct way from a multi-digit string value is
std::cout << pdf(nydist8, cpp_dec_float_50("1.23456789012345678901234567890")) << std::endl
Tip

Getting about 17 decimal digits followed by many zerosis often a sign of accidental truncation.

Default arguments to distribution constructors.

Note that default constructor arguments are only provided for some distributions. So if you wrongly assume adefault argument, you
will get an error message, for example:

negati ve_bi nom al _di stribution<> nydi st 8;

error C2512 no appropriate default constructor avail able.

No default constructors are provided for thenegat i ve bi nom al distribution, becauseit is difficult to chose any sensible default
values for this distribution.

For other distributions, like the normal distribution, it is obviously very useful to provide 'standard' defaults for the mean (zero) and
standard deviation (unity) thus:

normal _di stribution(Real Type nean = 0, Real Type sd = 1);

So in this case we can write:
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Statistical Distributions and Functions

usi ng boost:: math:: nornal;

normal normi; /1 Standard normal distribution.
normal norn2(2); /1 Mean = 2, std deviation = 1.
normal nornB(2, 3); // Mean = 2, std deviation = 3.
}
catch(std:: exception &ex)
{

std::cout << ex.what() << std::endl;
}
return O;

} /1 int nain()

Thereis no useful output from this demonstration program, of course.

See distribution_construction.cpp for full source code.
Student's t Distribution Examples

Calculating confidence intervals on the mean with the Students-t distribution

Let's say you have a sample mean, you may wish to know what confidence intervals you can place on that mean. Colloquially: "I
want an interval that | can be P% sure contains the true mean™. (On atechnical point, note that the interval either contains the true
mean or it does not: the meaning of the confidence level is subtly different from this colloquialism. More background information
can be found on the NIST site).

The formulafor the interval can be expressed as:

N

Yot lign1\yw

Where, Ysisthe sample mean, sisthe sample standard deviation, N isthe sample size, /a/ isthe desired significance level and t g, .
1) iIsthe upper critical value of the Students-t distribution with N-1 degrees of freedom.

E I Note
The quantity a  is the maximum acceptable risk of falsely rejecting the null-hypothesis. The smaller the value of
o the greater the strength of the test.

The confidencelevd of thetestisdefined as 1 - a, and often expressed as a percentage. So for example asignificance
level of 0.05, isequivalent to a95% confidencelevel. Refer to "What are confidenceintervals?' in NIST/SEMATECH
e-Handbook of Statistical Methods. for more information.

S Note
The usual assumptions of independent and identically distributed (i.i.d.) variables and normal distribution of course
apply here, asthey do in other examples.

From the formula, it should be clear that:
» Thewidth of the confidence interval decreases as the sample size increases.
» The width increases as the standard deviation increases.

» The width increases as the confidence level increases (0.5 towards 0.99999 - stronger).
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e Thewidth increases as the significance level decreases (0.5 towards 0.00000...01 - stronger).
The following example code is taken from the example program students_t_single_sample.cpp.

WEe'll begin by defining a procedure to calculate intervals for various confidence levels; the procedure will print these out as atable:

/'l Needed i ncl udes:

#i ncl ude <boost/math/distributions/students_t. hpp>

#i ncl ude <i ostreanr

#i ncl ude <i omani p>

/1 Bring everything into global nanmespace for ease of use:
usi ng nanmespace boost: : mat h;

usi ng nanespace std;

voi d confidence_limts_on_nean(

doubl e Sm /1 Sm = Sanpl e Mean.
doubl e Sd, /1 Sd = Sanpl e Standard Devi ati on.
unsi gned Sn) /'l Sn = Sanple Size.
{
usi ng nanespace std;
usi ng nanespace boost:: math;
/1 Print out general info:
cout <<
" \n"
"2-Si ded Confidence Limts For Mean\n"
" \n\n";
cout << setprecision(7);
cout << setw(40) << left << "Number of Cbservations" << "= " << Sn << "\n";
cout << setw(40) << left << "Mean" << "= " << Sm<< "\n";
cout << setw(40) << left << "Standard Deviation" << "= " << &d << "\n";

WEe'll define atable of significance/risk levels for which we'll compute intervals:

doubl e al pha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Note that these are the complements of the confidence/probability levels: 0.5, 0.75, 0.9 .. 0.99999).

Next we'll declare the distribution object we'll need, note that the degrees of freedom parameter is the sample size less one:
students t dist(Sn - 1);

Most of what follows in the program is pretty printing, so let's focus on the calculation of the interval. First we need the t-statistic,
computed using the quantile function and our significance level. Note that since the significance levels are the complement of the
probability, we have to wrap the argumentsin acall to complement(...):

double T = quantil e(conpl enent (dist, alphali] / 2));

Note that alpha was divided by two, since we'll be calculating both the upper and lower bounds: had we been interested in asingle
sided interval then we would have omitted this step.

Now to complete the picture, we'll get the (one-sided) width of theinterval from the t-statistic by multiplying by the standard deviation,
and dividing by the square root of the sample size:

double w =T * Sd / sqrt(double(Sn));

The two-sided interval is then the sample mean plus and minus this width.
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Statistical Distributions and Functions

And apart from some more pretty-printing that completes the procedure.

Let'stake alook at some sample output, first using the Heat flow data from the NIST site. The data set was collected by Bob Zarr
of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The corresponding dataplot output for this test
can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods..

2-Sided Confidence Limts For Mean

Nunmber of Qbservations = 195

Mean = 9.26146

St andard Devi ati on = 0.02278881

Confi dence T I nt erval Lower Upper

Val ue (% Val ue W dt h Limt Limt
50. 000 0. 676 1.103e-003 9. 26036 9. 26256
75. 000 1.154 1. 883e-003 9. 25958 9. 26334
90. 000 1. 653 2.697e-003 9. 25876 9. 26416
95. 000 1.972 3.219e-003 9. 25824 9. 26468
99. 000 2.601 4, 245e- 003 9. 25721 9. 26571
99. 900 3.341 5. 453e- 003 9. 25601 9. 26691
99. 990 3.973 6. 484e- 003 9. 25498 9. 26794
99. 999 4,537 7.404e-003 9. 25406 9. 26886

Asyou can see the large sample size (195) and small standard deviation (0.023) have combined to give very small intervals, indeed
we can be very confident that the true mean is 9.2.

For comparison the next example data output is taken from PK.Hou, O. W. Lau & M.C. Wbong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood |SBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.

2-Sided Confidence Limts For Mean

Nunber of Observations = 3

Mean = 37.8000000

St andard Devi ati on = 0.9643650

Conf i dence T I nt erval Lower Upper

Val ue (% Val ue W dt h Limt Limt
50. 000 0. 816 0. 455 37. 34539 38. 25461
75. 000 1.604 0. 893 36.90717 38. 69283
90. 000 2.920 1.626 36. 17422 39. 42578
95. 000 4. 303 2. 396 35.40438 40. 19562
99. 000 9. 925 5.526 32.27408 43. 32592
99. 900 31.599 17.594 20. 20639 55. 39361
99. 990 99. 992 55. 673 -17.87346 93. 47346
99.999  316. 225 176. 067 -138. 26683 213. 86683

This time the fact that there are only three measurements leads to much wider intervals, indeed such large intervals that it's hard to
be very confident in the location of the mean.
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Testing a sample mean for difference from a "true" mean

When calibrating or comparing a scientific instrument or measurement method of some kind, we want to be answer the question
"Does an observed sample mean differ from the "true" mean in any significant way?". If it does, then we have evidence of asystem-
atic difference. This question can be answered with a Students-t test: more information can be found on the NIST site.

Of course, the assignment of "true” to one mean may be quite arbitrary, often thisis simply a"traditional” method of measurement.
The following example code is taken from the example program students t single sample.cpp.

WEe'll begin by defining a procedure to determine which of the possible hypothesis are rejected or not-rejected at agiven significance
level:

S Note
Non-statisticians might say 'not-rejected’ means "accepted’, (often of the null-hypothesis) implying, wrongly, that
there really IS no difference, but statisticans eschew this to avoid implying that there is positive evidence of 'no
difference’. 'Not-rejected’ here means there is no evidence of difference, but there still might well be a difference.
For example, see argument from ignorance and Absence of evidence does not constitute evidence of absence.

/'l Needed i ncl udes:

#i ncl ude <boost/math/distributions/students_t. hpp>

#i ncl ude <i ostreanr

#i ncl ude <i omani p>

/'l Bring everything into global nanespace for ease of use:
usi ng nanmespace boost: : mat h;

usi ng nanespace std;

voi d single_sanple_t_test(double M double Sm double Sd, unsigned Sn, double al pha)

{
11
/1 M= true nean.
/1 Sm = Sanpl e Mean.
/1 Sd = Sanpl e Standard Devi ati on.
/1 Sn = Sanple Size.

/1 al pha = Significance Level.
Most of the procedure is pretty-printing, so let's just focus on the calculation, we begin by calculating the t-statistic:

/1 Difference in nmeans:

double diff = Sm- M

/| Degrees of freedom

unsigned v = Sn - 1;

/] t-statistic:

double t_stat = diff * sqrt(double(Sn)) / Sd;

Finally calculate the probability from the t-statistic. If we're interested in simply whether there is a difference (either less or greater)
or not, wedon't care about the sign of thet-statistic, and we take the complement of the probability for comparison to the significance
level:

students_t dist(v);
doubl e g = cdf (conpl enent (di st, fabs(t_stat)));

The procedure then prints out the results of the various tests that can be done, these can be summarised in the following table:
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Hypothesis Test

The Null-hypothesis: there is no differencein means Reject if complement of CDF for |t| < significance level / 2:
cdf (conmpl enent (di st, fabs(t))) < alpha / 2

The Alternative-hypothesis: there is differencein means Reject if complement of CDF for |t| > significance level / 2:
cdf (compl ement (di st, fabs(t))) > alpha / 2

The Alternative-hypothesis: the sample mean is less than the Reject if CDF of t > 1 - significance level:

true mean.
cdf (compl ement (dist, t)) < al pha

The Alternative-hypothesis: the sample mean is greater than Reject if complement of CDF of t < significance level:

the true mean.
cdf (dist, t) < al pha

S Note
Notice that the comparisons are against al pha / 2 for atwo-sided test and against al pha for a one-sided test

Now that we have all the partsin place, let's take alook at some sample output, first using the Heat flow data from the NIST site.
The data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The cor-
responding dataplot output for this test can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods..

Student t test for a single sanple

Number of Observations = 195

Sanpl e Mean = 9.26146
Sanpl e Standard Devi ation = 0.02279
Expected True Mean = 5.00000
Sanpl e Mean - Expected Test Mean = 4.26146
Degrees of Freedom = 194

T Statistic = 2611.28380
Probability that difference is due to chance = 0.000e+000
Results for Alternative Hypothesis and al pha = 0.0500

Al ternative Hypothesis Concl usi on

Mean ! = 5. 000 NOT REJECTED

Mean < 5.000 REJECTED

Mean > 5.000 NOT REJECTED

You will note the line that says the probability that the difference is due to chance is zero. From a philosophical point of view, of
course, the probability can never reach zero. However, in this case the cal culated probability issmaller than the smallest representable
doubl e precision number, hence the appearance of azero here. Whatever its"true" valueis, we know it must be extraordinarily small,
so the alternative hypothesis - that there is a difference in means - is not rejected.

For comparison the next example data output is taken from PK.Hou, O. W. Lau & M.C. Wbong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood |SBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.
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Student t test for a single sanple

Nunmber of Observations = 3

Sanpl e Mean = 37.80000
Sanpl e Standard Devi ation = 0.96437
Expected True Mean = 38.90000
Sanpl e Mean - Expected Test Mean = -1.10000
Degrees of Freedom = 2

T Statistic = -1.97566
Probability that difference is due to chance = 1.869e-001
Results for Alternative Hypothesis and al pha = 0.0500
Al ternative Hypothesis Concl usi on

Mean != 38.900 REJECTED

Mean < 38.900 NOT REJECTED

Mean > 38.900 NOT REJECTED

Asyou can seethe small number of measurements (3) has led to alarge uncertainty in the location of the true mean. So even though
there appears to be a difference between the sample mean and the expected true mean, we conclude that there is no significant dif-
ference, and are unable to regject the null hypothesis. However, if we were to lower the bar for acceptance down to alpha= 0.1 (a
90% confidence level) we see a different output:

Student t test for a single sanple

Nunmber of Qbservations = 3

Sanpl e Mean = 37.80000
Sanpl e Standard Devi ation = 0.96437
Expected True Mean = 38.90000
Sanpl e Mean - Expected Test Mean = -1.10000
Degrees of Freedom = 2

T Statistic = -1.97566
Probability that difference is due to chance = 1.869e-001
Results for Alternative Hypothesis and al pha = 0.1000
Al ternative Hypothesis Concl usi on

Mean ! = 38.900 REJECTED

Mean < 38.900 NOT REJECTED

Mean > 38.900 REJECTED

Inthiscase, wereally have aborderline result, and more data (and/or more accurate data), is needed for amore convincing conclusion.

Estimating how large a sample size would have to become in order to give a significant Stu-
dents-t test result with a single sample test

Imagine you have conducted a Students-t test on a single sample in order to check for systematic errors in your measurements.
Imagine that the result is borderline. At this point one might go off and collect more data, but it might be prudent to first ask the
question "How much more?'. The parameter estimators of the students t_distribution class can provide this information.

This section is based on the example code in students t single_sample.cpp and we begin by defining a procedure that will print out
atable of estimated sample sizes for various confidence levels:
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/'l Needed i ncl udes:

#i ncl ude <boost/ math/distributions/students_t. hpp>

#i ncl ude <i ostreanr

#i ncl ude <i omani p>

/'l Bring everything into global nanespace for ease of use:
usi ng nanmespace boost: : nmat h;

usi ng nanespace std;

voi d single_sanple_find_df(

double M /1 M= true nean.
doubl e Sm /1 Sm = Sanpl e Mean.
doubl e Sd) /1 Sd = Sanpl e Standard Devi ati on.

Next we define atable of significance levels:
doubl e alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Printing out the table of sample sizes required for various confidence level s begins with the table header:

cout << "\n\n"

\n"
" Confi dence Esti mat ed Esti mat ed\ n"
" Value (% Sanpl e Size Sanpl e Size\n"
' (one sided test) (two sided test)\n"
\n";

And now the important part: the sample sizes required. Class students_t _di stribution has a static member function
find_degrees_of _freedomthat will calculate how large a sample size needs to be in order to give a definitive result.

Thefirst argument is the difference between the meansthat you wish to be able to detect, hereit's the absolute value of the difference
between the sample mean, and the true mean.

Then come two probability values: apha and beta. Alphais the maximum acceptable risk of rejecting the null-hypothesis when it
isin fact true. Betais the maximum acceptable risk of failing to reject the null-hypothesis when in fact it is false. Also note that for
atwo-sided test, alphamust be divided by 2.

The final parameter of the function is the standard deviation of the sample.

In this example, we assume that alpha and beta are the same, and call fi nd_degr ees_of _f r eedomtwice: once with alphafor a
one-sided test, and once with alpha/2 for a two-sided test.
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for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
/1 Confidence val ue:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1l-alphali]);
/1 calculate df for single sided test:
doubl e df = students_t::find_degrees_of freedom
fabs(M- Sm, alphali], alphali], Sd);
/'l convert to sanple size:
doubl e size = ceil (df) + 1;
/'l Print size
cout << fixed << setprecision(0) << setw(16) << right << size;
/1 calculate df for two sided test:
df = students_t::find_degrees_of _freedom
fabs(M- Sm, alphali]/2, alphali], Sd);
/'l convert to sanple size:
size = ceil (df) + 1;
/'l Print size
cout << fixed << setprecision(0) << setw(16) << right << size << endl;
}

cout << endl;

Let's now look at some sample output using data taken from PK.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood |SBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.

Only three measurements were made, and the Students-t test above gave a borderline result, so this example will show us how many
samples would need to be collected:

Esti mated sanple sizes required for various confidence |evels

True Mean = 38.90000
Sanpl e Mean = 37.80000
Sanpl e Standard Devi ation = 0.96437
Confi dence Esti mat ed Esti mat ed
Val ue (9% Sanpl e Size Sanpl e Si ze
(one sided test) (two sided test)

75. 000 3 4

90. 000 7 9

95. 000 11 13

99. 000 20 22

99. 900 35 37

99. 990 50 53

99. 999 66 68

So in this case, many more measurements would have had to be made, for example at the 95% level, 14 measurements in total for
atwo-sided test.

Comparing the means of two samples with the Students-t test

Imagine that we have two samples, and we wish to determine whether their means are different or not. This situation often arises
when determining whether a new process or treatment is better than an old one.

In this example, we'll be using the Car Mileage sample data from the NIST website. The data compares miles per gallon of US cars
with miles per gallon of Japanese cars.
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The sample codeisin students t two_samples.cpp.

There are two waysin which thistest can be conducted: we can assume that the true standard deviations of the two samples are equal
or not. If the standard deviations are assumed to be equal, then the cal culation of thet-statistic is greatly simplified, so we'll examine
that case first. In real life we should verify whether this assumption is valid with a Chi-Squared test for equal variances.

We begin by defining a procedure that will conduct our test assuming equal variances:

/'l Needed headers:

#i ncl ude <boost/math/distributions/students_t. hpp>
#i ncl ude <i ostreanr

#i ncl ude <i omani p>

/1 Sinmplify usage:

usi ng nanmespace boost: : mat h;

usi ng nanespace std;

voi d two_sanpl es_t _test_equal _sd(

doubl e Smi, /1 SmlL = Sanple 1 Mean.

doubl e Sd1i, /1 Sd1 = Sanple 1 Standard Devi ati on.
unsi gned Sni, /1 Snl = Sanple 1 Size.

doubl e Sn2, /1l Sm2 = Sanple 2 Mean.

doubl e Sd2, /1 Sd2 = Sanple 2 Standard Devi ati on.
unsi gned Sn2, /'l Sn2 = Sanple 2 Size.

doubl e al pha) /1 al pha = Significance Level.

Our procedure will begin by calculating the t-statistic, assuming equal variances the needed formulae are:

Sml—sz

1 |
K T to—
p Sn1 Sn2

(Sny — 1)Sd] +(Sn, — 1)Sd3
Sp T Sn, +Sn,—2

v = Sn1+Sn2—2

where Sp is the "pooled" standard deviation of the two samples, and v is the number of degrees of freedom of the two combined
samples. We can now write the code to calculate the t-statistic:

/'l Degrees of freedom

double v = Snl + Sn2 - 2;

cout << setw(55) << left << "Degrees of Freedoni << "= " << v << "\n";

/'l Pool ed vari ance:

double sp = sqgrt(((Sn1l-1) * Sd1 * Sd1 + (Sn2-1) * Sd2 * Sd2) / v);

cout << setw(55) << left << "Pool ed Standard Deviation" << "= " << sp << "\n";
/1 t-statistic:

double t_stat = (SmL - SnR) / (sp * sqrt(1.0/ Snl + 1.0/ Sn2));

cout << setw(55) << left << "T Statistic" << "= " << t_stat << "\n";

The next step isto define our distribution object, and calculate the complement of the probability:

students_t dist(v);

doubl e g = cdf (conpl enent (di st, fabs(t_stat)));

cout << setw(55) << left << "Probability that difference is due to chance" << "=
<< setprecision(3) << scientific << 2 * g << "\n\n";

Here we've used the absolute value of the t-statistic, because we initially want to know simply whether there is a difference or not
(atwo-sided test). However, we can also test whether the mean of the second sample is greater or is less (one-sided test) than that
of thefirst: al the possible tests are summed up in the following table:
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Statistical Distributions and Functions

Hypothesis Test

The Null-hypothesis: there is no differencein means Reject if complement of CDF for |t| < significance level / 2:
cdf (conmpl enent (di st, fabs(t))) < alpha / 2

The Alternative-hypothesis: there is adifference in means Reject if complement of CDF for |t| > significance level / 2:
cdf (compl ement (di st, fabs(t))) < alpha / 2

TheAlternative-hypothesis: Sample 1 Meanislessthan Sample  Reject if CDF of t > significance level:

2 Mean.
cdf (dist, t) > al pha

The Alternative-hypothesis: Sample 1 Mean is greater than Reject if complement of CDF of t > significance level:

Sample 2 Mean.
cdf (compl ement (dist, t)) > al pha

S Note
For atwo-sided test we must compare against alpha/ 2 and not alpha.

Most of the rest of the sample program is pretty-printing, so we'll skip over that, and take alook at the sample output for apha=0.05
(a 95% probability level). For comparison the dataplot output for the same data is in section 1.3.5.3 of the NIST/SEMATECH e-
Handbook of Statistical Methods..

Student t test for two sanples (equal variances)

Nurmber of Cbservations (Sanple 1) = 249
Sanple 1 Mean = 20.145
Sanpl e 1 Standard Devi ati on = 6.4147
Nurmber of Cbservations (Sanple 2) = 79
Sanpl e 2 Mean = 30.481
Sanpl e 2 Standard Devi ati on = 6.1077
Degrees of Freedom = 326
Pool ed Standard Devi ation = 6.3426
T Statistic = -12.621
Probability that difference is due to chance = 5.273e-030
Results for Alternative Hypothesis and al pha = 0.0500
Al ternative Hypothesis Concl usi on

Sanple 1 Mean != Sanple 2 Mean NOT REJECTED

Sanple 1 Mean < Sanple 2 Mean NOT REJECTED

Sanple 1 Mean > Sanple 2 Mean REJECTED

So with a probability that the differenceis due to chance of just 5.273e-030, we can safely conclude that thereisindeed a difference.

The tests on the alternative hypothesis show that we must also reject the hypothesis that Sample 1 Mean is greater than that for
Sample 2: in this case Sample 1 represents the miles per gallon for Japanese cars, and Sample 2 the miles per gallon for US cars, so
we conclude that Japanese cars are on average more fuel efficient.

Now that we have the simple case out of the way, let's look for a moment at the more complex one: that the standard deviations of
the two samples are not equal. In this case the formula for the t-statistic becomes:
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Statistical Distributions and Functions

Sm; — Sm,

Lo sd? sd?
-1, 2

Sn1 Sn2

And for the combined degrees of freedom we use the Wel ch-Satterthwaite approximation:

2 2\2
s, 54
Snl Sn2

2\2 2\2
st (56
Sn1 Sn2

Bn-0) B

Note that thisis one of the rare situations where the degrees-of-freedom parameter to the Student's t distribution is a real number,
and not an integer value.

E I Note

Some statistical packages truncate the effective degrees of freedom to an integer value: this may be necessary if
you are relying on lookup tables, but since our code fully supports non-integer degrees of freedom thereis no need
to truncate in this case. Also note that when the degrees of freedom is small then the Welch-Satterthwaite approx-
imation may be a significant source of error.

Putting these formulae into code we get:

/1 Degrees of freedom

double v = Sd1 * Sd1 / Snl + Sd2 * Sd2 / Sn2;

vV = v,

double t1 = Sd1 * Sd1 / Sni;

tl *= t1;

tl1 /= (Snl - 1);

double t2 = Sd2 * Sd2 / Sn2;

t2 *=12;

t2 /= (Sn2 - 1);

v /= (tl +1t2);

cout << setw(55) << left << "Degrees of Freedonl << "= " << v << "\n";
/1 t-statistic:

double t_stat = (SmL - SnR) / sqrt(Sdl * Sd1 / Snl + Sd2 * Sd2 / Sn2);
cout << setw(55) << left << "T Statistic" << "= " << t_stat << "\n";

Thereafter the code and the tests are performed the same as before. Using are car mileage data again, here's what the output looks
like:
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Statistical Distributions and Functions

Student t test for two sanples (unequal variances)

Nunber of Cbservations (Sanple 1) = 249
Sanple 1 Mean = 20.145
Sanpl e 1 Standard Devi ati on = 6.4147
Nunber of Cbservations (Sanple 2) = 79
Sanpl e 2 Mean = 30.481
Sanpl e 2 Standard Devi ati on = 6.1077
Degrees of Freedom = 136.87
T Statistic = -12.946
Probability that difference is due to chance = 1.571e-025
Results for Alternative Hypothesis and al pha = 0.0500
Al ternative Hypothesis Concl usi on

Sanple 1 Mean != Sanple 2 Mean NOT REJECTED

Sanple 1 Mean < Sanple 2 Mean NOT REJECTED

Sanple 1 Mean > Sanple 2 Mean REJECTED

Thistime alowing the variances in the two samplesto differ has yielded a higher likelihood that the observed difference is down to
chance alone (1.571e-025 compared to 5.273e-030 when equal variances were assumed). However, the conclusion remainsthe same:
US carsare less fuel efficient than Japanese models.

Comparing two paired samples with the Student's t distribution

Imagine that we have a before and after reading for each item in the sample: for example we might have measured blood pressure
before and after administration of anew drug. We can't pool the results and compare the means before and after the change, because
each patient will have a different baseline reading. Instead we calcul ate the difference between before and after measurements in
each patient, and cal culate the mean and standard deviation of the differences. To test whether a significant change has taken place,
we can then test the null-hypothesisthat the true mean is zero using the same procedure we used in the single sampl e cases previously
discussed.

That means we can:

* Cadculate confidence intervals of the mean. If the endpoints of the interval differ in sign then we are unable to reject the null-hy-
pothesis that there is no change.

» Test whether the true mean is zero. If the result is consistent with atrue mean of zero, then we are unable to reject the null-hypo-
thesis that there is no change.

 Calculate how many pairs of readings we would need in order to obtain a significant result.
Chi Squared Distribution Examples

Confidence Intervals on the Standard Deviation

Once you have calcul ated the standard deviation for your data, alegitimate question to ask is"How reliable isthe calculated standard
deviation?'. For this situation the Chi Squared distribution can be used to calculate confidence intervals for the standard deviation.

The full example code & sample output isin chi_square_std_dev_test.cpp.

WEe'll begin by defining the procedure that will calculate and print out the confidence intervals:

voi d confidence_limts_on_std_deviation(
doubl e Sd, /1 Sanpl e Standard Deviation
unsi gned N) /1 Sanple size
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Statistical Distributions and Functions

WE'I begin by printing out some general information:

cout <<
" \n"
"2-Sided Confidence Linmits For Standard Deviation\n"
" \n\n";
cout << setprecision(7);
cout << setw(40) << left << "Nunber of Observations" << "= " << N << "\n";
cout << setw(40) << left << "Standard Deviation" << "= " << Sd << "\n";

and then define a table of significance levelsfor which we'll calculate intervals:
doubl e alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

The distribution we'll need to calculate the confidence intervalsis a Chi Squared distribution, with N-1 degrees of freedom:
chi _squared dist(N - 1);

For each value of alpha, the formulafor the confidence interval is given by:

IA

2 —
A(gn-1)

2
Where X(%N 1) isthe upper critical value, and X(lf%N ~1) isthe lower critical value of the Chi Squared distribution.

In code we begin by printing out a table header:

cout << "\n\n"
" \n"

"Confi dence Lower Upper\ n"
" Val ue (% Limt Limt\n"
' \n";

and then loop over the values of alpha and calculate the intervals for each: remember that the lower critical value is the same asthe
guantile, and the upper critical value is the same as the quantile from the complement of the probability:

for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)

{
/'l Confidence val ue:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]);
/] Calculate limts:
double lower limt
doubl e upper_limt
/1 Print Limts:
cout << fixed << setprecision(5) << setw(15) << right << lower_limt;
cout << fixed << setprecision(5) << setw(15) << right << upper_limt << endl;

- 1) * sd * Sd / quantile(conplenent(dist, alphali] / 2)));
- 1) * sd* Sd/ quantile(dist, alpha[i] / 2));

sqrt(
sqrt(

(N
(N
}

cout << endl;

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Stetistical Methods.. The data rep-
resents measurements of gear diameter from a manufacturing process.
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2-Si ded Confidence Linmts For Standard Devi ation

100
0. 006278908

Nunber of Cbservations
St andard Devi ation

Confi dence Lower Upper
Val ue (% Limt Limt
50. 000 0. 00601 0. 00662
75. 000 0. 00582 0. 00685
90. 000 0. 00563 0. 00712
95. 000 0. 00551 0. 00729
99. 000 0. 00530 0. 00766
99. 900 0. 00507 0. 00812
99. 990 0. 00489 0. 00855
99. 999 0. 00474 0. 00895

So at the 95% confidence level we conclude that the standard deviation is between 0.00551 and 0.00729.

Confidence intervals as a function of the number of observations

Similarly, we can also list the confidence intervals for the standard deviation for the common confidence levels 95%, for increasing
numbers of observations.

The standard deviation used to compute these valuesis unity, so thelimitslisted are multiplier sfor any particular standard deviation.
For example, given a standard deviation of 0.0062789 as in the example above; for 100 observations the multiplier is 0.8780 giving
the lower confidence limit of 0.8780 * 0.006728 = 0.00551.

Confidence | evel (two-sided) = 0. 0500000
St andard Devi ati on = 1.0000000
Coservati ons Lower Upper
Limt Limt
2 0. 4461 31. 9102
3 0. 5207 6. 2847
4 0. 5665 3.7285
5 0. 5991 2.8736
6 0. 6242 2. 4526
7 0. 6444 2.2021
8 0.6612 2.0353
9 0. 6755 1.9158
10 0. 6878 1. 8256
15 0.7321 1.5771
20 0. 7605 1. 4606
30 0. 7964 1.3443
40 0. 8192 1.2840
50 0. 8353 1.2461
60 0. 8476 1.2197
100 0.8780 1.1617
120 0. 8875 1. 1454
1000 0. 9580 1. 0459
10000 0. 9863 1.0141
50000 0.9938 1. 0062
100000 0. 9956 1. 0044
1000000 0. 9986 1.0014
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Statistical Distributions and Functions

With just 2 observations the limits are from 0.445 up to to 31.9, so the standard deviation might be about half the observed value
up to 30 times the observed value!

Estimating astandard deviation with just ahandful of valuesleavesavery great uncertainty, especially the upper limit. Note especially
how far the upper limit is skewed from the most likely standard deviation.

Even for 10 observations, normally considered areasonable number, the rangeis still from 0.69 to 1.8, about arange of 0.7 to 2, and
is still highly skewed with an upper limit twice the median.

When we have 1000 observations, the estimate of the standard deviation is starting to look convincing, with a range from 0.95 to
1.05 - now near symmetrical, but still about + or - 5%.

Only when we have 10000 or more repeated observations can we start to be reasonably confident (provided we are sure that other
factors like drift are not creeping in).

For 10000 observations, the interval is0.99 to 1.1 - finally areally convincing + or -1% confidence.
Chi-Square Test for the Standard Deviation

We use this test to determine whether the standard deviation of a sample differs from a specified value. Typically this occurs in
process change situations where we wish to compare the standard deviation of a new process to an established one.

The code for this exampleis contained in chi_square_std_dev_test.cpp, and we'll begin by defining the procedure that will print out
the test statistics:

voi d chi _squared_test(

doubl e Sd, /1 Sanple std deviation
doubl e D, /1 True std deviation
unsi gned N, /] Sampl e size

doubl e alpha) // Significance |evel

The procedure begins by printing a summary of the input data:

usi ng nanespace std;
usi ng nanespace boost: : mat h;

// Print header:

cout <<
" \n"
"Chi Squared test for sanple standard devi ation\n"
" \n\n";
cout << setprecision(5);
cout << setw(55) << left << "Nunber of Gbservations" << "= " << N << "\n";
cout << setw(55) << left << "Sanple Standard Deviation" << "= " << S&d << "\n";
cout << setw(55) << left << "Expected True Standard Deviation" << "= " << D << "\n\n";

Thetest statistic (T) is simply the ratio of the sample and "true" standard deviations squared, multiplied by the number of degrees
of freedom (the sample size less one):

double t_stat = (N- 1) * (Sd / D * (Sd / D);
cout << setw(55) << left << "Test Statistic" << "= " << t_stat << "\n";

The distribution we need to use, isa Chi Squared distribution with N-1 degrees of freedom:
chi _squared dist(N - 1);

The various hypothesis that can be tested are summarised in the following table:
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Statistical Distributions and Functions

Hypothesis

Thenull-hypothesis: thereisno differencein standard deviation

Test

Reject if T < X%-apharz N-1) OF T > X (aipharz: N-1)

from the specified value

The alternative hypothesis: thereis adifferencein standard de-
viation from the specified value

Reject if X(1-aphaiz; N-1) >= T >= X aphaiz; -1

The dternative hypothesis. the standard deviation is less than
the specified value

Reject if X*(1apha n-1) <= T

Thealternative hypothesis. the standard deviation isgreater than
the specified value

Reject if X2 apna Ny >= T

Where xz(a, pha; N-1) 1S the upper critical value of the Chi Squared distribution, and X2(1-a| pha; N-1) 1S the lower critical value.

Recall that the lower critical value is the same as the quantile, and the upper critical value isthe same as the quantile from the com-
plement of the probability, that gives us the following code to calculate the critical values:

doubl e ucv = quantil e(conpl enent (di st, alpha));

doubl e ucv2 = quantil e(conpl emrent (dist, alpha / 2));

double Icv = quantile(dist, alpha);

doubl e I cv2 = quantile(dist, alpha / 2);

cout << setw(55) << left << "Upper Critical Value at alpha: " << "=
<< setprecision(3) << scientific << ucv << "\n";

cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "=
<< setprecision(3) << scientific << ucv2 << "\n";

cout << setw(55) << left << "Lower Critical Value at al pha: << "=
<< setprecision(3) << scientific << lcv << "\n";

cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "=

<< setprecision(3) << scientific << lcv2 << "\n\n";

Now that we have the critical values, we can compare these to our test statistic, and print out the result of each hypothesis and test:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and al pha" << "=
<< setprecision(4) << fixed << al pha << "\n\n";
cout << "Alternative Hypothesis Concl usi on\ n";

cout << "Standard Deviation !="
if((ucv2 < t_stat) || (lcv2
cout << "ACCEPTED\ n";
el se
cout << "REJECTED\n";

<< setprecision(3) << fixed << D << "
> t_stat))

cout << "Standard Deviation <"
if(lev > t_stat)

cout << "ACCEPTED\ n";
el se

cout << "REJECTED\ n";

<< setprecision(3) << fixed << D << "

cout << "Standard Deviation > "
if(ucv < t_stat)
cout << "ACCEPTED\ n";
el se
cout << "REJECTED\n";
cout << endl << endl;

<< setprecision(3) << fixed << D << "
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Statistical Distributions and Functions

To see some exampl e output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods.. The datarep-
resents measurements of gear diameter from a manufacturing process. The program output is deliberately designed to mirror the
DATAPLOQOT output shown in the NIST Handbook Example.

Chi Squared test for sanple standard deviation

Nunmber of Qbservations

Sanpl e Standard Devi ation
Expected True Standard Devi ati on

Test Statistic

CDF of test statistic:
Upper Critical Value at
Upper Critical Value at
Lower Critical Value at
Lower Critical Value at

Results for Alternative

Al ternative Hypothesis

St andard Deviation !'= 0.

St andard Deviation <
St andard Deviation >

0.
0.

al pha:
al pha/ 2:
al pha:
al pha/ 2:

Hypot hesi s and al pha

Concl usi on

100 ACCEPTED
100 ACCEPTED
100 REJECTED

100
0. 00628
0. 10000

. 39030

. 438e- 099
. 232e+002
. 284e+002
. 705e+001
. 336e+001

N~NRFP R RO

0. 0500

In this case we are testing whether the sample standard deviation is 0.1, and the null-hypothesisis rejected, so we conclude that the

standard deviation isnot 0.1.

For an aternative example, consider the silicon wafer data again from the NIST/SEMATECH e-Handbook of Statistical Methods..
In this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient con-
sistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from
the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselvesis "Is the suppliers claim correct?".

The program output now looks like this:

Chi Squared test for sanple standard devi ation

Nunber of Cbservations

Sanpl e Standard Devi ati on
Expected True Standard Devi ation

Test Statistic

CDF of test statistic:
Upper Critical Value at
Upper Critical Value at
Lower Critical Value at
Lower Critical Value at

Results for Alternative

al pha:
al pha/ 2:
al pha:
al pha/ 2:

Hypot hesi s and al pha

Al ternative Hypothesis Concl usi on

St andard Devi ation != 10.000 REJECTED
St andard Devi ation < 10.000 REJECTED
St andard Deviation > 10.000 ACCEPTED

10
13. 97000
10. 00000

17. 56448

. 594e- 001
. 692e+001
. 902e+001
. 325e+000
. 700e+000

NWEFPEFk O

0. 0500

In this case, our null-hypothesisis that the standard deviation of the sampleislessthan 10: this hypothesisisrejected in the analysis
above, and so we reject the manufacturers claim.
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Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation

Suppose we conduct a Chi Squared test for standard deviation and the result is borderline, alegitimate question to ask is"How large
would the sample size have to be in order to produce a definitive result?"

The class template chi_squared_distribution has a static method f i nd_degr ees_of _f r eedomthat will calculate this value for
some acceptable risk of type | failure alpha, type Il failure beta, and difference from the standard deviation diff. Please note that the
method used works on variance, and not standard deviation asis usual for the Chi Squared Test.

The code for this exampleislocated in chi_square std dev_test.cpp.

We begin by defining a procedure to print out the sample sizes required for various risk levels:

voi d chi _squared_sanpl e_si zed(
doubl e diff, /1 difference fromvariance to detect
doubl e variance) // true variance

The procedure begins by printing out the input data:

usi ng namespace std;
usi ng namespace boost: : mat h;

/1 Print out general info:

cout <<
" \n"
"Estimated sanple sizes required for various confidence |evels\n"
" \n\n";

cout << setprecision(5);

cout << setw(40) << left << "True Variance" << "= " << variance << "\n";

cout << setw(40) << left << "Difference to detect" << "= " << diff << "\n";

And defines atable of significance levels for which we'll calculate sample sizes:

doubl e alpha[] ={ 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

For each value of alphawe can calculate two sample sizes. one where the sample variance is less than the true value by diff and one
where it is greater than the true value by diff. Thanks to the asymmetric nature of the Chi Squared distribution these two values will
not be the same, the differencein their calculation differsonly inthe sign of diff that'spassedtof i nd_degrees_of _freedom Finally
in this example we'll simply things, and let risk level beta be the same as alpha:
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Statistical Distributions and Functions

cout << "\n\n"

\n"
"Confi dence Esti mat ed Esti nat ed\ n"
" Value (% Sanpl e Si ze Sanpl e Size\n"
' (I ower one (upper one\n"
si ded test) sided test)\n"
\n";
I
/1 Now print out the data for the table rows.
I
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

/'l Confidence val ue:
cout << fixed << setprecision(3) << setw10) << right << 100 * (1-alphali]);
/1 calculate df for a |ower single sided test:
doubl e df = chi _squared: :find_degrees_of _freedom
-diff, alphali], alpha[i], variance);
/1 convert to sanple size:
doubl e size = ceil (df) + 1;
[l Print size:
cout << fixed << setprecision(0) << setw(16) << right << size;
/1 calculate df for an upper single sided test:
df = chi _squared::find_degrees_of _freedom
diff, alpha[i], alpha[i], variance);
/1 convert to sanple size:
size = ceil (df) + 1;
/'l Print size:
cout << fixed << setprecision(0) << setw16) << right << size << endl;
}

cout << endl;

For some example output, consider the silicon wafer data from the NIST/SEMATECH e-Handbook of Statistical Methods.. In this
scenario asupplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient consistency
so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from the lot has
astandard deviation of 13.97 ohm.cm, and the question we ask ourselvesis"How large would our sample haveto betoreliably detect
this difference?".

To use our procedure above, we have to convert the standard deviations to variance (square them), after which the program output
looks like this:
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Statistical Distributions and Functions

Esti mated sanple sizes required for various confidence |evels

True Vari ance = 100. 00000
Di fference to detect = 95.16090
Confi dence Esti nmat ed Esti mat ed
Val ue (9% Sanpl e Size Sanple Size
(1 ower one (upper one
sided test) sided test)
50. 000 2 2
75. 000 2 10
90. 000 4 32
95. 000 5 51
99. 000 7 99
99. 900 11 174
99. 990 15 251
99. 999 20 330

In this case we are interested in a upper single sided test. So for example, if the maximum acceptable risk of falsely rejecting the
null-hypothesisis 0.05 (Type | error), and the maximum acceptable risk of failing to reject the null-hypothesisis also 0.05 (Type 1
error), we estimate that we would need a sample size of 51.

F Distribution Examples

Imagine that you want to compare the standard deviations of two sample to determine if they differ in any significant way, in this
situation you use the F distribution and perform an F-test. This situation commonly occurs when conducting a process change com-
parison: "is anew process more consistent that the old one?".

Inthisexamplewell be using the datafor ceramic strength from http://www.itl.nist.gov/div898/handbook/eda/secti ond/edad2al.htm.
Thedatafor this case study were collected by Said Jahanmir of the NIST Ceramics Divisionin 1996 in connection with aNIST/industry
ceramics consortium for strength optimization of ceramic strength.

The example program isf_test.cpp, program output has been deliberately made as similar as possible to the DATAPLOT output in
the corresponding NIST EngineeringStatistics Handbook example.

WEe'll begin by defining the procedure to conduct the test:

void f_test(

doubl e sd1i, /1 Sanmple 1 std deviation
doubl e sd2, /1 Sanmple 2 std deviation
doubl e N1, /1 Sanmple 1 size
doubl e N2, /| Sanple 2 size

doubl e alpha) // Significance |eve

The procedure begins by printing out a summary of our input data:
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Statistical Distributions and Functions

usi ng nanespace std;
usi ng nanmespace boost: : nmat h;

/1 Print header:

cout <<
" \nll
"F test for equal standard deviations\n"
" \n\n";

cout << setprecision(5);

cout << "Sanple 1:\n";

cout << setw(55) << left << "Nunber of Observations" << "= " << Nl << "\n";

cout << setw(55) << left << "Sanple Standard Deviation" << " " << sdl << "\n\n";
cout << "Sanple 2:\n";

cout << setw(55) << left << "Nunber of Observations" << "= " << N2 << "\n";

cout << setw(55) << left << "Sanple Standard Deviation" << " " << sd2 << "\n\n";

Thetest statistic for an F-test is simply the ratio of the square of the two standard deviations:
F=s°/s?

where s; isthe standard deviation of the first sample and s, is the standard deviation of the second sample. Or in code:

double F = (sdl / sd2);
F*=F;
cout << setw(55) << left << "Test Statistic" << "= " << F << "\n\n";

At this point aword of caution: the F distribution is asymmetric, so we have to be careful how we compute the tests, the following
table summarises the options available:

Hypothesis Test

Thenull-hypothesis: thereisno differencein standard deviations  Reject if F <= F1_gpna2; N1-1, N2-1) OF F >= Fraphaz; N1-1, N2-1)
(two sided test)

The alternative hypothesis: there is a difference in means (two  Reject if F1_aphar; N1-1, N2-1) <= F <= Flaphar2; N1-1, N2-1)
sided test)

The alternative hypothesis: Standard deviation of sample 1is  Reject if F < Fgypna n1-1, N2-1)
greater than that of sample 2

The alternative hypothesis: Standard deviation of sample 1is  Reject if F> Fq gpna N1-1, N2-1)
less than that of sample 2

Where F1.apha N1-1, N2-1) 1S the lower critical value of the F distribution with degrees of freedom N1-1 and N2-1, and F(zpna; n1-1,
n2-1) IS the upper critical value of the F distribution with degrees of freedom N1-1 and N2-1.

The upper and lower critical values can be computed using the quantile function:
Fa-apha N1-1, N2-1) = quant i [ e(fisher _f(N1-1, N2-1), al pha)
F(eipha; N1-1,N2-1) = quant il e(conpl ement (fisher _f(N1-1, N2-1), alpha))

In our example program we need both upper and lower critical values for alpha and for alpha/2:
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Statistical Distributions and Functions

doubl e ucv = quantil e(conpl enent (dist, alpha));

doubl e ucv2 = quantil e(conpl enent (dist, alpha / 2));

double Icv = quantile(dist, alpha);

doubl e I cv2 = quantile(dist, alpha / 2);

cout << setw(55) << left << "Upper Critical Value at alpha: " << "= "
<< setprecision(3) << scientific << ucv << "\n";

cout << setw(55) << left << "Upper Critical Value at alpha/2: " << "= "
<< setprecision(3) << scientific << ucv2 << "\n";

cout << setw(55) << left << "Lower Critical Value at alpha: " << "= "
<< setprecision(3) << scientific << lcv << "\n";
cout << setw(55) << left << "Lower Critical Value at alpha/2: " << "= "

<< setprecision(3) << scientific << lcv2 << "\n\n";

Thefinal step isto perform the comparisons given above, and print out whether the hypothesisis rejected or not:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and al pha" << "= "
<< setprecision(4) << fixed << al pha << "\n\n";
cout << "Alternative Hypothesis Concl usi on\ n";

cout << "Standard devi ations are unequal (two sided test) "

if((ucv2 < F) || (lev2 > F))
cout << "ACCEPTED\ n";
el se

cout << "REJECTED\ n";

cout << "Standard deviation 1 is |less than standard deviation 2 "
if(lev > F)

cout << "ACCEPTED\ n";
el se

cout << "REJECTED\ n";

cout << "Standard deviation 1 is greater than standard deviation 2 ";

if(ucv < F)
cout << "ACCEPTED\ n";
el se

cout << "REJECTED\ n";
cout << endl << endl;

Using the ceramic strength data as an example we get the following output:
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Statistical Distributions and Functions

F test for equal standard deviations

Sanpl e 1:

Nunmber of Observations = 240

Sanpl e Standard Devi ation = 65.549
Sanpl e 2:

Number of Observations = 240

Sanpl e Standard Devi ation = 61.854
Test Statistic = 1.123

CDF of test statistic: = 8.148e-001
Upper Critical Value at al pha: = 1.238e+000
Upper Critical Value at al pha/2: = 1.289e+000
Lower Critical Value at al pha: = 8.080e-001
Lower Critical Value at al phal/2: = 7.756e-001
Results for Alternative Hypothesis and al pha = 0.0500

Al ternative Hypothesis Concl usi on
St andard devi ations are unequal (two sided test) REJECTED

Standard deviation 1 is | ess than standard deviation 2 REJECTED
Standard deviation 1 is greater than standard devi ation 2 REJECTED

In this case we are unable to reject the null-hypothesis, and must instead reject the alternative hypothesis.

By contrast let's see what happens when we use some different sample data:, once again from the NIST Engineering Statistics
Handbook: A new procedure to assemble a device is introduced and tested for possible improvement in time of assembly. The
guestion being addressed is whether the standard deviation of the new assembly process (sample 2) is better (i.e., smaller) than the
standard deviation for the old assembly process (sample 1).

F test for equal standard deviations

Sanpl e 1:

Nunmber of Observations = 11.00000
Sanpl e Standard Devi ation = 4.90820
Sanpl e 2:

Nunmber of Observations = 9.00000
Sanpl e Standard Devi ation = 2.58740
Test Statistic = 3.59847
CDF of test statistic: = 9.589e-001
Upper Critical Value at al pha: = 3.347e+000
Upper Critical Value at al pha/2: = 4.295e+000
Lower Critical Value at al pha: = 3.256e-001
Lower Critical Value at al pha/2: = 2.594e-001
Results for Alternative Hypothesis and al pha = 0.0500

Al ternative Hypothesis Concl usi on
St andard devi ati ons are unequal (two sided test) REJECTED

Standard deviation 1 is | ess than standard deviation 2 REJECTED
Standard deviation 1 is greater than standard devi ati on 2 ACCEPTED
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In this case we take our null hypothesis as "standard deviation 1 is less than or equal to standard deviation 2", since this represents
the "no change" situation. So we want to compare the upper critical value at alpha (a one sided test) with the test statistic, and since
3.35 < 3.6 this hypothesis must be rejected. We therefore conclude that there is a change for the better in our standard deviation.

Binomial Distribution Examples

See also the reference documentation for the Binomial Distribution.

Binomial Coin-Flipping Example

An example of aBernoulli processiscoin flipping. A variable in such a sequence may be called a Bernoulli variable.
This example shows using the Binomial distribution to predict the probability of heads and tails when throwing a coin.

The number of correct answers (say heads), X, is distributed as a binomial random variable with binomial distribution parameters
number of trials (flips) n = 10 and probability (success fraction) of getting ahead p = 0.5 (a'fair’ coin).

(Our coinis assumed fair, but we could easily change the success fraction parameter p from 0.5 to some other value to simulate an
unfair coin, say 0.6 for one with chewing gum on the tail, so it is more likely to fall tails down and heads up).

First we need some includes and using statements to be able to use the binomial distribution, some std input and output, and get
started:

#i ncl ude <boost/ mat h/ di stributions/binon al . hpp>
usi ng boost: : math: : bi noni al ;

#i ncl ude <i ostreanr

using std::cout; wusing std::endl; wusing std::left;
#i ncl ude <i omani p>

using std::setw,

int main()

{

cout << "Using Binomial distribution to predict how nany heads and tails." << endl;

try
{

See note with the catch block about why atry and catch block is always a good idea.

First, construct a binomial distribution with parameters success fraction 1/2, and how many flips.

const doubl e success_fraction = 0.5; // =50%= 1/2 for a 'fair' coin.
int flips = 10;
binomal flip(flips, success_fraction);

cout . precision(4);

Then some examples of using Binomial moments (and echoing the parameters).
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cout << "From" << flips << " one can expect to get on average "
<< mean(flip) << " heads (or tails)." << endl
cout << "Mode is " << node(flip) << endl
cout << "Standard deviation is " << standard_deviation(flip) << endl
cout << "So about 2/3 will lie within 1 standard devi ation and get between "
<< ceil(nmean(flip) - standard_deviation(flip)) << " and "
<< floor(nean(flip) + standard_deviation(flip)) << " correct." << endl
cout << "Skewness is " << skewness(flip) << endl
/1 Skewness of binomal distributions is only zero (symmetrical)
/1 if success_fraction is exactly one half,
/'l for exanple, when flipping 'fair' coins
cout << "Skewness if success fraction is " << flip.success_fraction()
<< " is " << skewness(flip) << endl << endl; // Expect zero for a 'fair' coin.

Now we show avariety of predictions on the probability of heads:

cout << "For " << flip.trials() << " coin flips: " << endl
cout << "Probability of getting no heads is " << pdf(flip, 0) << endl
cout << "Probability of getting at |east one head is " << 1. - pdf(flip, 0) << endl

When we want to calculate the probability for arange or values we can sum the PDF's;

cout << "Probability of getting O or 1 heads is "
<< pdf (flip, 0) + pdf(flip, 1) << endl; // sumof exactly == probabilities

Or we can use the cdf.

cout << "Probability of getting O or 1 (<= 1) heads is " << cdf(flip, 1) << endl
cout << "Probability of getting 9 or 10 heads is " << pdf(flip, 9) + pdf(flip, 10) << endl

Note that using
cout << "Probability of getting 9 or 10 heads is " << 1. - cdf(flip, 8) << endl
isless accurate than using the complement
cout << "Probability of getting 9 or 10 heads is " << cdf(conmplenment(flip, 8)) << endl

Since the subtraction may involve cancellation error, where as cdf (conpl ement (f1i p, 8)) doesnot use such asubtraction in-
ternally, and so does not exhibit the problem.

To get the probability for arange of heads, we can either add the pdfs for each number of heads

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
/Il P(X==14) + P(X ==05) + P(X == 6)
<< pdf (flip, 4) + pdf(flip, 5 + pdf(flip, 6) << endl

But thisis probably less efficient than using the cdf

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
Il P(X <=6) - P(X<=3) == P(X < 4)
<< cdf (flip, 6) - cdf(flip, 3) << endl

Certainly for abigger rangelike, 3to 7
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cout << "Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is "
Il P(X<=7) - P(X<=2) == P(X < 3)
<< cdf (flip, 7) - cdf(flip, 2) << endl;

cout << endl;

Finally, print two tables of probability for the exactly and at least a number of heads.

/1 Print a table of probability for the exactly a nunber of heads.

cout << "Probability of getting exactly (==) heads" << endl;

for (int successes = 0; successes <= flips; successes++)

{ Il Say success means getting a head (or equally success neans getting a tail).
doubl e probability = pdf (flip, successes);

cout << left << setw(2) << successes << " " << setw(10)
<< probability << " or 1 in " << 1. / probability
<< ", or " << probability * 100. << "% << endl;
Il for i

cout << endl;

/| Tabul ate the probability of getting between zero heads and O upto 10 heads.
cout << "Probability of getting upto (<=) heads" << endl;
for (int successes = 0; successes <= flips; successes++)
{ Il Say success means getting a head
/1 (equally success could nean getting a tail).
doubl e probability = cdf (flip, successes); // P(X <= heads)

cout << setw(2) << successes << " " << setw(10) << |eft
<< probability << " or 1 in " << 1. / probability << ", or "
<< probability * 100. << "% << endl;
Il for i

Thelast (0 to 10 heads) must, of course, be 100% probability.

}

catch(const std::exception& e)

{
/1

Itisalwaysessential toincludetry & catch blocks because default policiesareto throw exceptions on argumentsthat are out of domain
or cause errors like numeric-overflow.

Lacking try & catch blocks, the program will abort, whereas the message below from the thrown exception will give some helpful
clues as to the cause of the problem.

std::cout <<
"\'n""Message from thrown exception was:\n " << e.what() << std::endl;

See hinomial_coinflip_example.cpp for full source code, the program output looks like this:
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Using Binomial distribution to predict how nany heads and tails.
From 10 one can expect to get on average 5 heads (or tails).

Mbde is 5
St andard deviation is 1.581
So about 2/3 will lie within 1 standard devi ati on and get between 4 and 6 correct.

Skewness is O
Skewness if success_fractionis 0.5is 0

For 10 coin flips:

Probability of getting no heads is 0.0009766

Probability of getting at |east one head is 0.999
Probability of getting O or 1 heads is 0.01074

Probability of getting O or 1 (<= 1) heads is 0.01074
Probability of getting or 10 heads is 0.01074

Probability of getting or 10 heads is 0.01074

Probability of getting or 10 heads is 0.01074

Probability of between and 6 heads (4 or 5 or 6) is 0.6562
Probability of between and 6 heads (4 or 5 or 6) is 0.6563
Probability of between and 7 heads (3, 4, 5, 6 or 7) is 0.8906

wWhbhooo

Probability of getting exactly (==) heads

0 0.0009766 or 1 in 1024, or 0.09766%

1 0. 009766 or 1in 102.4, or 0.9766%
2 0. 04395 or 1 in 22.76, or 4.395%

3 0.1172 or 1 in 8.533, or 11.72%

4 0. 2051 or 1in 4.876, or 20.51%

5 0. 2461 or 1 in 4.063, or 24.61%

6 0. 2051 or 1in 4.876, or 20.51%

7 0.1172 or 1 in 8.533, or 11.72%

8 0. 04395 or 1in 22.76, or 4.395%

9 0. 009766 or 1 in 102.4, or 0.9766%
10 0.0009766 or 1 in 1024, or 0.09766%
Probability of getting upto (<=) heads

0 0.0009766 or 1 in 1024, or 0.09766%
1 0.01074 or 1in 93.09, or 1.074%
2 0. 05469 or 1 in 18.29, or 5.469%
3 0.1719 or 1in 5.818, or 17.19%
4 0. 377 or 1in 2.653, or 37.7%
5 0.623 or 1in 1.605, or 62.3%
6 0.8281 or 1in 1.208, or 82.81%
7 0. 9453 or 1 in 1.058, or 94.53%
8 0.9893 or 1in 1.011, or 98.93%
9 0. 999 or 1in 1.001, or 99.9%
10 1 or 1in 1, or 100%

Binomial Quiz Example

A multiple choice test has four possible answers to each of 16 questions. A student guesses the answer to each question, so the
probability of getting a correct answer on any given question is one in four, a quarter, 1/4, 25% or fraction 0.25. The conditions of
the binomia experiment are assumed to be met: n = 16 questions constitute the trials; each question results in one of two possible
outcomes (correct or incorrect); the probability of being correct is0.25 and is constant if no knowledge about the subject is assumed,;
the questions are answered independently if the student's answer to aquestion in no way influences higher answer to another question.

First, we need to be able to use the binomial distribution constructor (and some std input/output, of course).
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#i

ncl ude <boost/ math/ di stributions/binom al . hpp>
usi ng boost: : mat h: : bi nom al

#i ncl ude <i ostreanr

using std::cout; using std::endl

using std::ios; using std::flush; using std::left; using std::right; using std::fixed
ncl ude <i omani p>

using std::setw, using std::setprecision

ncl ude <exception>

using std::exception

#i

#i

The number of correct answers, X, is distributed as a binomial random variable with binomial distribution parameters. questions n
and success fraction probability p. So we construct a binomial distribution:;

int questions = 16; // Al the questions in the quiz

int answers = 4; // Possible answers to each question.

doubl e success_fraction = 1. / answers; // |If a randomguess, p = 1/4 = 0.25
bi nom al qui z(questions, success_fraction);

and display the distribution parameters we used thus:

cout << "In a quiz with " << quiz.trials()
<< " questions and with a probability of guessing right of
<< qui z.success_fraction() * 100 << " %
<< " or 1in" << static_cast<int>(1. / quiz.success_fraction()) << endl

Show afew probabilities of just guessing:

cout << "Probability of getting none right is " << pdf(quiz, 0) << endl; // 0.010023

cout << "Probability of getting exactly one right is " << pdf(quiz, 1) << endl

cout << "Probability of getting exactly two right is " << pdf(quiz, 2) << endl

int pass_score = 11

cout << "Probability of getting exactly " << pass_score << " answers right by chance is "
<< pdf (qui z, pass_score) << endl

cout << "Probability of getting all " << questions << " answers right by chance is "
<< pdf (qui z, questions) << endl

Probability of getting none right is 0.0100226

Probability of getting exactly one right is 0.0534538

Probability of getting exactly two right is 0.133635

Probability of getting exactly 11 right is 0.000247132

Probability of getting exactly all 16 answers right by chance is 2.32831e-010

These don't give any encouragement to guessers!

We can tabulate the 'getting exactly right' ( == probabilities thus:

cout << "\n" "Guessed Probability" << right << endl;
for (int successes = 0; successes <= questions; successes++)
{
doubl e probability = pdf(quiz, successes)
cout << setw(2) << successes << " " << probability << endl;

}

cout << endl;
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Guessed Probability

0 0.0100226

1 0. 0534538

2 0. 133635

3 0.207876

4 0.225199

5 0. 180159

6 0. 110097

7 0. 0524273

8 0. 0196602

9 0. 00582526
10 0. 00135923
11 0.000247132
12 3. 43239e- 005
13 3. 5204e- 006
14 2.51457e- 007
15 1.11759e-008
16 2.32831e-010

Then we can add the probabilities of some 'exactly right' like this:

cout << "Probability of getting none or one right is " << pdf(quiz, 0) + pdf(quiz, 1) << endl

Probability of getting none or one right is 0.0634764

But if more than acouple of scoresareinvolved, itismore convenient (and may be more accurate) to use the Cumulative Distribution
Function (cdf) instead:

cout << "Probability of getting none or one right is " << cdf(quiz, 1) << endl

Probability of getting none or one right is 0.0634764
Since the cdf isinclusive, we can get the probability of getting up to 10 right ( <=)

cout << "Probability of getting <= 10 right (to fail) is " << cdf(quiz, 10) << endl

Probability of getting <= 10 right (to fail) is 0.999715

To get the probability of getting 11 or more right (to pass), it istempting to use

1 - cdf(quiz, 10)

to get the probability of > 10

cout << "Probability of getting > 10 right (to pass) is " << 1 - cdf(quiz, 10) << endl

Probability of getting > 10 right (to pass) is 0.000285239

But this should be resisted in favor of using the complements function (see why complements?).

cout << "Probability of getting > 10 right (to pass) is " << cdf(conpl enent(quiz, 10)) << endl
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Probability of getting > 10 right (to pass) is 0.000285239
And we can check that these two, <= 10 and > 10, add up to unity.
BOOST_ASSERT( (cdf (qui z, 10) + cdf (conpl enment (quiz, 10))) == 1.)
If we want a < rather than a <= test, because the CDF isinclusive, we must subtract one from the score.

cout << "Probability of getting |less than " << pass_score
<< " (< " << pass_score << ") answers right by guessing is "
<< cdf (quiz, pass_score -1) << endl

Probability of getting less than 11 (< 11) answers right by guessing is 0.999715

and similarly to get a>= rather than a> test we also need to subtract one from the score (and can again check the sum is unity). This
is because if the cdf isinclusive, then its complement must be exclusive otherwise there would be one possible outcome counted
twice!

cout << "Probability of getting at least " << pass_score

<< "(>= " << pass_score << ") answers right by guessing is "

<< cdf (conpl enent (qui z, pass_score-1))

<< ", only 1 in " << 1/cdf(conplenment(quiz, pass_score-1)) << endl
BOOST_ASSERT( (cdf (qui z, pass_score -1) + cdf(conpl enment (quiz, pass_score-1))) == 1)

Probability of getting at |least 11 (>= 11) answers right by guessing is 0.000285239, only 1 in O
3505. 83

Finally we can tabulate some probabilities:

cout << "\n" "At nost (<=)""\n""Guessed OK Probability" << right << endl
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << " " << setprecision(10)
<< cdf (quiz, score) << endl;

}

cout << endl;
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At nost (<=9)
Guessed K  Probability

0 0. 01002259576
1 0. 0634764398
2 0.1971110499
3 0. 4049871101
4 0.6301861752
5 0.8103454274
6 0.9204427481
7 0. 9728700437
8 0. 9925302796
9 0. 9983555346
10 0.9997147608
11 0. 9999618928
12 0. 9999962167
13 0. 9999997371
14 0. 9999999886
15 0. 9999999998
16 1

cout << "\n" "At least (>)""\n""Cuessed OK Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << " " << setprecision(10)
<< cdf (conpl enent (qui z, score)) << endl;

At | east (>)
Guessed K Probability

0 0. 9899774042

1 0. 9365235602

2 0. 8028889501

3 0. 5950128899

4 0. 3698138248

5 0. 1896545726

6 0. 07955725188

7 0. 02712995629

8 0. 00746972044

9 0. 001644465374
10 0. 0002852391917
11 3. 810715862e- 005
12 3.783265129e- 006
13 2.628657967e- 007
14 1. 140870154e- 008
15 2.328306437e-010
16 0

We now consider the probabilities of ranges of correct guesses.

First, calculate the probability of getting arange of guesses right, by adding the exact probabilities of each from low ... high.
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int low=3; // CGetting at least 3 right.
int high =5; // Getting as nbpst 5 right.
doubl e sum = 0.

for (int i low, i <= high; i++)
{

sum += pdf (qui z, i)
}

cout. precision(4);

cout << "Probability of getting between "
<< low << " and " << high << " answers right by guessing is "
<< sum << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132
Or, usually better, we can use the difference of cdfs instead:

cout << "Probability of getting between " << low << " and " << high << " answers right by guessO
ing is "
<< cdf(quiz, high) - cdf(quiz, low- 1) << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132
And we can also try afew more combinations of high and low choices:

low = 1; high = 6
cout << "Probability of getting between " << low << " and " << high << " answers right by guessQO
ing is "

<< cdf(quiz, high) - cdf(quiz, low- 1) << endl; // 1 and 6 P= 0.91042
low = 1; high = 8
cout << "Probability of getting between " << low << " and " << high << " answers right by guessQO
ing is "

<< cdf(quiz, high) - cdf(quiz, low- 1) << endl; // 1 <=x 8 P = 0.9825
low = 4; high = 4
cout << "Probability of getting between " << low << " and " << high << " answers right by guessQO
ing is "

<< cdf(quiz, high) - cdf(quiz, low- 1) << endl; // 4 <= x 4 P = 0.22520

Probability of getting between 1 and 6 answers right by guessing is 0.9104
Probability of getting between 1 and 8 answers right by guessing is 0.9825
Probability of getting between 4 and 4 answers right by guessing is 0.2252

Using Binomial distribution moments

Using moments of the distribution, we can say more about the spread of results from guessing.

cout << "By guessing, on average, one can expect to get " << mean(quiz) << " correct anQO
swers." << endl;
cout << "Standard deviation is " << standard_deviation(quiz) << endl
cout << "So about 2/3 will lie within 1 standard devi ation and get between "
<< ceil (nmean(quiz) - standard_deviation(quiz)) << " and "
<< floor(nmean(quiz) + standard_deviation(quiz)) << " correct." << endl
cout << "Mbde (the nobst frequent) is " << npde(quiz) << endl;
cout << "Skewness is " << skewness(quiz) << endl;
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By guessing, on average, one can expect to get 4 correct answers.

St andard deviation is 1.732

So about 2/3 will lie within 1 standard devi ati on and get between 3 and 5 correct.
Mode (the nobst frequent) is 4

Skewness is 0.2887

Quantiles

The quantiles (percentiles or percentage points) for afew probability levels:

cout << "Quartiles " << quantile(quiz, 0.25) << " to "
<< quantile(conmplenent(quiz, 0.25)) << endl; // Quartiles
cout << "1 standard deviation " << quantile(quiz, 0.33) << " to "
<< quantile(quiz, 0.67) << endl; // 1 sd
cout << "Deciles " << quantile(quiz, 0.1) << " to "
<< quantile(conmplenent(quiz, 0.1))<< endl; // Deciles
cout << "5 to 95%" << quantile(quiz, 0.05 << " to "
<< quantile(conplenent(quiz, 0.05))<< endl; // 5 to 95%
cout << "2.5 to 97.5%" << quantile(quiz, 0.025) << " to "
<< quantile(conplenment(quiz, 0.025)) << endl; // 2.5 to 97.5%
cout << "2 to 98%" << quantile(quiz, 0.02) << " to "
<< quantile(conmplenent(quiz, 0.02)) << endl; // 2 to 98%

cout << "If guessing then percentiles 1 to 99%w || get " << quantile(quiz, 0.01)
<< " to " << quantile(conplenent(quiz, 0.01)) << " right." << endl;

Notice that these output integral values because the default policy isi nt eger _r ound_out war ds.

Quartiles 2 to 5

1 standard deviation 2 to 5
Deciles 1 to 6

5to0 95%0 to 7

2.51t0 97.5%0 to 8

2to 98%0 to 8

Quantilesvalues are controlled by the understanding discrete quantiles quantile policy chosen. The default isi nt eger _r ound_out -
war ds, so the lower quantile is rounded down, and the upper quantile is rounded up.

But we might believe that the real valuestell usalittle more - see discrete functions.

We could control the policy for all distributions by

#def i ne BOOST_MATH_DI SCRETE_QUANTI LE_POLI CY real

at the head of the program woul d nake this policy apply

to this one, and only, trandation unit.

Or we can now create a (typedef for) policy that has discrete quantiles real (here avoiding any 'using namespaces ...' statements):

usi ng boost::math::policies::policy;

usi ng boost::math:: policies::discrete_quantile;

usi ng boost::math::policies::real;

usi ng boost::math::policies::integer_round_outwards; // Default.

t ypedef boost::math::policies::policy<discrete_quantile<real> > real_quantile_policy;

Add a custom binomial distribution called
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real _quantil e_bi nonm al
that uses

real _quantil e_policy

usi ng boost:: math:: binomal _distribution
t ypedef binom al _distribution<double, real _quantile_policy> real _quantile_binom al

Construct an object of this custom distribution:

real _quantil e_bi nom al quiz_real (questions, success_fraction)

And use thisto show some quantiles - that now have real rather than integer values.

cout << "Quartiles " << quantile(quiz, 0.25) << " to "

<< quantile(complenment(quiz_real, 0.25)) << endl; // Quartiles 2 to 4.6212
cout << "1 standard deviation " << quantile(quiz_real, 0.33) << " to "

<< quantile(quiz_real, 0.67) << endl; // 1 sd 2.6654 4.194
cout << "Deciles " << quantile(quiz_real, 0.1) << " to "

<< quantile(conmplenent(quiz_real, 0.1))<< endl; // Deciles 1.3487 5.7583
cout << "5 to 95%" << quantile(quiz_real, 0.05) << " to "

<< quantile(conmplenent(quiz_real, 0.05))<< endl; // 5 to 95%0.83739 6. 4559
cout << "2.5to 97.5%" << quantile(quiz_real, 0.025) << " to "

<< quantile(conplenment(quiz_real, 0.025)) << endl; // 2.5 to 97.5%0.42806 7.0688
cout << "2 to 98% " << quantile(quiz_real, 0.02) << " to "

<< quantile(conplenent(quiz_real, 0.02)) << endl; // 2 to 98%0.31311 7.7880

cout << "If guessing, then percentiles 1 to 99% will get " << quantile(quiz_real, 0.01)
<< " to " << quantile(conplenment(quiz_real, 0.01)) << " right." << endl;

Real Quantiles

Quartiles 2 to 4.621

1 standard deviation 2.665 to 4.194

Deciles 1.349 to 5.758

5 to 95%0.8374 to 6.456

2.5 to0 97.5%0.4281 to 7.069

2 to 98%0.3131 to 7.252

I f guessing then percentiles 1 to 99%will get O to 7.788 right.

See binomial_quiz_example.cpp for full source code and output.

Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution

Imagine you have a process that follows a binomial distribution: for each trial conducted, an event either occurs or does it does not,
referred to as "successes' and "failures'. If, by experiment, you want to measure the frequency with which successes occur, the best
estimate is given simply by k/ N, for k successes out of N trials. However our confidence in that estimate will be shaped by how
many trials were conducted, and how many successes were observed. The static member functions bi noni al _di st ri bu-

tion<>::find_|l ower _bound_on_p and bi noni al _distribution<>::find_upper_bound_on_p alow you to calculate
the confidence intervals for your estimate of the occurrence frequency.

The sample program binomia_confidence_limits.cpp illustratestheir use. It begins by defining a procedure that will print atable of
confidence limits for various degrees of certainty:
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#i ncl ude <i ostreanr
#i ncl ude <i omani p>
#i ncl ude <boost/ mat h/ di stributions/binom al. hpp>

voi d confidence_|imts_on_frequency(unsigned trials, unsigned successes)
{
I
/1 trials = Total nunber of trials.
/|l successes = Total nunber of observed successes.
I
/1 Calculate confidence limts for an observed
/1 frequency of occurrence that follows a binom al
/1 distribution.
I
usi ng nanespace std;
usi ng nanespace boost:: math;

/1 Print out general info:

cout <<
" \n"
"2-Si ded Confidence Limts For Success Ratio\n"
" \n\n";
cout << setprecision(7);
cout << setw(40) << left << "Nunber of Observations" << "= " << trials << "\n";
cout << setw(40) << left << "Nunber of successes" << "= " << successes << "\n";
cout << setw(40) << left << "Sanple frequency of occurrence" << "= " << doubl e(successes) / trild

als << "\'n";

The procedure now defines a table of significance levels: these are the probabilities that the true occurrence frequency lies outside
the calculated interval:

doubl e alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
Some pretty printing of the table header follows:

cout << "\n\n"

\n"
"Confi dence Lower CP Upper CP Lower JP Upper JP\ n"
" Val ue (9% Limt Limt Limt Limt\n"
' \n";

And now for the important part - the intervals themselves - for each value of alpha, we cal fi nd_I ower _bound_on_p and
find_|l ower _upper_on_p to obtain lower and upper bounds respectively. Note that since we are calculating atwo-sided interval,
we must divide the value of alphain two.

Please note that cal culating two separate single sided bounds, each with risk level a is not the same thing as calculating atwo sided
interval. Had we cal culate two single-sided intervals each with arisk that the true value is outside the interval of a, then:

e Therisk that it isless than the lower bound is a.
and
e Therisk that it is greater than the upper bound isaso a.

Sotherisk itis outside upper or lower bound, istwice apha, and the probability that it isinside the boundsis therefore not nearly
as high as one might have thought. Thisiswhy a/2 must be used in the cal culations below.

In contrast, had we been calculating a single-sided interval, for example: "Calculate a lower bound so that we are P% sure that the
true occurrence frequency is greater than some value" then we would not have divided by two.
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Finally note that bi nonmi al _di stri buti on provides a choice of two methods for the calculation, we print out the results from

both methods in this example:

for

{

}

cou

And that's all thereisto it. Let's see some sample output for a2 in 10 successratio, first for 20 trials:

(unsigned i = 0; i < sizeof(al pha)/sizeof(alpha[0]); ++i)

/1 Confidence val ue:

cout << fixed << setprecision(3) << setw(10) << right << 100 * (1l-alphali]);

/'l Cal cul ate C opper Pearson bounds:

doubl e | = binom al _distribution<>::find_| ower_bound_on_p(

trials, successes, alphali]/2);

doubl e u = binom al _distribution<>::find_upper_bound_on_p(

trials, successes, alphali]/2);

/1 Print Cl opper Pearson Limts:
cout << fixed << setprecision(5) << setw(15) << right <<
cout << fixed << setprecision(5) << setw(15) << right <<
/1 Cal culate Jeffreys Prior Bounds:
| = binom al _distribution<>::find_| ower_bound_on_p(

trials, successes, alpha[i]/2,

bi nom al _di stribution<>::jeffreys_prior_interval);
u = binom al _distribution<>::find_upper_bound_on_p(

trials, successes, alpha[i]/2,

bi nom al _distribution<>::jeffreys_prior_interval);
/1 Print Jeffreys Prior Limts:
cout << fixed << setprecision(5) << setw(15) << right <<
cout << fixed << setprecision(5) << setw(15) << right <<

t << endl;

u

<< std::endl;

2-Sided Confidence Limts For Success Ratio

Nurmber of Cbservations = 20

Nurmber of successes = 4

Sanpl e frequency of occurrence = 0.2

Confi dence Lower CP Upper CP Lower JP Upper JP

Val ue (% Limt Limt Limt Limt

50. 000 0.12840 0. 29588 0.14974 0.26916
75. 000 0. 09775 0. 34633 0.11653 0.31861
90. 000 0. 07135 0.40103 0. 08734 0.37274
95. 000 0. 05733 0. 43661 0. 07152 0. 40823
99. 000 0. 03576 0. 50661 0. 04655 0. 47859
99. 900 0. 01905 0. 58632 0. 02634 0. 55960
99. 990 0. 01042 0. 64997 0. 01530 0. 62495
99. 999 0. 00577 0.70216 0. 00901 0. 67897

Asyou can see, even at the 95% confidence level the bounds are really quite wide (this example is chosen to be easily compared to
the oneinthe NIST/SEMATECH e-Handbook of Statistical Methods. here). Note also that the Clopper-Pearson cal culation method
(CP above) produces quite noticeably more pessimistic estimates than the Jeffreys Prior method (JP above).

Compare

that with the program output for 2000 trials:

render
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2-Si ded Confidence Linmts For Success Ratio

Nunmber of Observations = 2000

Number of successes = 400

Sanpl e frequency of occurrence = 0.2000000

Confi dence Lower CP Upper CP Lower JP Upper JP

Val ue (% Limt Limt Limt Limt
50. 000 0. 19382 0. 20638 0. 19406 0. 20613
75. 000 0. 18965 0. 21072 0. 18990 0. 21047
90. 000 0. 18537 0. 21528 0. 18561 0. 21503
95. 000 0. 18267 0.21821 0. 18291 0.21796
99. 000 0.17745 0. 22400 0.17769 0. 22374
99. 900 0.17150 0. 23079 0.17173 0. 23053
99. 990 0. 16658 0. 23657 0. 16681 0. 23631
99. 999 0.16233 0. 24169 0. 16256 0. 24143

Now even when the confidence level is very high, the limits are really quite close to the experimentally calculated value of 0.2.
Furthermore the difference between the two cal culation methods is now really quite small.

Estimating Sample Sizes for a Binomial Distribution.

Imagine you have a critical component that you know will fail in 1in N "uses" (for some suitable definition of "use"). You may
want to schedule routine replacement of the component so that its chance of failure between routine replacements is less than P%.
If the failures follow a binomial distribution (each time the component is "used" it either fails or does not) then the static member
function bi noni al _di sti buti on<>::find_maxi mum nunber _of trial s can be used to estimate the maximum number of
"uses" of that component for some acceptable risk level alpha.

The example program binomial_sample_sizes.cpp demonstratesits usage. It centres on aroutine that prints out a table of maximum
sample sizes for various probability thresholds:

voi d find_max_sanpl e_si ze(
doubl e p, /'l success ratio
unsi gned successes) /1l Total nunber of observed successes permtted

The routine then declares a table of probability thresholds: these are the maximum acceptable probability that successes or fewer
eventswill be observed. In our example, successes will be always zero, since we want no component failures, but in other situations
non-zero values may well make sense.

doubl e alpha]] = { 0.5 0.25 0.1, 0.05 0.01, 0.001, 0.0001, 0.00001 };

Much of the rest of the program is pretty-printing, the important part is in the calculation of maximum number of permitted trials
for each value of apha:
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for(unsigned i = 0; i < sizeof(al pha)/sizeof(alpha[0]); ++i)
{
/1 Confidence val ue:
cout << fixed << setprecision(3) << setw10) << right << 100 * (1-alphali]);
/1 calculate trials:
double t = binomal::find_nmaxi mum nunber_of _trial s(
successes, p, alphali]);
t = floor(t);
/1 Print Trials:
cout << fixed << setprecision(5) << setw15) << right <<t << endl;

Note that since we're calculating the maximum number of trials permitted, we'll err on the safe side and take the floor of the result.
Had we been cal cul ating the minimum number of trialsrequired to observe a certain number of successesusingf i nd_ni ni num num

ber _of _tri al s wewould have taken the ceiling instead.

Welll finish off by looking at some sample output, firstly for a1 in 1000 chance of component failure with each use:

Maxi mum Nunber of Trials

Success ratio 0. 001

Maxi mum Nunber of "successes" permtted

Confi dence Max Nunmber
Val ue (9% O Trials
50. 000 692
75. 000 287
90. 000 105
95. 000 51
99. 000 10
99. 900 0
99. 990 0
99. 999 0

So 51 "uses" of the component would yield a 95% chance that no component failures would be observed.

Compare that with a1 in 1 million chance of component failure:
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Maxi mum Nunber of Trials

Success ratio
Maxi mum Nunber of "successes" permtted

0. 0000010
0

Confi dence Max Nunmber
Val ue (9% O Trials
50. 000 693146
75. 000 287681
90. 000 105360
95. 000 51293
99. 000 10050
99. 900 1000
99. 990 100
99. 999 10

In this case, even 1000 uses of the component would still yield aless than 1 in 1000 chance of observing a component failure (i.e.

a99.9% chance of no failure).

Geometric Distribution Examples

For this example, we will opt to #define two macros to control the error and discrete handling policies. For this simple example, we
want to avoid throwing an exception (the default policy) and just return infinity. We want to treat the distribution asif it was continuous,

so we choose adiscrete_quantile policy of real, rather than the default policy integer_round_outwards.

#def i ne BOOST_MATH_OVERFLOW ERROR_PCLI CY i gnore_error

#defi ne BOOST _MATH_DI SCRETE_QUANTI LE_PCLI CY r eal

After that we need someincludesto provide easy accessto the negative binomial distribution, and we need some std library iostream,
of course.

Caution

It isvital to #include distributions etc after the above #defines
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#i ncl ude <boost/ math/distributions/geonetric. hpp>
/1 for geonetric_distribution
using ::boost::math::geonetric_distribution; //
using ::boost::math::geonetric; // typedef provides default type is double.

using ::boost::math::pdf; // Probability nmass function.
using ::boost::math::cdf; // Cunulative density function.
using ::boost::math::quantile

#i ncl ude <boost/ mat h/ distributions/ negative_bi nom al . hpp>
/'l for negative_binom al _distribution
usi ng boost:: math::negative_binomal; // typedef provides default type is double.

#i

ncl ude <boost/ nmath/ di stributions/ normal . hpp>

/'l for negative_binom al _distribution

usi ng boost::math::normal; // typedef provides default type is double.
#i ncl ude <i ostreanr

using std::cout; using std::endl

usi ng std::noshowpoint; using std::fixed; using std::right; using std::left
ncl ude <i omani p>

using std::setprecision; using std::setw

#i

#include <limts>
using std::nuneric_linmts;

It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.
Simpletry'n'catch blocks (see bel ow) will ensure that you get a helpful error message instead of an abrupt (and silent) program abort.

Throwing a dice

The Geometric distribution describes the probability (p) of a number of failures to get the first success in k Bernoulli trials. (A
Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).

Suppose an ‘fair' 6-face diceis thrown repeatedly:

doubl e success_fraction = 1./6; // success_fraction (p) = 0.1666
/1l (so failure_fractionis 1 - success_fraction =5./6 = 1- 0.1666 = 0.8333)

If the diceisthrown repeatedly until the fir st time athree appears. The probablility distribution of the number of timesit isthrown
not getting a three (not-a-threes number of failures to get a three) is a geometric distribution with the success fraction = 1/6 =
0.1666 .

We therefore start by constructing a geometric distribution with the one parameter success fraction, the probability of success.
geonetric g6(success_fraction); // type double by default.

To confirm, we can echo the success_fraction parameter of the distribution.
cout << "success fraction of a six-sided dice is " << g6.success_fraction() << endl

So the probability of getting athree at the first throw (zero failures) is

cout << pdf(g6, 0) << endl; // 0.1667
cout << cdf (g6, 0) << endl; // 0.1667

Note that the cdf and pdf are identical because the is only one throw. If we want the probability of getting the first three on the 2nd
throw:

162

httpo://www.renderx.com/


http://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Statistical Distributions and Functions

cout << pdf(g6, 1) << endl; // 0.1389

If we want the probability of getting the first three on the 1st or 2nd throw (allowing one failure):

cout << "pdf(g6, 0) + pdf(g6, 1) =" << pdf(g6, 0) + pdf(g6, 1) << endl;

Or more conveniently, and more generally, we can use the Cumulative Distribution Function CDF.

cout << "cdf(g6, 1) =" << cdf(g6, 1) << endl; // 0.3056

If we allow many more (12) throws, the probability of getting our three gets very high:

cout << "cdf (g6, 12) =" << cdf(g6, 12) << endl; // 0.9065 or 90% probability.

If we want to be much more confident, say 99%, we can estimate the number of throws to be this sure using the inverse or quantile.
cout << "quantile(g6, 0.99) =" << quantile(g6, 0.99) << endl; // 24.26

Note that the value returned is not an integer: if you want an integer result you should use either floor, round or ceil functions, or
use the policies mechanism.

See understanding discrete quantiles.

Thegeometric distributionisrelated to the negativebinomial  negat i ve_bi nomi al _di stri buti on(Real Type r, Real Type
p) ; with parameter r = 1. So we could get the same result using the negative binomial, but using the geometric the results will be
faster, and may be more accurate.

negative_bi nom al nb(1l, success_fraction);
cout << pdf(nb, 1) << endl; // 0.1389
cout << cdf(nb, 1) << endl; // 0.3056

We could also the complement to express the required probability as 1 - 0.99 = 0.01 (and get the same result):

cout << "quantile(conmplenment(g6, 1 - p)) " << quantile(conplenment(g6, 0.01)) << endl; // 24.26

Notetoo that Boost.Math geometric distribution isimplemented as a continuous function. Unlike other implementations (for example
R) it uses the number of failures as areal parameter, not as an integer. If you want thisinteger behaviour, you may need to enforce
this by rounding the parameter you pass, probably rounding down, to the nearest integer. For example, R returns the success fraction
probability for all values of failures from 0 to 0.999999 thus:

R> f or nat C(pgeon{ 0. 0001, 0.5, FALSE), digits=17) " 0.5"

So in Boost.Math the equivalent is
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Statistical Distributions and Functions

geonmetric g05(0.5); // Probability of success = 0.5 or 50%
/1l Qutput all potentially significant digits for the type, here double.

#i f def BOOST_NO CXX11 NUMERIC LIM TS
int max_digitsl0 = 2 + (boost::math::policies::did

gi t s<doubl e, boost::math::policies::policy<> >() * 30103UL) / 100000UL
cout << "BOOST_NO CXX11_NUMERIC LIM TS is defined" << endl;

#el se

int max_digitsl0 = std::nuneric_limts<double>: :nmax_digitsl0
#endi f

cout << "Show all potentially significant decinal digits std::nuneric_limts<double>::nmax_di O
gitslo = "

<< max_di gitsl0 << endl;
cout. precision(max_digits10); //

cout << cdf(g05, 0.0001) << endl; // returns 0.5000346561579232, not exact 0.5

To get the R discrete behaviour, you simply need to round with, for example, thef | oor function.

cout << cdf(g05, floor(0.0001)) << endl; // returns exactly 0.5

> format C(pgeom 0. 9999999, 0.5, FALSE), digits=17) [1] " 0. 25"
> format C(pgeom 1. 999999, 0.5, FALSE), digits=17)[1] " 0.25" k =1
> format C( pgeon( 1. 9999999, 0. 5, FALSE), digits=17)[1] "0.12500000000000003" k = 2

shows that R makes an arbitrary round-up decision at about 1e7 from the next integer above. This may be convenient in practice,
and could bereplicated in C++ if desired.

Surveying customers to find one with a faulty product

A company knows from warranty claims that 2% of their products will be faulty, so the 'success fraction' of finding afault is 0.02.
It wants to interview a purchaser of faulty products to assess their 'user experience’.

To estimate how many customers they will probably need to contact in order to find one who has suffered from the fault, we first
construct a geometric distribution with probability 0.02, and then chose a confidence, say 80%, 95%, or 99% to finding a customer
with afault. Finaly, we probably want to round up the result to the integer above using the cei | function. (We could also use a
policy, but that is hardly worthwhile for this simple application.)

(This also assumes that each customer only buys one product: if customers bought more than one item, the probability of finding a
customer with afault obviously improves.)

cout . preci sion(5);

geonetric g(0.02); // On average, 2 in 100 products are faulty.
double ¢ = 0.95; // 95% confidence

cout << " quantile(g, " << c << ") =" << quantile(g, c) << endl

cout << "To be " << c¢c * 100
<< "% confident of finding we custonmer with a fault, need to survey "
<< ceil(quantile(g, c)) << " custoners." << endl; // 148

c = 0.99; // Very confident.

cout << "To be " << c¢c * 100
<< "% confident of finding we custonmer with a fault, need to survey "
<< ceil(quantile(g, c)) << " custoners." << endl; // 227

c = 0.80; // Only reasonably confident.

cout << "To be " << c¢c * 100
<< "% confident of finding we custonmer with a fault, need to survey "
<< ceil(quantile(g, c)) << " custoners.”" << endl; // 79
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Statistical Distributions and Functions

Basket Ball Shooters

According to Wikipedia, average pro basket ball players get free throwsin the baskets 70 to 80 % of the time, but some get as high
as 95%, and others as low as 50%. Suppose we want to compare the probabilities of failing to get a score only on the first or on the
fifth shot? To start we will consider the average shooter, say 75%. So we construct a geometric distribution with success fraction
parameter 75/100 = 0.75.

cout. precision(2);
geonetric gav(0.75); // Shooter averages 7.5 out of 10 in the basket.

What is probability of getting 1st try in the basket, that is with no failures?
cout << "Probability of score on 1st try = " << pdf(gav, 0) << endl; // 0.75

Thisis, of course, the success fraction probability 75%. What is the probability that the shooter only scores on the fifth shot? So
there are 5-1 = 4 failures before the first success.

cout << "Probability of score on 5th try =" << pdf(gav, 4) << endl; // 0.0029

Now compare this with the poor and the best players success fraction. We need to constructing new distributions with the different
success fractions, and then get the corresponding probability density functions values:

geonetric ghest(0.95);

cout << "Probability of score on 5th try = " << pdf(gbest, 4) << endl; // 5.9e-6
geonetri c gmedi ocre(0.50)
cout << "Probability of score on 5th try = " << pdf(gnediocre, 4) << endl; // 0.031

So we can see the very much smaller chance (0.000006) of 4 failures by the best shooters, compared to the 0.03 of the mediocre.
Estimating failures
Of course one man's failure is an other man's success. So afault can be defined as a 'success.

If afault occurs once after 100 flights, then one might naively say that the risk of fault is obviously 1 in 100 = 1/100, a probability
of 0.01.

Thisisthe best estimate we can make, but whileitisthetruth, itisnot thewholetruth, for it hides the big uncertainty when estimating
from asingle event. "One swallow doesn't make asummer." To show the magnitude of the uncertainty, the geometric (or the negative
binomial) distribution can be used.

If we chose the popular 95% confidence in the limits, corresponding to an alpha of 0.05, because we are cal culating atwo-sided in-
terval, we must divide alpha by two.

doubl e al pha = 0. 05;

double k = 100; // So frequency of occurrence is 1/100.

cout << "Probability is failure is " << 1/k << endl;

double t = geonetric::find_|l ower_bound_on_p(k, alpha/?2);

cout << "geonetric::find_|lower_bound_on_p(" << int(k) << ", " << alpha/2 << ")
<<t << endl; // 0.00025

t = geonetric::find_upper_bound_on_p(k, alphal/?2);

cout << "geonetric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ")
<<t << endl; // 0.037

So while we estimate the probability is 0.01, it might lie between 0.0003 and 0.04. Even if we relax our confidence to alpha = 90%,
the bounds only contract to 0.0005 and 0.03. And if we require a high confidence, they widen to 0.00005 to 0.05.
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alpha = 0.1; // 90% confidence.

t = geonetric::find_|l ower_bound_on_p(k, alpha/?2);

cout << "geonetric::find_|ower _bound on p(" << int(k) << ", " << alpha/2 << ") ="
<<t << endl; // 0.0005

t = geonetric::find_upper_bound_on_p(k, alphal/?2);

cout << "geonetric::find upper_bound on p(" << int(k) << ", " << alpha/2 << ") ="
<<t << endl; // 0.03

al pha = 0.01; // 99% confi dence.
t = geonetric::find_|lower_bound_on_p(k, alphal/?2);
cout << "geonetric::find_|ower _bound on p(" << int(k) << ", " << alpha/2 << ") ="
<<t << endl; // 5e-005
t = geonetric::find_upper_bound_on_p(k, alpha/?2);
cout << "geonetric::find upper_bound on p(" << int(k) << ", " << alpha/2 << ") ="
<<t << endl; // 0.052

Inred life, there will usually be more than one event (fault or success), when the negative binomial, which has the neccessary extra
parameter, will be needed.

As noted above, using a catch block is always a good idea, even if you hope not to use it!

}
catch(const std::exception& e)
{ Il Since we have set an overflow policy of ignore_error,
/1 an overfl ow exception should never be thrown.
std::cout << "\nMessage fromthrown exception was:\n " << e.what() << std::endl;

For example, without aignore domain error policy, if we asked for
pdf (g, -1)
for example, we would get an unhelpful abort, but with a catch:

Message fromthrown exception was:
Error in function boost:: math::pdf(const exponential _distribution<doubl e>&, double):
Nurmber of failures argunent is -1, but nust be >= 0 !

See full source C++ of this example at geometric_examples.cpp

See negative_binomial confidence interval example.

Negative Binomial Distribution Examples
(See aso the reference documentation for the Negative Binomial Distribution.)

Calculating Confidence Limits on the Frequency of Occurrence for the Negative Binomial
Distribution

Imagine you have a process that follows a negative binomial distribution: for each trial conducted, an event either occurs or does it
does not, referred to as "successes" and "failures". The frequency with which successes occur is variously referred to as the success
fraction, success ratio, success percentage, occurrence frequency, or probability of occurrence.

If, by experiment, you want to measure the the best estimate of success fraction is given ssimply by k/ N, for k successes out of N
trials.

However our confidencein that estimate will be shaped by how many trialswere conducted, and how many successes were observed.
The static member functions negat i ve_bi noni al _di stribution<>::find_| ower _bound_on_p and negat i ve_bi noni -
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al _distribution<>::find_upper_bound_on_p allow you to calculate the confidenceintervalsfor your estimate of the success
fraction.

The sample program neg_binom_confidence limits.cpp illustrates their use.

First we need some includes to access the negative binomial distribution (and some basic std output of course).

#i ncl ude <boost/math/ di stributions/ negative_binomn al . hpp>
usi ng boost:: math::negative_bi nom al ;

#i ncl ude <i ostreanr

using std::cout; using std::endl;

#i ncl ude <i omani p>

usi ng std:: setprecision;

using std::setw, using std::left; using std::fixed; using std::right;

First define a table of significance levels. these are the probabilities that the true occurrence frequency lies outside the calculated
interval:

doubl e al pha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the true occurrence frequency liesinside the cal-
culated interval.

We need afunction to calculate and print confidence limits for an observed frequency of occurrence that follows a negative binomial
distribution.

void confidence_limts_on_frequency(unsigned trials, unsigned successes)
{

/1l trials = Total nunber of trials.

/1l successes = Total nunber of observed successes.

/1l failures = trials - successes.

/'l success fraction = successes /trials.

/1 Print out general info:

cout <<
" \n"
"2-Sided Confidence Limts For Success Fraction\n"
" \n\n";
cout << setprecision(7);
cout << setw(40) << left << "Nunber of trials" << " = " << trials << "\n";
cout << setw(40) << left << "Nunber of successes" << " = " << successes << "\n";
cout << setw(40) << left << "Nunber of failures" << " = " << trials - successes << "\n";
cout << setw(40) << left << "Observed frequency of occurrence" << " = " << doubl e(sucl
cesses) / trials << "\n";
/1 Print table header:
cout << "\n\n"
" \n"
"Confi dence Lower Upper\ n"
" Value (% Limt Limt\n"
' \n";

And now for the important part - the bounds themselves. For each value of alpha, we call fi nd_| ower _bound_on_p and
find_upper _bound_on_p to obtain lower and upper bounds respectively. Note that since we are calculating atwo-sided interval,
we must divide the value of alphain two. Had we been calculating a single-sided interval, for example: "Calculate a lower bound
so that we are P% sure that the true occur rence frequency is greater than some value” then we would not have divided by two.
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/1 Now print out the upper and lower limts for the al pha table val ues.

for(unsigned i = 0; i < sizeof(al pha)/sizeof(alpha[0]); ++i)

{
/1 Confidence val ue:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1l-alphali]);
/1 Cal cul at e bounds:
doubl e | ower = negative_binom al::find_|l ower_bound _on_p(trials, successes, alphali]/2);
doubl e upper = negative_binom al::find_upper_bound _on_p(trials, successes, alphali]/2);
/1 Print limts:
cout << fixed << setprecision(5) << setw(15) << right << |ower;
cout << fixed << setprecision(5) << setw(15) << right << upper << endl;

}

cout << endl;

} I/ void confidence_linmts_on_frequency(unsigned trials, unsigned successes)

And then call confidence limits_on_frequency with increasing numbers of trials, but always the same success fraction 0.1, or 1 in
10.

int main()
{
confidence_limts_on_frequency(20, 2); // 20 trials, 2 successes, 2in 20, =1in 10 = 0.1 sucO
cess fraction.
confidence_limts_on_frequency(200, 20); // More trials, but sane 0.1 success fraction.
confidence_linmts_on_frequency(2000, 200); // Many nore trials, but sane 0.1 success fraction.

return O;
} Il int main()

Let's see some sample output for a1 in 10 successratio, first for amere 20 trials:

2-Si ded Confidence Limts For Success Fraction

Nurmber of trials = 20
Nurmber of successes = 2
Nurmber of failures = 18
oserved frequency of occurrence = 0.1
Confi dence Lower Upper
Val ue (% Limt Limt

50. 000 0. 04812 0. 13554

75. 000 0. 03078 0.17727

90. 000 0. 01807 0.22637

95. 000 0. 01235 0.26028

99. 000 0. 00530 0.33111

99. 900 0. 00164 0.41802

99. 990 0. 00051 0. 49202

99. 999 0. 00016 0. 55574

As you can see, even at the 95% confidence level the bounds (0.012 to 0.26) are really very wide, and very asymmetric about the
observed value 0.1.

Compare that with the program output for a mass 2000 trials:
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2-Si ded Confidence Limts For Success Fraction

Nurmber of trials = 2000
Nurmber of successes = 200
Number of failures = 1800
oserved frequency of occurrence = 0.1
Confi dence Lower Upper
Val ue (% Limt Limt

50. 000 0. 09536 0. 10445

75. 000 0. 09228 0.10776

90. 000 0. 08916 0.11125

95. 000 0. 08720 0.11352

99. 000 0. 08344 0.11802

99. 900 0.07921 0.12336

99. 990 0. 07577 0.12795

99. 999 0.07282 0. 13206

Now even when the confidence level is very high, the limits (at 99.999%, 0.07 to 0.13) are really quite close and nearly symmetric
to the observed value of 0.1.

Estimating Sample Sizes for the Negative Binomial.

Imagine you have an event (let's call it a"failure” - though we could equally well call it a success if we felt it was a 'good' event)
that you know will occur in 1in N trials. You may want to know how many trials you need to conduct to be P% sure of observing
at least k such failures. If the failure events follow a negative binomial distribution (each trial either succeeds or fails) then the static
member function negat i ve_bi noni al _di sti buti on<>::find_m ni mum nunber _of trial s can be used to estimate the
minimum number of trials required to be P% sure of observing the desired number of failures.

The example program neg_binomial_sample_sizes.cpp demonstrates its usage.

It centres around a routine that prints out a table of minimum sample sizes (number of trials) for various probability thresholds:
void find_nunber_of trials(double failures, double p);

First define atable of significance levels: these are the maximum acceptable probability that failure or fewer eventswill be observed.
doubl e alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the desired number of failures will be observed.
The values range from avery low 0.5 or 50% confidence up to an extremely high confidence of 99.999.

Much of the rest of the program is pretty-printing, the important part isin the calculation of minimum number of trials required for
each value of alphausing:

(int)ceil (negative_binomal::find_m ni mumnunber_of trials(failures, p, alphali]);

find_minimum_number_of_trialsreturnsadouble, socei | roundsthisup to ensure we have an integral minimum number of trials.
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voi d find_nunber_of _trials(double failures, double p)

{
/1 trials = nunber of trials
/1 failures = nunber of failures before achieving required success(es).
Il p = success fraction (0 <= p <= 1.).
I
/1 Calculate how many trials we need to ensure the
/'l required nunber of failures DOES exceed "failures".
cout << "\n""Target nunber of failures =" << (int)failures;
cout << ", Success fraction = " << fixed << setprecision(l) << 100 * p << "% << endl;
/1 Print table header:
cout << " \n"
"Confi dence M n Nunmber\n"
" Value (% O Trials \n"
' \n";
/1 Now print out the data for the al pha table val ues.
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)

{ Il Confidence values %
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]) << "
/1 find_m ni mum nunber_of _trials
<< setw(6) << right
<< (int)ceil(negative_binomal::find_m ni mumnunber_of trials(failures, p, alphali]))
<< endl;

}

cout << endl;
} I/ void find_nunber_of trials(double failures, double p)

finally we can produce some tables of minimum trials for the chosen confidence levels:

int main()

{
find _nunber of trials(5, 0.5);
find _nunber_of trials(50, 0.5);
find _nunmber _of trials(500, 0.5);
find _nunber _of trials(50, 0.1);
find _nunmber _of trials(500, 0.1);
find _nunber of trials(5 0.9);

return O;
} Il int main()

@ Note
Since we're cal culating the minimum number of trials required, we'll err on the safe side and take the ceiling of the
result. Had we been calculating the maximum number of trials permitted to observe less than a certain number of
failuresthen wewould have taken thefloor instead. Wewould aso havecalledf i nd_ni ni mrum nunber _of trials

like this:

fl oor (negative_binom al ::find_m ni rumnunber_of _trials(failures, p, alphali]))

which would give us the largest number of trialswe could conduct and still be P% sure of observing failures or less
failure events, when the probability of successisp.

We'll finish off by looking at some sample output, firstly suppose we wish to observe at least 5 "failures’ with a 50/50 (0.5) chance
of success or failure:
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Target nunber of failures = 5, Success fraction = 50%
Confi dence M n Nunber
Val ue (9 O Trials
50. 000 11
75. 000 14
90. 000 17
95. 000 18
99. 000 22
99. 900 27
99. 990 31
99. 999 36

So 18 trials or more would yield a 95% chance that at least our 5 required failures would be observed.

Compare that to what happens if the successratio is 90%:

Target nunber of failures = 5.000, Success fraction = 90.000%

Confi dence M n Nunber
Val ue (9% O Trials

50. 000 57

75. 000 73

90. 000 91

95. 000 103

99. 000 127

99. 900 159

99. 990 189

99. 999 217

So now 103 trials are required to observe at least 5 failures with 95% certainty.
Negative Binomial Sales Quota Example.

This example program negative_binomial_examplel.cpp (full source code) demonstrates a simple use to find the probability of
meeting a sales quota.

Based on a problem by Dr. Diane Evans, Professor of Mathematics at Rose-Hulman Institute of Technology.

Pat is required to sell candy bars to raise money for the 6th grade field trip. There are thirty houses in the neighborhood, and Pat is
not supposed to return home until five candy bars have been sold. So the child goes door to door, selling candy bars. At each house,
thereis a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.

What is the probability mass (density) function (pdf) for selling the last (fifth) candy bar at the nth house?

The Negative Binomial(r, p) distribution describesthe probability of k failures and r successesin k+r Bernoulli(p) trials with success
on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).
See also Bernoulli distribution and Bernoulli applications.

In thisexample, wewill deliberately produce avariety of cal culations and outputs to demonstrate the ways that the negative binomial
distribution can be implemented with thislibrary: it is aso deliberately over-commented.

First we need to #define macros to control the error and discrete handling policies. For this simple example, we want to avoid
throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was continuous, so we
choose adiscrete_quantile policy of real, rather than the default policy integer_round_outwards.
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#def i ne BOOST_MATH_OVERFLOW ERROR_PCLI CY i gnore_error
#defi ne BOOST_MATH_DI SCRETE_QUANTI LE_POLI CY real

After that we need some includes to provide easy access to the negative binomial distribution,

‘g Caution
It isvital to #include distributions etc after the above #defines

and we need some std library iostream, of course.

#i ncl ude <boost/ mat h/ di stributions/ negative_binoni al . hpp>
/1 for negative_binom al _distribution
usi ng boost::nath::negative_binomal; // typedef provides default type is double.

using ::boost::math::pdf; // Probability nass function.
using ::boost::math::cdf; // Cunulative density function.
using ::boost::math::quantile;

#i ncl ude <i ostreanr

using std::cout; using std::endl;

usi ng std::noshowpoint; using std::fixed; using std::right; using std::left;
ncl ude <i omani p>

using std::setprecision; using std::setw,

4

#include <limts>

using std::nuneric_limts;

Itisalways sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

A simple catch block (see below) will ensure that you get a helpful error message instead of an abrupt program abort.

try
{

Sdlling five candy bars means getting five successes, so successes r = 5. The total number of trials (n, in this case, houses visited)
thistakesis therefore = sucesses + failuresor k + r =k + 5.

doubl e sales_quota = 5; // Pat's sales quota - successes (r).
At each house, there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.
doubl e success_fraction = 0.4; // success_fraction (p) - so failure_fraction is 0.6.

The Negative Binomial(r, p) distribution describes the probability of k failuresand r successesin k+r Bernoulli(p) trialswith success
onthelast trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).

We therefore start by constructing a negative binomial distribution with parameters sales_quota (required successes) and probability
of success.

negati ve_bi noni al nb(sal es_quota, success_fraction); // type double by default.

To confirm, display the success fraction & successes parameters of the distribution.
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cout << "Pat has a sal es per house success rate of " << success_fraction
<< ".\nTherefore he woul d, on average, sell " << nb.success_fraction() * 100
<< " bars after trying 100 houses." << endl;

int all_houses = 30; // The nunber of houses on the estate.

cout << "Wth a success rate of " << nb.success_fraction()

<< ", he mght expect, on average,\n"
"to need to visit about " << success_fraction * all_houses
<< " houses in order to sell all " << nb.successes() << " bars. " << endl;

Pat has a sal es per house success rate of 0.4.

Therefore he woul d, on average, sell 40 bars after trying 100 houses.
Wth a success rate of 0.4, he m ght expect, on average,

to need to visit about 12 houses in order to sell all 5 bars.

The random variable of interest is the number of houses that must be visited to sell five candy bars, so we substitutek =n-5intoa
negative_binomial (5, 0.4) and obtain the Probability Density Function of the distribution of houses visited. Obvioudly, the best
possible case is that Pat makes sales on all the first five houses.

We calculate this using the pdf function:

cout << "Probability that Pat finishes on the " << sales_quota << "th house is "
<< pdf(nb, 5 - sales_quota) << endl; // == pdf(nb, 0)

Of course, he could not finish on fewer than 5 houses because he must sell 5 candy bars. So the 5th house is the first that he could
possibly finish on.

To finish on or before the 8th house, Pat must finish at the 5th, 6th, 7th or 8th house. The probability that he will finish on exactly
(==) on any house is the Probability Density Function (pdf).

cout << "Probability that Pat finishes on the 6th house is "
<< pdf (nb, 6 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 7th house is "
<< pdf (nb, 7 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 8th house is "
<< pdf (nb, 8 - sales_quota) << endl;

Probability that Pat finishes on the 6th house is 0.03072
Probability that Pat finishes on the 7th house is 0.055296
Probability that Pat finishes on the 8th house is 0.077414

The sum of the probabilities for these houses is the Cumulative Distribution Function (cdf). We can calculate it by adding the indi-
vidual probabilities.

cout << "Probability that Pat finishes on or before the 8th house is sum"”
"\n" << "pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) ="
/1 Sum each of the mass/density probabilities for houses sales _quota =5, 6, 7, & 8.
<< pdf(nb, 5 - sales_quota) // O failures.
+ pdf (nb, 6 - sales_quota) // 1 failure.
+ pdf (nb, 7 - sales_quota) // 2 failures.
+ pdf (nb, 8 - sales_quota) // 3 failures.
<< endl;

pdf (sal es_quota) + pdf(6) + pdf(7) + pdf(8) = 0.17367
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Statistical Distributions and Functions

Or, usually better, by using the negative binomial cumulative distribution function.

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 8 << "th house is "
<< cdf (nb, 8 - sales_quota) << endl

Probability of selling his quota of 5 bars on or before the 8th house is 0.17367

cout << "\nProbability that Pat finishes exactly on the 10th house is "
<< pdf (nb, 10 - sales_quota) << endl

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 10 << "th house is "
<< cdf (nb, 10 - sales_quota) << endl

Probability that Pat finishes exactly on the 10th house is 0.10033
Probability of selling his quota of 5 bars on or before the 10th house is 0.3669

cout << "Probability that Pat finishes exactly on the 11th house is "
<< pdf (nb, 11 - sales_quota) << endl

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 11 << "th house is "
<< cdf (nb, 11 - sales_quota) << endl

Probability that Pat finishes on the 11th house is 0.10033
Probability of selling his quota of 5 candy bars
on or before the 11th house is 0.46723

cout << "Probability that Pat finishes exactly on the 12th house is "
<< pdf (nb, 12 - sales_quota) << endl
cout << "\nProbability of selling his quota of " << sales_quota

<< " bars\non or before the " << 12 << "th house is "
<< cdf (nb, 12 - sales_quota) << endl

Probability that Pat finishes on the 12th house is 0.094596
Probability of selling his quota of 5 candy bars
on or before the 12th house is 0.56182

Finally consider the risk of Pat not selling his quota of 5 bars even after visiting all the houses. Calculate the probability that he will
sell on or before the last house: Calculate the probability that he would sell al his quota on the very last house.

cout << "Probability that Pat finishes on the " << all_houses
<< " house is " << pdf(nb, all_houses - sales_quota) << endl

Probability of selling his quota of 5 bars on the 30th houseis
Probability that Pat finishes on the 30 house is 0.00069145

when he'd be very unlucky indeed!

What is the probability that Pat exhausts all 30 houses in the neighborhood, and still doesn't sell the required 5 candy bars?
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cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << all_houses << "th house is "
<< cdf (nb, all_houses - sales_quota) << endl

Probability of selling his quota of 5 bars
on or before the 30th house is 0.99849

/*So the risk of failing even after visiting all the houses is 1 - this probability, 1 - cdf(nb

al | _houses - sales_quota But using this expression may cause serious inaccuracy, so it would be
much better to use the conplement of the cdf: So the risk of failing even at, or after, the 31th
(non-existent) houses is 1 - this probability, 1 - cdf(nb, all_houses - sal es_quota) Butusing this
expression may cause serious inaccuracy. So it would be much better to usethe _complement of the cdf (see why complements?).

cout << "\nProbability of failing to sell his quota of " << sales_quota
<< " bars\neven after visiting all " << all_houses << " houses is "
<< cdf (conpl enent (nb, all _houses - sales_quota)) << endl

Probability of failing to sell his quota of 5 bars
even after visiting all 30 houses is 0.0015101

We can also use the quantile (percentile), the inverse of the cdf, to predict which house Pat will finish on. So for the 8th house:

double p = cdf (nb, (8 - sales_quota))
cout << "Probability of neeting sales quota on or before 8th house is "<< p << endl

Probability of meeting sales quota on or before 8th house is 0.174

cout << "If the confidence of neeting sales quota is " << p
<< ", then the finishing house is " << quantile(nb, p) + sales_quota << endl

cout<< " quantile(nb, p) =" << quantile(nb, p) << endl

If the confidence of nmeeting sales quota is 0.17367, then the finishing house is 8

Demanding absolute certainty that all 5 will be sold, implies an infinite number of trias. (Of course, there are only 30 houses on the
estate, so he can't ever be certain of selling his quota).

cout << "If the confidence of neeting sales quota is " << 1.

<< ", then the finishing house is " << quantile(nb, 1) + sales_quota << endl
/'l 1.#INF == infinity.

If the confidence of nmeeting sales quota is 1, then the finishing house is 1.# NF

And similarly for afew other probabilities:
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cout << "If the confidence of neeting sales quota is " << 0
<< ", then the finishing house is " << quantile(nb, 0.) + sales_quota << endl

cout << "If the confidence of neeting sales quota is " << 0.5
<< ", then the finishing house is " << quantile(nb, 0.5) + sales_quota << endl

cout << "If the confidence of neeting sales quota is " << 1 - 0.00151 // 30 th

<< ", then the finishing house is " << quantile(nb, 1 - 0.00151) + sales_quota << endl

If the confidence of neeting sales quota is 0, then the finishing house is 5
I f the confidence of neeting sales quota is 0.5, then the finishing house is 11.337
I f the confidence of neeting sales quota is 0.99849, then the finishing house is 30

Notice that because we chose a discrete quantile policy of real, the result can be an 'unreal’ fractional house.

If the oppositeistrue, we don't want to assume any confidence, then thisistantamount to assuming that all thefirst sales_quotatrials
will be successful sales.

cout << "If confidence of neeting quota is zero\n(we assune all houses are successful sales)"
", then finishing house is " << sales_quota << endl

I f confidence of nmeeting quota is zero (we assune all houses are successful sales), then finishd
ing house is 5
I f confidence of nmeeting quota is 0, then finishing house is 5

We can list quantiles for afew probabilities:

double ps[] = {0., 0.001, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 0.999, 1.};

/'l Confidence as fraction = 1-al pha, as percent = 100 * (1l-alpha[i]) %
cout . precision(3);
for (int i =0; i < sizeof(ps)/sizeof(ps[0]); i++)
{
cout << "If confidence of neeting quota is " << ps[i]
<< ", then finishing house is " << quantile(nb, ps[i]) + sales_quota
<< endl

If confidence of neeting quota is 0, then finishing house is 5

If confidence of neeting quota is 0.001, then finishing house is 5
I f confidence of neeting quota is 0.01, then finishing house is 5

If confidence of neeting quota is 0.05, then finishing house is 6.2
If confidence of neeting quota is 0.1, then finishing house is 7.06
If confidence of neeting quota is 0.5, then finishing house is 11.3
If confidence of neeting quota is 0.9, then finishing house is 17.8
I f confidence of neeting quota is 95, then finishing house is 20.1
If confidence of neeting quota is 0.99, then finishing house is 24.8
If confidence of neeting quota is 0.999, then finishing house is 31.1
I f confidence of nmeeting quota is 1, then finishing house is 1.#l NF

We could have applied a ceil function to obtain a'worst case' integer value for house.
ceil (quantile(nb, ps[i]))
Or, if we had used the default discrete quantile policy, integer_outside, by omitting

#def i ne BOOST_MATH DI SCRETE_QUANTI LE_POLI CY real
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we would have achieved the same effect.

The real result gives some suggestion which house is most likely. For example, compare the real and integer_outside for 95% con-
fidence.

If confidence of neeting quota is 0.95, then finishing house is 20.1
If confidence of neeting quota is 0.95, then finishing house is 21

Thereal value 20.1 is much closer to 20 than 21, so integer_outside is pessimistic. We could also use integer_round_nearest policy
to suggest that 20 is more likely.

Finally, we can tabulate the probability for the last sale being exactly on each house.

cout << "\nHouse for " << sales_quota << "th (last) sale. Probability (%" << endl;
cout . preci sion(5);

for (int i = (int)sales_quota; i < all_houses+1; i++)

{
cout << left << setw(3) << i << " O
<< setw(8) << cdf(nb, i - sales_quota) << endl;

}

cout << endl;

House for 5 th (last) sale. Probability (%

5 0.01024
6 0. 04096
7 0. 096256
8 0.17367
9 0. 26657
10 0. 3669
11 0. 46723
12 0.56182
13 0. 64696
14 0.72074
15 0.78272
16 0. 83343
17 0.874
18 0. 90583
19 0. 93039
20 0. 94905
21 0. 96304
22 0.97342
23 0.98103
24 0. 98655
25 0. 99053
26 0. 99337
27 0. 99539
28 0. 99681
29 0.9978
30 0. 99849

As noted above, using a catch block is always a good idea, even if you do not expect to useit.

}

catch(const std::exception& e)
{ Il Since we have set an overflow policy of ignore_error,
/1 an overfl ow exception should never be thrown.
std::cout << "\nMessage fromthrown exception was:\n " << e.what() << std::endl;

For example, without aignore domain error policy, if we asked for
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pdf (nb, -1)
for example, we would get:

Message from thrown exception was:
Error in function boost:: math::pdf(const negative_bi nom al _di stributi on<doubl e>& double):
Nurmber of failures argument is -1, but nust be >= 0 !

Negative Binomial Table Printing Example.

Example program showing output of atable of values of cdf and pdf for various k failures.

/1 Print a table of values that can be used to plot
/'l using Excel, or sone other superior graphical display tool.

cout . precision(17); // Use max_digitsl1l0 precision, the maxi mum avail able for a reference table.
cout << showpoint << endl; // include trailing zeros.

/1 This is a maxi mum possi ble precision for the type (here double) to suit a reference table.
int maxk = static_cast<int>(2. * mynbdist.successes() / nynbdist.success_fraction());

/1 This maxk shows nost of the range of interest, probability about 0.0001 to 0.999.

cout << "\n"" k pdf cdf""\'n" << endl;
for (int k = 0; k < maxk; k++)
{

cout << right << setprecision(1l7) << showpoi nt
<< right << setw(3) << k << ",
<< left << setw(25) << pdf(nynbdist, static_cast<doubl e>(k))
<< left << setw(25) << cdf(nynbdist, static_cast<doubl e>(k))
<< endl ;

}

cout << endl ;
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k pdf cdf
0, 1.5258789062500000e-005 1.5258789062500003e-005
1, 9.1552734375000000e-005 0.00010681152343750000
2, 0.00030899047851562522  0.00041580200195312500
3, 0.00077247619628906272  0.0011882781982421875
4, 0.0015932321548461918 0.0027815103530883789
5, 0.0028678178787231476 0. 0056493282318115234
6, 0.0046602040529251142 0.010309532284736633
7, 0.0069903060793876605 0.017299838364124298
8, 0.0098301179241389001 0.027129956288263202
9, 0.013106823898851871 0. 040236780187115073
10, 0.016711200471036140 0. 056947980658151209
11, 0.020509200578089786 0.077457181236241013
12, 0.024354675686481652 0.10181185692272265
13, 0.028101548869017230 0.12991340579173993
14, 0.031614242477644432 0.16152764826938440
15, 0.034775666725408917 0.19630331499479325
16, 0.037492515688331451 0. 23379583068312471
17, 0.039697957787645101 0.27349378847076977
18, 0.041352039362130305 0. 31484582783290005
19, 0.042440250924291580 0. 35728607875719176
20, 0.042970754060845245 0. 40025683281803687
21, 0.042970754060845225 0. 44322758687888220
22, 0.042482450037426581 0. 48571003691630876
23, 0.041558918514873783 0.52726895543118257
24, 0.040260202311284021 0.56752915774246648
25, 0.038649794218832620 0. 60617895196129912
26, 0.036791631035234917 0. 64297058299653398
27, 0.034747651533277427 0.67771823452981139
28, 0.032575923312447595 0. 71029415784225891
29, 0.030329307911589130 0. 74062346575384819
30, 0.028054609818219924 0. 76867807557206813
31, 0.025792141284492545 0. 79447021685656061
32, 0.023575629142856460 0. 81804584599941710
33, 0.021432390129869489 0.83947823612928651
34, 0.019383705779220189 0. 85886194190850684
35, 0.017445335201298231 0.87630727710980494
36, 0.015628112784496322 0.89193538989430121
37, 0.013938587078064250 0. 90587397697236549
38, 0.012379666154859701 0.91825364312722524
39, 0.010951243136991251 0. 92920488626421649
40, 0.0096507830144735539 0. 93885566927869002
41, 0.0084738582566109364 0. 94732952753530097
42, 0.0074146259745345548 0. 95474415350983555
43, 0.0064662435824429246 0.96121039709227851
44, 0.0056212231142827853 0. 96683162020656122
45, 0.0048717266990450708 0.97170334690560634
46, 0.0042098073105878630 0.97591315421619418
47, 0.0036275999165703964 0. 97954075413276465
48, 0.0031174686783026818 0. 98265822281106729
49, 0.0026721160099737302 0. 98533033882104104
50, 0.0022846591885275322 0.98761499800956853
51, 0.0019486798960970148 0. 98956367790566557
52, 0.0016582516423517923 0.99122192954801736
53, 0.0014079495076571762 0. 99262987905567457
54, 0.0011928461106539983 0. 99382272516632852
55, 0.0010084971662802015 0.99483122233260868
56, 0.00085091948404891532  0.99568214181665760
57, 0.00071656377604119542  0.99639870559269883
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58, 0.00060228420831048650 0.99700098980100937
59, 0.00050530624256557675  0.99750629604357488
60, 0.00042319397814867202 0.99792949002172360
61, 0.00035381791615708398  0.99828330793788067
62, 0.00029532382517950324  0.99857863176306016
63, 0.00024610318764958566  0.99882473495070978

Normal Distribution Examples

(See also the reference documentation for the Normal Distribution.)

Some Miscellaneous Examples of the Normal (Gaussian) Distribution
The sample program normal_misc_examples.cpp illustrates their use.

Traditional Tables

First we need some includes to access the normal distribution (and some std output of course).

#i ncl ude <boost/ math/distributions/normal.hpp> // for normal _distribution
using boost::math::normal; // typedef provides default type is double.

#i ncl ude <i ostreanr

using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowpoi nt;
#i ncl ude <i omani p>

using std::setw, using std::setprecision
#include <limts>

using std::nuneric_lints;

int main()

{

cout << "Exanple: Normal distribution, M scellaneous Applications.";

try

{ I/l Traditional tables and val ues.

Let's start by printing some traditional tables.

double step = 1.; // in z

double range = 4; // mn and max z = -range to +range

int precision = 17; // traditional tables are only conputed to nmuch | ower precision.
/1 but std::nuneric_lints<double>::nax_digitsl0; on new Standard Libraries gives

/1 17, the nmaxi num nunber of digits that can possibly be significant.

/'l std::nunmeric_limts<double>: :digitsl0; == 15 i s nunber of guaranteed digits,

/1 the other two digits being 'noisy'.

/'l Construct a standard nornmal distribution s
normal s; // (default nmean = zero, and standard deviation = unity)
cout << "Standard normal distribution, nean = "<< s.nean()
<< ", standard deviation = " << s.standard_devi ation() << endl

First the probability distribution function (pdf).

180

render
httpo://www.renderx.com/


http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/normal_misc_examples.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Statistical Distributions and Functions

cout << "Probability distribution function values" << endl;

cout << " z " " pdf " << endl;

cout . precision(5);

for (double z = -range; z < range + step; z += step)
{

cout << left << setprecision(3) << setw(6) << z << "
<< setprecision(precision) << setw(12) << pdf(s, z) << endl;

}

cout.precision(6); // default

And the area under the normal curve from -0 up to z, the cumulative distribution function (cdf).

/1 For a standard normal distribution
cout << "Standard normal nean = "<< s.nmean()

<< ", standard deviation = " << s.standard_deviation() << endl;
cout << "Integral (area under the curve) from- infinity up to z " << endl;
cout << "z " " cdf " << endl;
for (double z = -range; z < range + step; z += step)
{

cout << left << setprecision(3) << setw(6) << z << "

<< setprecision(precision) << setw(12) << cdf(s, z) << endl;

}

cout . precision(6); // default

And all thisyou can do with ananoscopic amount of work compared to the team of human computer stoiling with Milton Abramovitz
and Irene Stegen at the US National Bureau of Standards (now NIST). Starting in 1938, their "Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables', was eventually published in 1964, and has been reprinted numerous times since.
(A major replacement is planned at Digital Library of Mathematical Functions).

Pretty-printing a traditional 2-dimensional table isleft as an exercise for the student, but why bother now that the Math Toolkit lets
you write

double z = 2.;
cout << "Area for z =" <<z << " is " << cdf(s, z) << endl; // to get the area for z.

Correspondingly, we can obtain the traditional 'critical’ values for significance levels. For the 95% confidence level, the significance
level usually called alpha, is0.05 =1 - 0.95 (for a one-sided test), so we can write

cout << "95%of area has a z below " << quantile(s, 0.95) << endl;
/1 95% of area has a z bel ow 1.64485

and atwo-sided test (a comparison between two levels, rather than a one-sided test)

cout << "95% of area has a z between " << quantile(s, 0.975)
<< " and " << -quantile(s, 0.975) << endl;
/'l 95% of area has a z between 1.95996 and - 1. 95996

First, define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated
interval.

It is convenient to have an aphalevel for the probability that z lies outside just one standard deviation. This will not be some nice
neat number like 0.05, but we can easily calculate it,

doubl e al phal = cdf(s, -1) * 2; // 0.3173105078629142
cout << setprecision(1l7) << "Significance level for z == 11is " << alphal << endl;

and place in our array of favorite alpha values.
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doubl e al pha[] = {0.3173105078629142, // z for 1 standard devi ation.
0.20, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100 (so alpha 0.05 == 95% confidence) that the true occurrence frequency lies inside the
calculated interval.

cout << "level of significance (alpha)" << setprecision(4) << endl;

cout << "2-sided 1 -sided z(al pha) " << endl;
for (int i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

cout << setw(15) << alpha[i] << setw(15) << alphal[i] /2 << setw(10) << quantile(conplenent(s, O
al phal[i]/2)) << endl;

/1 Use quantile(conpl ement(s, alpha[i]/2)) to avoid potential |oss of accuracy fromquantile(s, O
1 - alphali]/?2)

cout << endl;

Notice the distinction between one-sided (also called one-tailed) where we are using a> or < test (and not both) and considering the
area of thetail (integral) from z up to +oo, and atwo-sided test where we are using two > and < tests, and thus considering two tails,
from -co up to z low and z high up to +co.

So the 2-sided values alphd[i] are calculated using alphd[i]/2.

If we consider a simple example of alpha= 0.05, then for atwo-sided test, the lower tail areafrom -co up to -1.96 is 0.025 (alpha/2)
and the upper tail areafrom +z up to +1.96 is also 0.025 (apha/2), and the area between -1.96 up to 12.96 is apha = 0.95. and the
sum of the two tailsis 0.025 + 0.025 = 0.05,

Standard deviations either side of the Mean

Armed with the cumulative distribution function, we can easily calculate the easy to remember proportion of values that lie within
1, 2 and 3 standard deviations from the mean.

cout . preci sion(3);
cout << showpoint << "cdf(s, s.standard_deviation()) ="
<< cdf (s, s.standard_deviation()) << endl; // from-infinity to 1 sd
cout << "cdf (conplenment(s, s.standard_deviation())) ="
<< cdf (conpl enent (s, s.standard_deviation())) << endl;
cout << "Fraction 1 standard deviation within either side of nmean is "

<< 1 - cdf(complenment(s, s.standard_deviation())) * 2 << endl;
cout << "Fraction 2 standard deviations within either side of nean is "
<< 1 - cdf(complenment(s, 2 * s.standard_deviation())) * 2 << endl;
cout << "Fraction 3 standard deviations within either side of nean is "
<< 1 - cdf(complenment(s, 3 * s.standard_deviation())) * 2 << endl;

To auseful precision, the 1, 2 & 3 percentages are 68, 95 and 99.7, and these are worth memorising as useful 'rules of thumb', as,
for example, in standard deviation:

Fraction 1 standard deviation within either side of nean is 0.683
Fraction 2 standard deviations within either side of nean is 0.954
Fraction 3 standard deviations within either side of nean is 0.997

We could of course get some really accurate values for these confidence intervals by using cout.precision(15);

Fraction 1 standard deviation within either side of nean is 0.682689492137086
Fraction 2 standard deviations within either side of nean is 0.954499736103642
Fraction 3 standard deviations within either side of nean is 0.997300203936740
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Statistical Distributions and Functions

But before you get too excited about thisimpressive precision, don't forget that the confidence intervals of the standard deviation
are surprisingly wide, especialy if you have estimated the standard deviation from only afew measurements.

Some simple examples

Life of light bulbs

Examples from K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1 58488 635 8, page 125... im-
plemented using the Math Toolkit library.

A few very simple examples are shown here:

/1 K. Krishnanmoorthy, Handbook of Statistical Distributions with Applications,
/1 1SBN 1 58488 635 8, page 125, exanple 10.3.5

Mean lifespan of 100 W bulbs is 1100 h with standard deviation of 100 h. Assuming, perhaps with little evidence and much faith,
that the distribution is normal, we construct a normal distribution called bulbs with these values:

doubl e nmean_life = 1100.;

doubl e |ife_standard_deviation = 100.;

normal bul bs(mean_life, |life_standard_deviation);
doubl e expected_life = 1000.;

The we can use the Cumulative distribution function to predict fractions (or percentages, if * 100) that will last various lifetimes.

cout << "Fraction of bulbs that will last at best (<=) " // P(X <= 1000)
<< expected_ life << " is "<< cdf(bul bs, expected_life) << endl;
cout << "Fraction of bulbs that will last at least (>) " // P(X > 1000)
<< expected_life << " is "<< cdf (conpl ement (bul bs, expected_life)) << endl;
double min_life = 900;
double max_life = 1200;
cout << "Fraction of bulbs that will |ast between "
<<mn_life << " and " << max_life << " is "
<< cdf (bulbs, max_life) // P(X <= 1200)
- cdf (bulbs, min_life) << endl; // P(X <= 900)

S Note
Real-life failures are often very ab-normal, with a significant number that 'dead-on-arrival' or suffer failure very
early intheir life: the lifetime of the survivors of 'early mortality' may be well described by the normal distribution.

How many onions?

Weekly demand for 5 Ib sacks of onions at a store is normally distributed with mean 140 sacks and standard deviation 10.

doubl e mean = 140.; // sacks per week.
doubl e standard_devi ati on = 10;
normal sacks(mean, standard_deviation);

doubl e stock = 160.; // per week.
cout << "Percentage of weeks overstocked "

<< cdf (sacks, stock) * 100. << endl; // P(X <=160)
/'l Percentage of weeks overstocked 97.7

So there will be lots of mouldy onions! So we should be able to say what stock level will meet demand 95% of the weeks.

183

render
httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

doubl e stock_95 = quantil e(sacks, 0.95);
cout << "Store should stock " << int(stock_95) << " sacks to neet 95% of denmands." << endl;

And it is easy to estimate how to meet 80% of demand, and waste even less.

doubl e stock_80 = quantil e(sacks, 0.80);
cout << "Store should stock " << int(stock 80) << " sacks to neet 8 out of 10 demands." << endl;

Packing beef

A machineis set to pack 3 kg of ground beef per pack. Over along period of timeit isfound that the average packed was 3 kg with
astandard deviation of 0.1 kg. Assuming the packing is normally distributed, we can find the fraction (or %) of packagesthat weigh
more than 3.1 kg.

double mean = 3.; // kg
doubl e standard_deviation = 0.1; // kg
nor mal packs(nmean, standard_deviation);

doubl e max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf (conpl enent (packs, max_weight)) << endl; // P(X > 3.1)

doubl e under_wei ght = 2.9;
cout <<"fraction of packs <= " << under_weight << " with a nean of " << mean
<< " is " << cdf (conpl enent (packs, under_weight)) << endl;
/1 fraction of packs <= 2.9 with a nmean of 3 is 0.841345
/1 This is 0.84 - nore than the target 0.95
/1 Want 95%to be over this weight, so what should we set the nmean weight to be?
/1l KK StatCal c says:
doubl e over _nmean = 3. 0664,
nor mal xpacks(over _mean, standard_devi ation);
cout << "fraction of packs >= " << under_wei ght
<< " with a nmean of " << xpacks. nmean()
<< " is " << cdf (comnpl ement (xpacks, under_weight)) << endl;
/1 fraction of packs >= 2.9 with a nmean of 3.06449 is 0.950005
doubl e under_fraction = 0.05; // so 95% are above the m ni num wei ght nean - sd = 2.9
double low linmt = standard_devi ati on;
doubl e offset = nean - low linmt - quantile(packs, under_fraction);
doubl e nom nal _nean = nean + offset;

nor mal nom nal _packs(nomni nal _nmean, standard_devi ation);

cout << "Setting the packer to " << nominal _mean << " w || nean that
<< "fraction of packs >= " << under_wei ght
<< " is " << cdf (conpl enent (nom nal _packs, under_weight)) << endl;

Setting the packer to 3.06449 will mean that fraction of packs>=2.9is0.95.

Setting the packer to 3.13263 will mean that fraction of packs >=2.9is0.99, but will more than double the mean loss from 0.0644
t0 0.133.

Alternatively, we could invest in a better (more precise) packer with alower standard deviation.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located
at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.

cout << "Quantile of " << p << " =" << quantil e(packs, p)
<< ", nean = " << packs.nean() << ", sd = " << packs.standard_deviation() << endl; //
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Statistical Distributions and Functions

Quantile of 0.05=2.83551, mean=3,sd=0.1

With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, alittle below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05

nor mal packO5(nean, 0.05);

cout << "Quantile of " << p << " =" << quantile(pack05, p)

<< ", nean = " << pack05.mean() << ", sd = " << packO05. standard_devi ation() << endl
cout <<"Fraction of packs >= " << under_weight << " with a nean of " << mean

<< " and standard deviation of " << pack05. standard_devi ation()

<< " is " << cdf (conpl enent (pack05, under_weight)) << endl
I

Fraction of packs >= 2.9 with amean of 3 and standard deviation of 0.05is0.9772

So 0.05 was quite a good guess, but we are alittle over the 2.9 target, so the standard deviation could be atiny bit more. So we could
do some more guessing to get closer, say by increasing to 0.06

nor mal pack06( nean, 0.06);

cout << "Quantile of " << p << " =" << quantil e(pack06, p)

<< ", nean = " << pack06.nean() << ", sd = " << pack06. standard_devi ation() << endl;
cout <<"Fraction of packs >= " << under_weight << " with a nean of " << mean

<< " and standard deviation of " << pack06.standard_devi ation()

<< " is " << cdf(conpl enent (pack06, under_weight)) << endl

Fraction of packs >= 2.9 with amean of 3 and standard deviation of 0.06 is 0.9522

Now we are getting really close, but to do the job properly, we could use root finding method, for example the tools provided, and
used elsewhere, in the Math Toolkit, see root-finding without derivatives.

But in this normal distribution case, we could be even smarter and make a direct calculation.

normal s; // For standard normal distribution

doubl e sd = 0. 1;

double x = 2.9; // Qur required limt.

/1 then probability p = N((x - nmean) / sd)

/1 So if we want to find the standard deviation that would be required to neet this limt,
/1 so that the p th quantile is |located at x,

/1 in this case the 0.95 (95% quantile at 2.9 kg pack wei ght, when the nean is 3 kg

doubl e prob = pdf(s, (x - nean) / sd)
doubl e gp = quantile(s, 0.95)

cout << "prob =" << prob << ", quantile(p) " << gp << endl; // p = 0.241971, quantile(p) 1.64485
/1 Rearranging, we can directly calculate the required standard devi ati on:

doubl e sd95 = std::abs((x - nean)) / qgp

cout << "If we want the "<< p << " th quantile to be located at
<< x << ", would need a standard deviation of " << sd95 << endl

normal pack95(nean, sd95); // Distribution of the 'ideal better' packer

cout <<"Fraction of packs >= " << under_weight << " with a nmean of " << mean
<< " and standard deviation of " << pack95.standard_devi ation()
<< " is " << cdf (conpl ement (pack95, under_weight)) << endl

/1l Fraction of packs >= 2.9 with a nean of 3 and standard deviation of 0.0608 is 0.95
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Statistical Distributions and Functions

Notice that these two deceptively simple questions (do we over-fill or measure better) are actually very common. The weight of beef
might be replaced by a measurement of more or less anything. But the calculations rely on the accuracy of the standard deviation -
something that is amost always less good than we might wish, especialy if based on afew measurements.

Length of bolts

A bolt isusableif between 3.9 and 4.1 long. From alarge batch of bolts, a sample of 50 show a mean length of 3.95 with standard
deviation 0.1. Assuming a normal distribution, what proportion is usable? The true sample mean is unknown, but we can use the
sample mean and standard deviation to find approximate solutions.

normal bolts(3.95 0.1);
double top = 4.1;
doubl e bottom = 3.9;

cout << "Fraction long enough [ P(X <= " << top << ") ] is " << cdf(bolts, top) << endl;
cout << "Fraction too short [ P(X <= " << bottom<< ") ] is " << cdf(bolts, bottom << endl;
cout << "Fraction OK -between " << bottom<< " and " << top

<< "[ P(X <=" <<top << ") - P(X<=" << bottom<< " ) ] is "

<< cdf (bolts, top) - cdf(bolts, bottom << endl;

cout << "Fraction too long [ P(X > " << top << ") ] is "
<< cdf (conpl enent (bolts, top)) << endl;

cout << "95%of bolts are shorter than " << quantile(bolts, 0.95) << endl;

Inverse Chi-Squared Distribution Bayes Example

The scaled-inversed-chi-squared distribution isthe conjugate prior distribution for the variance (02) parameter of anormal distribution
with known expectation (). As such it has widespread application in Bayesian stetistics:

In Bayesian inference, the strength of belief into certain parameter valuesisitself described through adistribution. Parameters hence
become themselves modelled and interpreted as random variables.

In this worked example, we perform such a Bayesian analysis by using the scal ed-inverse-chi-squared distribution as prior and pos-
terior distribution for the variance parameter of anormal distribution.

For more genera information on Bayesian type of analyses, see:
» Andrew Gelman, John B. Carlin, Hal E. Stern, Donald B. Rubin, Bayesian DataAnalysis, 2003, ISBN 978-1439840955.
» Jim Albert, Bayesian Compution with R, Springer, 2009, ISBN 978-0387922973.

(As the scaled-inversed-chi-squared is another parameterization of the inverse-gamma distribution, this example could also have
used the inverse-gamma distribution).

Consider precision machines which produce ballsfor ahigh-quality ball bearing. Ideally each ball should have adiameter of precisely
3000 um (3 mm). Assume that machines generally produce balls of that size on average (mean), but individual balls can vary dightly
in either direction following (approximately) a normal distribution. Depending on various production conditions (e.g. raw material
used for balls, workplace temperature and humidity, maintenance frequency and quality) some machines produce balls tighter dis-
tributed around the target of 3000 um, while others produce balls with awider distribution. Therefore the variance parameter of the
normal distribution of the ball sizes varies from machine to machine. An extensive survey by the precision machinery manufacturer,
however, has shown that most machines operate with a variance between 15 and 50, and near 25 um2 on average.

Using this information, we want to model the variance of the machines. The variance is strictly positive, and therefore we look for
adtatistical distribution with support in the positive domain of the real numbers. Given the expectation of the normal distribution of
the balls is known (3000 um), for reasons of conjugacy, it is customary practice in Bayesian statistics to model the variance to be
scal ed-inverse-chi-squared distributed.
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In afirst step, we will try to use the survey information to model the general knowledge about the variance parameter of machines
measured by the manufacturer. This will provide us with a generic prior distribution that is applicable if nothing more specific is
known about a particular machine.

In asecond step, wewill then combine the prior-distribution information in a Bayesian analysiswith data on a specific single machine
to derive a posterior distribution for that machine.

Step one: Using the survey information.

Using the survey results, we try to find the parameter set of a scaled-inverse-chi-squared distribution so that the properties of this
distribution match the results. Using the mathematical properties of the scaled-inverse-chi-squared distribution as guideline, we see
that that both the mean and mode of the scaled-inverse-chi-squared distribution are approximately given by the scale parameter (s)
of the distribution. As the survey machines operated at a variance of 25 pm2 on average, we hence set the scale parameter (Syior) Of
our prior distribution equal to this value. Using some trial-and-error and calls to the global quantile function, we also find that a
value of 20 for the degrees-of-freedom (v o) parameter is adequate so that most of the prior distribution mass is located between
15 and 50 (see figure below).

We first construct our prior distribution using these values, and then list out a few quantiles:

doubl e priorDF = 20.0;
doubl e priorScale = 25.0;

i nverse_chi _squared prior(priorDF, priorScale);
/'l Using an inverse_gamm distribution instead, we could equivalently wite
/'l inverse_gamma prior(priorDF / 2.0, priorScale * priorDF / 2.0);

cout << "Prior distribution:" << endl << endl;

cout << " 2.5%aqquantile: " << quantile(prior, 0.025) << endl;
cout << " 50%quantile: " << quantile(prior, 0.5) << endl;
cout << " 97.5%quantile: " << quantile(prior, 0.975) << endl << endl;

This produces this output:

Prior distribution:

2.5%quantile: 14.6
50% quantile: 25.9
97.5% quantile: 52.1

Based on this distribution, we can now calculate the probability of having a machine working with an unusual work precision
(variance) at <= 15 or > 50. For this task, we use calls to the boost : : mat h: : functions cdf and conpl enent , respectively, and
find a probability of about 0.031 (3.1%) for each case.

cout << " probability variance <= 15: " << boost::math::cdf(prior, 15.0) << endl;
cout << " probability variance <= 25: " << boost::math::cdf(prior, 25.0) << endl;
cout << " probability variance > 50:

<< boost::math::cdf (boost::mth::conpl ement (prior, 50.0))
<< endl << endl;

This produces this outpuit:

probability variance <= 15: 0.031
probability variance <= 25: 0.458
probability variance > 50: 0.0318

Therefore, only 3.1% of all precision machines produce balls with a variance of 15 or less (particularly precise machines), but also
only 3.2% of al machines produce balls with a variance of as high as 50 or more (particularly imprecise machines). Moreover,
dlightly more than one-half (1 - 0.458 = 54.2%) of the machines work at a variance greater than 25.
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Notice here the distinction between aBayesian analysis and afrequentist analysis: because we model the variance asrandom variable
itself, we can calculate and straightforwardly interpret probabilities for given parameter values directly, while such an approach is
not possible (and interpretationally a strict must-not) in the frequentist world.

Step 2: Investigate a single machine

In the second step, we investigate a single machine, which is suspected to suffer from amajor fault as the produced balls show fairly
high size variability. Based on the prior distribution of generic machinery performance (derived above) and data on balls produced
by the suspect machine, we cal cul ate the posterior distribution for that machine and useits propertiesfor guidance regarding continued
machine operation or suspension.

It can be shown that if the prior distribution was chosen to be scaled-inverse-chi-square distributed, then the posterior distribution
is also scaled-inverse-chi-squared-distributed (prior and posterior distributions are hence conjugate). For more details regarding
conjugacy and formulato derive the parameters set for the posterior distribution see Conjugate prior.

Given the prior distribution parameters and sample data (of size n), the posterior distribution parameters are given by the two expres-
sions:
Vposterior = Vprior ¥ N
which gives the posteriorDF below, and
Sposterior = (Vpriorsprior + Zni=1(Xi - U)Z) / (Vprior + n)
which after some rearrangement gives the formulafor the posteriorScal e bel ow.

Machine-specific data consist of 100 balls which were accurately measured and show the expected mean of 3000 um and a sample
variance of 55 (calculated for a sample mean defined to be 3000 exactly). From these data, the prior parameterization, and noting
that the term ="_;(X; - p)z equals the sample variance multiplied by n - 1, it follows that the posterior distribution of the variance
parameter is scaled-inverse-chi-squared distribution with degrees-of-freedom (Vposterior) = 120 and scal€ (Sposterior) = 49.54.

int bal |l sSanpl eSi ze = 100

cout <<"balls sanple size: " << ballsSanpl eSize << endl
doubl e bal | sSanpl eVari ance = 55. 0;
cout <<"balls sanple variance: " << ball sSanpl eVari ance << endl

doubl e posteriorDF = priorDF + ball sSanpl eSi ze;
cout << "prior degrees-of-freedom " << priorDF << endl
cout << "posterior degrees-of-freedom " << posteriorDF << endl

doubl e posteriorScale =

(priorDF * priorScale + (ballsSanpleVariance * (ballsSanpleSize - 1))) / posteriorDF
cout << "prior scale: " << priorScale << endl
cout << "posterior scale: " << posteriorScale << endl

Aninteresting feature hereisthat one needs only to know asummary statistics of the sampleto parameterize the posterior distribution:
the 100 individual ball measurementsareirrel evant, just knowledge of the sampl e variance and number of measurementsis sufficient.

That produces this output:

bal | s sanmpl e size: 100

bal | s sanpl e variance: 55

prior degrees-of-freedom 20
posterior degrees-of-freedom 120
prior scale: 25

posterior scale: 49.5

To compare the generic machinery performance with our suspect machine, we calculate again the same quantiles and probabilities
as above, and find a distribution clearly shifted to greater values (seefigure).
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Prior and Posterior Distributions
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i nverse_chi _squared posterior(posteriorDF, posteriorScale);

cout << "Posterior distribution:" << endl << endl;

cout << " 2.5%aquantile: " << boost::math::quantile(posterior, 0.025) << endl;

cout << " 50%quantile: " << boost::math::quantile(posterior, 0.5) << endl;

cout << " 97.5%qquantile: " << boost::math::quantile(posterior, 0.975) << endl << endl;
cout << " probability variance <= 15: " << boost::math::cdf(posterior, 15.0) << endl;
cout << " probability variance <= 25: " << boost::math::cdf(posterior, 25.0) << endl;
cout << " probability variance > 50:

<< boost:: math::cdf (boost:: math::conpl enent (posterior, 50.0)) << endl;

This produces this outpuit:

Posterior distribution:

2.5% quantile: 39.1
50% quantile: 49.8
97.5% quantile: 64.9

probability variance <= 15: 2.97e-031

probability variance <= 25: 8.85e-010
probability variance > 50: 0.489

Indeed, the probability that the machineworks at alow variance (<= 15) isalmost zero, and even the probability of working at average
or better performanceis negligibly small (Iessthan one-millionth of apermille). On the other hand, with an almost near-half probab-
ility (49%), the machine operates in the extreme high variance range of > 50 characteristic for poorly performing machines.

Based on this information the operation of the machine is taken out of use and serviced.

In summary, the Bayesian analysis allowed usto make exact probabilistic statements about a parameter of interest, and hence provided
us results with straightforward interpretation.

A full sample output is:
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I nverse_chi _squared_di stributi on Bayes exanpl e:
Prior distribution:

2.5% quantile: 14.6
50% quantile: 25.9
97.5% quantile: 52.1

probability variance <= 15: 0.031
probability variance <= 25: 0.458
probability variance > 50: 0.0318

bal | s sanple size: 100

bal | s sanpl e variance: 55

prior degrees-of-freedom 20
posterior degrees-of-freedom 120
prior scale: 25

posterior scale: 49.5

Posterior distribution:

2.5% quantile: 39.1

50% quantile: 49.8

97.5% quantile: 64.9

probability variance <= 15: 2.97e-031

probability variance <= 25: 8.85e-010
probability variance > 50: 0.489

(See aso the reference documentation for the Inverse chi squared Distribution.)

See the full source C++ of thisexample at ../../example/inverse chi_squared bayes eg.cpp

Non Central Chi Squared Example
(See aso the reference documentation for the Noncentral Chi Squared Distribution.)
Tables of the power function of the chi’ test.

This example computes a table of the power of the )(2 test at the 5% significance level, for various degrees of freedom and non-
centrality parameters. The tableis deliberately the same as Table 6 from "The Non-Central )(2 and F-Distributions and their applica-
tions.", P. B. Patnaik, Biometrika, Vol. 36, No. 1/2 (June 1949), 202-232.

First we need some includes to access the non-central chi squared distribution (and some basic std output of course).

#i ncl ude <boost/ math/distributions/non_central _chi_squared. hpp>
usi ng boost: : math:: chi_squared
usi ng boost:: math::non_central _chi _squared

#i ncl ude <i ostreanr
using std::cout; using std::endl
usi ng std::setprecision

int main()

{

Create atable of the power of the )(2 test at 5% significance level, start with atable header:
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cout << "[table\n[[[nu]]";
for(int lam= 2; lam<= 20; lam += 2)

{
}

cout << "]\n";

cout << "[[lanbda]=" << lam<< "]"

(Note: the enclosing [] brackets are to format as a table in Boost.Quickbook).

Enumerate the rows and columns and print the power of the test for each table cell:

for(int n =2, n <= 20; ++n)

{

cout << "[[" << n << "]"
for(int lam= 2; lam<= 20; lam += 2)

{
Calculate the )(2 statistic for a 5% significance:
doubl e cs = quantil e(conpl enent (chi _squared(n), 0.05));
The power of the test is given by the complement of the CDF of the non-central x2 distribution:
doubl e beta = cdf (conpl enent (non_central _chi _squared(n, lam, c¢s));
Then output the cell value:

cout << "[" << setprecision(3) << beta << "]"

}

cout << "]" << endl;
}
cout << "]" << endl;

The output from this program is a table in Boost.Quickbook format as shown below.

We can interpret this as follows - for example if v=10 and A=10 then the power of the test is 0.542 - so we have only a 54% chance
of correctly detecting that our null hypothesisis false, and a 46% chance of incurring atype Il error (failing to reject the null hypo-
thesiswhen itisin fact false):
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10

11

12

13

14

15

16

17

18

19

20

Seenc_chi_sq_example.cpp for the full C++ source code.

A=2

0.226

0.192

0.171

0.157

0.146

0.138

0.131

0.125

0.121

0.117

0.113

011

0.108

0.105

0.103

0.101

0.0992

0.0976

0.0961

A=4

0.415

0.359

0.32

0.292

0.27

0.252

0.238

0.225

0.215

0.206

0.198

0.191

0.185

0.179

0.174

0.169

0.165

0.161

0.158

A=6

0.584

0.518

0.47

0.433

0.403

0.378

0.357

0.339

0.323

0.309

0.297

0.286

0.276

0.267

0.259

0.251

0.244

0.238

0.232

Error Handling Example

See error handling documentation for a detailed explanation of the mechanism of handling errors, including the common "bad" ar-

A=8

0.718

0.654

0.605

0.564

0.531

0.502

0.477

0.454

0.435

0.417

0.402

0.387

0.374

0.362

0.351

0.341

0.332

0.323

0.315

A=10

0.815

0.761

0.716

0.677

0.644

0.614

0.588

0.564

0.542

0.523

0.505

0.488

0.473

0.459

0.446

0.434

0.423

0.412

0.402

A=12

0.883

0.84

0.802

0.769

0.738

0.71

0.685

0.661

0.64

0.62

0.601

0.584

0.567

0.552

0.538

0.525

0.512

05

0.489

guments to distributions and functions, and how to use Policies to control it.

But, by default, exceptionswill beraised, for domain errors, pole errors, numeric overflow, and internal evaluation errors. To avoid
the exceptionsfrom getting thrown and instead get an appropriate value returned, usually aNaN (domain errorspoleerrorsor internal

errors), or infinity (from overflow), you need to change the policy.

Thefollowing example demonstrates the effect of setting the macro BOOST _MATH_DOMAIN_ERROR_POLICY whenaninvalid
argument is encountered. For the purposes of this example, well pass a negative degrees of freedom parameter to the student's t
distribution.

Since we know that thisis a single file program we could just add:

A=14

0.928

0.896

0.866

0.839

0.813

0.788

0.765

0.744

0.723

0.704

0.686

0.669

0.653

0.638

0.623

0.609

0.596

0.584

0.572

A=16

0.957

0.934

0.912

0.89

0.869

0.849

0.829

0.811

0.793

0.775

0.759

0.743

0.728

0.713

0.699

0.686

0.673

0.66

0.648

A=18

0.974

0.959

0.943

0.927

0.911

0.895

0.879

0.863

0.848

0.833

0.818

0.804

0.791

0.777

0.764

0.752

0.74

0.728

0.716

A=20

0.985

0.975

0.964

0.952

0.94

0.928

0.915

0.903

0.891

0.878

0.866

0.854

0.842

0.83

0.819

0.807

0.796

0.786

0.775
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#def i ne BOOST_MATH_DOVAI N_ERROR _POLI CY ignore_error

to the top of the source file to change the default policy to one that simply returns a NaN when adomain error occurs. Alternatively
we could use:

#defi ne BOOST_MATH DOVAI N ERROR POLI CY errno_on_error

To ensurethe: : errno is set when adomain error occurs as well as returning a NaN.

Thisis safe provided the program consists of asingle translation unit and we place the define before any #includes. Note that should
we add the define after the includes then it will have no effect! A warning such as:

war ni ng C4005: ' BOOST_MATH OVERFLOW ERROR POLICY' : macro redefinition

isacertain sign that it will not have the desired effect.

Well begin our sample program with the needed includes:

#def i ne BOOST_MATH_DOVAI N_ERROR POLI CY ignore_error

/'l Boost
#i ncl ude <boost/ math/distributions/students_t. hpp>
usi ng boost::math::students_t; // Probability of students_t(df, t).

/1 std

#i ncl ude <i ostreanr
using std::cout;
using std::endl;

#i ncl ude <stdexcept >
usi ng std::exception;

#i ncl ude <cstddef >
/1 using ::errno

Next we'll define the program's main() to call the student'st distribution with an invalid degrees of freedom parameter, the program
is set up to handle either an exception or aNaN:
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int main()
{
cout << "Exanple error handling using Student's t function. " << endl;
cout << "BOOST_MATH DOVAI N ERROR POLICY is set to:
<< BOOST_STRI NG ZE( BOOST_MATH_DOMAI N_ERROR POLI CY) << endl ;

doubl e degrees_of _freedom= -1; // A bad argunent!
double t = 10;

try
{
errno = 0; // Clear/reset.
students_t dist(degrees_of _freedom; // exception is thrown here if enabl ed.
double p = cdf (dist, t);
/1l Test for error reported by other neans:
i f((boost::math::isnan)(p))

{
cout << "cdf returned a NaN'" << endl;
if (errno !'=0)
{ Il So errno has been set.
cout << "errno is set to: " << errno << endl;
}
}
el se
cout << "Probability of Student's t is " << p << endl;
}
catch(const std::exception& e)
{
std::cout <<
"\'n""Message fromthrown exception was:\n " << e.what() << std::endl;
}
return O;

Y Il int main()
Here's what the program output looks like with a default build (one that does throw exceptions):

Exanpl e error handling using Student's t function.
BOOST _MATH DOVAI N ERROR POLICY is set to: throw on_error

Message from thrown exception was:
Error in function boost::math::students_t _distribution<doubl e>::students_t_distribution:
Degrees of freedomargument is -1, but nust be > 0!

Alternatively let's build with:
#defi ne BOOST_MATH_DOVAI N_ERROR _POLI CY i gnore_error
Now the program output is:

Exanpl e error handling using Student's t function.
BOOST_MATH _DOVAI N_ERROR POLICY is set to: ignore_error
cdf returned a NaN

And finally let's build with:
#defi ne BOOST_MATH _DOVAI N_ERROR POLI CY errno_on_error

Which gives the output show errno:

194

render

s httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Exanpl e error handling using Student's t function.
BOOST_MATH_DOVAI N_ERROR POLICY is set to: errno_on_error
cdf returned a NaN

errno is set to: 33

m Caution
If throwing of exceptionsis enabled (the default) but you do not have try & catch block, then the program will ter-

minate with an uncaught exception and probably abort.

Thereforeto get the benefit of helpful error messages, enabling all exceptionsand usingtry & catch isrecommended
for most applications.

However, for simplicity, the is not done for most examples.

Find Location and Scale Examples

Find Location (Mean) Example

First we need some includes to access the normal distribution, the algorithms to find location (and some std output of course).

4

ncl ude <boost/nmat h/ distributions/ nornal.hpp> // for normal _distribution

usi ng boost::math::normal; // typedef provides default type is double.

ncl ude <boost/ nmat h/ distributions/cauchy. hpp> // for cauchy_distribution

usi ng boost::math::cauchy; // typedef provides default type is double.

ncl ude <boost/math/distributions/find_|ocation. hpp>

usi ng boost::nmath::find_location; // for mean

ncl ude <boost/math/ distributions/find_scale. hpp>

usi ng boost::nmath::find_scale; // for standard devation

usi ng boost::math::conplement; // Needed if you want to use the conpl enment version
usi ng boost::math::policies::policy;

4

4

4

ncl ude <i ostreanr

using std::cout; using std::endl

ncl ude <i omani p>

using std::setw using std::setprecision
nclude <limts>

using std::nuneric_limts;

4

4

4

For this example, we will use the standard normal distribution, with mean (location) zero and standard deviation (scal€) unity. This
is also the default for thisimplementation.

normal NO1; // Default 'standard' nornmal distribution with zero nean and
double sd = 1.; // normal default standard deviation is 1.

Suppose we want to find adifferent normal distribution whose mean is shifted so that only fraction p (here 0.001 or 0.1%) are below
acertain chosen limit (here -2, two standard deviations).
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double z = -2.; /] z to give prob p
double p = 0.001; // only 0.1% bel ow z
cout << "Nornmal distribution with nean =" << NO1.location()
<< ", standard deviation " << NO1.scal e()
<< ", has " << "fraction <= " << 2z
<< ", p =" << cdf(NO1, z) << endl;
cout << "Nornmal distribution with nean =" << NO1.location()
<< ", standard deviation " << NO1.scal e()
<< ", has " << "fraction > " << z
<< ", p =" << cdf(conplement(N01, z)) << endl; // Note: uses conplenent.

0, standard deviation 1, has fraction <= -2, p = 0.0227501
0, standard deviation 1, has fraction > -2, p = 0.97725

Normal distribution with nmean
Normal distribution with nmean

We can now use "find_location” to give a new offset mean.

double | = find_l ocation<normal >(z, p, sd);
cout << "offset location (nmean) =" << | << endl;
that outputs:

of fset | ocation (nean) = 1.09023

showing that we need to shift the mean just over one standard deviation from its previous value of zero.

Then we can check that we have achieved our objective by constructing a new distribution with the offset mean (but same standard
deviation):

normal np001lpc(l, sd); // Sane standard_deviation (scale) but with mean (location) shifted.

And re-calculating the fraction below our chosen limit.

cout << "Normal distribution with nean = " << |
<< " has " << "fraction <= " << z
<< ", p =" << cdf(np00lpc, z) << endl;
cout << "Normal distribution with nean = " << |
<< " has " << "fraction > " << z
<< ", p =" << cdf(conplenment(np00lpc, z)) << endl;

1. 09023 has fraction <= -2, p = 0.001
1. 09023 has fraction > -2, p = 0.999

Normal distribution with nmean
Normal distribution with nmean

Controlling Error Handling from find_location

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors ('bad' arguments).

Unless we are using the boost::math namespace, we will need:

usi ng boost:: math::policies::policy;
usi ng boost:: math::policies::domin_error;
usi ng boost::math::policies::ignore_error;

Using atypedef is often convenient, especially if it is re-used, although it is not required, as the various examples below show.
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t ypedef policy<donmain_error<ignore_error> > ignore_donain_policy;

/1 find_location with new policy, using typedef.

| = find_l ocation<normal >(z, p, sd, ignore_domain_policy());

/1 Default policy policy<> needs "using boost::math::policies::policy;"

| = find_location<normal >(z, p, sd, policy<>());

/1 Default policy, fully specified.

| = find_l ocation<nornal >(z, p, sd, boost::math::policies::policy<>());

/1 A new policy, ignoring donmain errors, w thout using a typedef.

| = find_location<normal >(z, p, sd, policy<domain_error<ignore_error> >());

If wewant to use aprobability that isthe complements of our probability, we should not even think of writingf i nd_I ocat i on<nor -
mal >(z, 1 - p, sd), butusethe complement version, see why complements?.

z = 2.
double g = 0.95; // =1 - p; // conplenent.
| = find_l ocation<nornal >(conpl enent (z, q, sd));

normal np95pc(l, sd); // Same standard_deviation (scale) but with nmean(location) shifted
cout << "Normal distribution with nean =" << | << " has "

<< "fraction <= " <<z << " =" << cdf (np95pc, z) << endl;
cout << "Normal distribution with nean =" << | << " has "

<< "fraction > " << z << " =" << cdf(conpl enent (np95pc, z)) << endl;

See find_location_example.cpp for full source code: the program output looks like this:

Exanpl e: Find | ocation (mean).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with nmean 0, standard deviation 1, has fraction > -2, p = 0.97725

of fset | ocation (nean) = 1.09023

Normal distribution with nmean
Normal distribution with nmean
Normal distribution with nmean
Normal distribution with nmean

1. 09023 has fraction <= -2, p = 0.001
1. 09023 has fraction > -2, p = 0.999
0. 355146 has fraction <= 2 = 0.95

0. 355146 has fraction > 2 = 0.0

Find Scale (Standard Deviation) Example

First we need some includes to access the Normal Distribution, the algorithms to find scale (and some std output of course).

#i

ncl ude <boost/nmath/ distributions/ nornal.hpp> // for normal _distribution

usi ng boost::math::normal; // typedef provides default type is double.

ncl ude <boost/nmath/ distributions/find_scal e. hpp>

usi ng boost::math::find_scale;

usi ng boost::math::conplenent; // Needed if you want to use the conpl enent version
usi ng boost::math::policies::policy; // Needed to specify the error handling policy.

#i

#i ncl ude <i ostreanr

using std::cout; using std::endl;

ncl ude <i omani p>

using std::setw, using std::setprecision;
nclude <limts>

using std::nuneric_linmts;

#i

#i

For this example, we will use the standard Normal Distribution, with location (mean) zero and standard deviation (scale) unity.
Conveniently, thisis also the default for thisimplementation's constructor.

normal NO1; // Default 'standard' normal distribution with zero nean
double sd = 1.; // and standard deviation is 1.
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Suppose we want to find adifferent normal distribution with standard deviation so that only fraction p (here 0.001 or 0.1%) are below
acertain chosen limit (here -2. standard deviations).

double z = -2.; /] z to give prob p
double p = 0.001; // only 0.1%below z = -2
cout << "Normal distribution with nean =" << NOl.location() // aka NOl. nean()
<< ", standard deviation " << NO1l.scale() // aka NO1l.standard_deviation()
<< ", has " << "fraction <= " << z
<< ", p =" << cdf(NO1, z) << endl
cout << "Normal distribution with nean = " << NOL1.l|ocation()
<< ", standard deviation " << NOl.scal e()
<< ", has " << "fraction > " << z
<< ", p =" << cdf(conplenent(NO1, z)) << endl; // Note: uses conpl enent.

Normal distribution with nean
Normal distribution with nean

0 has fraction <= -2, p = 0.0227501
0 has fraction > -2, p = 0.97725

Noting that p = 0.02 instead of our target of 0.001, we can now usef i nd_scal e to give anew standard deviation.

double | = NO1.location()

double s = find_scal e<nornal >(z, p, I)

cout << "scale (standard deviation) =" << s << endl
that outputs:

scal e (standard deviation) = 0.647201

showing that we need to reduce the standard deviation from 1. to 0.65.

Then we can check that we have achieved our objective by constructing a new distribution with the new standard deviation (but
same zero mean):

normal np00lpc(NO1l.location(), s);

And re-calculating the fraction below (and above) our chosen limit.

cout << "Nornal distribution with mean = " <<
<< " has " << "fraction <= " << z
<< ", p =" << cdf (np001lpc, z) << endl
cout << "Nornal distribution with mean = " <<
<< " has " << "fraction > " << z
<< ", p =" << cdf(conplenment(np00lpc, z)) << endl

Nornmal distribution with nmean
Nornmal distribution with nmean

0 has fraction <= -2, p = 0.001
0 has fraction > -2, p = 0.999

Controlling how Errors from find_scale are handled

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors (‘bad' arguments).

Unless we are using the boost::math namespace, we will need:
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usi ng boost::math::policies::policy;
usi ng boost::math:: policies::donmain_error;
usi ng boost::math::policies::ignore_error;

Using atypedef is convenient, especialy if it isre-used, although it is not required, as the various examples below show.

t ypedef policy<domain_error<ignore_error> > ignore_domain_policy;

/1 find_scale with new policy, using typedef.

| = find_scal e<normal >(z, p, |, ignore_domain_policy());

/1 Default policy policy<> needs using boost::math::policies::policy;

| = find_scal e<normal >(z, p, |, policy<>());
/1 Default policy, fully specified.
| = find_scal e<normal >(z, p, |, boost::math::policies::policy<>());
/1 New policy, wthout typedef.
| = find_scal e<normal >(z, p, |, policy<domain_error<ignore_error> >());
If we want to express a probability, say 0.999, that is a complement, 1 - p we should not even think of writing

find_scal e<normal >(z, 1 - p, 1), butusethecomplementsversion (see why complements?).

z = -2.;
double g = 0.999; // =1 - p; // conplenent of 0.001.
sd = find_scal e<nornal >(conplenent(z, q, 1));

normal np95pc(l, sd); // Sanme standard_deviation (scale) but with nmean(scale) shifted
cout << "Normal distribution with nean =" << | << " has "

<< "fraction <= " << z << " =" << cdf (np95pc, z) << endl;
cout << "Normal distribution with nean =" << | << " has "

<< "fraction > " <<z << " =" << cdf (conpl enent (np95pc, z)) << endl;

Sadly, itisall too easy to get probabilities the wrong way round, when you may get awarning like this:

Message from thrown exception was:

Error in function boost::math::find_scal e<Di st, Policy>(conplenment(doubl e, double, double, O
Policy)):

Conput ed scal e (-0.48043523852179076) is <= 0! Was the conpl enent intended?

The default error handling policy isto throw an exception with this message, but if you chose a policy to ignore the error, the (im-
possible) negative scaleis quietly returned.

Seefind_scale_example.cpp for full source code: the program output looks like this:

Exanpl e: Find scale (standard devi ati on).

Normal distribution with nean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Nor mal distribution with nean 0, standard deviation 1, has fraction > -2, p = 0.97725
scal e (standard deviation) = 0.647201

Nor mal distribution with nean 0 has fraction <= -2, p = 0.001

Nor mal distribution with nean 0 has fraction > -2, p = 0.999

Nornmal distribution with nean 0.946339 has fraction <= -2 = 0.001

Nornmal distribution with nean 0.946339 has fraction > -2 = 0.999

Find mean and standard deviation example

First we need some includes to access the normal distribution, the algorithms to find location and scale (and some std output of
course).
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#i ncl ude <boost/ math/distributions/normal.hpp> // for normal _distribution
usi ng boost::math::normal; // typedef provides default type is double.
ncl ude <boost/ math/ di stributions/cauchy. hpp> // for cauchy_distribution
usi ng boost:: math::cauchy; // typedef provides default type is double.
ncl ude <boost/math/di stributions/find_|location. hpp>

usi ng boost::math::find_|location

ncl ude <boost/math/di stributions/find_scale. hpp>

usi ng boost::math::find_scale;

usi ng boost:: math:: conpl enent;

usi ng boost::math::policies::policy;

#i

#i

#i

#i ncl ude <i ostreanr

using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshowoint;
ncl ude <i omani p>

using std::setw, using std::setprecision

nclude <limts>

using std::nuneric_linmts;

ncl ude <stdexcept >

usi ng std::exception

#i

#i

#i

Using find_location and find_scale to meet dispensing and measurement specifications

Consider an examplefrom K Krishnamoorthy, Handbook of Statistical Distributionswith Applications, ISBN 1-58488-635-8, (2006)
p 126, example 10.3.7.

"A machineis set to pack 3 kg of ground beef per pack. Over along period of timeit isfound that the average packed was 3 kg with
a standard deviation of 0.1 kg. Assume the packing is normally distributed.”

We start by constructing anormal distribution with the given parameters:

double mean = 3.; // kg
doubl e standard_deviation = 0.1; // kg
nor mal packs(nmean, standard_deviation);

We can then find the fraction (or %) of packages that weigh more than 3.1 kg.

doubl e max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf (conpl enent (packs, max_weight)) * 100. << endl; // P(X > 3.1)

We might want to ensure that 95% of packs are over a minimum weight specification, then we want the value of the mean such that
P(X <2.9) =0.05.

Using the mean of 3 kg, we can estimate the fraction of packs that fail to meet the specification of 2.9 kg.

doubl e m ni mumweight = 2.9

cout <<"Fraction of packs <= " << mininmmweight << " with a nmean of " << nmean
<< " is " << cdf (conpl ement (packs, m nimumweight)) << endl

/1 fraction of packs <= 2.9 with a nmean of 3 is 0.841345

Thisis 0.84 - more than the target fraction of 0.95. If we want 95% to be over the minimum weight, what should we set the mean
weight to be?

Using the KK StatCalc program supplied with the book and the method given on page 126 gives 3.06449.

We can confirm this by constructing a new distribution which we call 'xpacks with a safety margin mean of 3.06449 thus:
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doubl e over _nean = 3.06449;
nor mal xpacks(over _nean, standard_devi ation);
cout << "Fraction of packs >= " << m ni num wei ght
<< " with a nean of " << xpacks. nean()
<< " is " << cdf (conpl enent (xpacks, m nimumweight)) << endl;
/'l fraction of packs >= 2.9 with a nmean of 3.06449 is 0.950005

Using this Math Toolkit, we can calculate the required mean directly thus:

doubl e under_fraction = 0.05; // so 95% are above the m ni num wei ght nean - sd = 2.9
double low linmt = standard_devi ati on;

doubl e offset = nean - low linmt - quantile(packs, under_fraction);
doubl e nom nal _nean = nean + offset;
/1 mean + (nean - low limt - quantile(packs, under_fraction));

nor mal nomi nal _packs(noni nal _nmean, standard_devi ation);

cout << "Setting the packer to " << nominal_mean << " w |l nean that
<< "fraction of packs >=" << m ni num wei ght
<< " is " << cdf (conpl enent (nom nal _packs, mnimumweight)) << endl;

/1l Setting the packer to 3.06449 will nean that fraction of packs >= 2.9 is 0.95

This calculation is generalized as the free function called f i nd_I ocat i on, see algorithms.

To use thiswe will need to

#i ncl ude <boost/ math/distributions/find_|location. hpp>
usi ng boost::math::find_| ocation;

and then use find_location function to find safe_mean, & construct a new normal distribution called 'goodpacks.

doubl e safe_nean = find_l ocati on<normal >(nmi ni mum wei ght, under_fraction, standard_deviation);
nor mal good_packs(saf e_nean, standard_devi ation);

with the same confirmation as before:

cout << "Setting the packer to " << nominal _mean << " w || nean that
<< "fraction of packs >=" << m ni num wei ght
<< " is " << cdf (conpl ement (good_packs, m nimumweight)) << endl;

/1l Setting the packer to 3.06449 will nean that fraction of packs >= 2.9 is 0.95

Using Cauchy-Lorentz instead of normal distribution

After examining the weight distribution of alarge number of packs, we might decide that, after all, the assumption of anormal dis-
tribution is not redlly justified. We might find that the fit is better to a Cauchy Distribution. This distribution has wider 'wings, so
that whereas most of the values are closer to the mean than the normal, there are al so more values than 'normal’ that lie further from
the mean than the normal.

This might happen because a larger than normal lump of meat is either included or excluded.

We first create a Cauchy Distribution with the original mean and standard deviation, and estimate the fraction that lie below our
minimum weight specification.

cauchy cpacks(mean, standard_devi ation);

cout << "Cauchy Setting the packer to " << mean << " will nean that
<< "fraction of packs >= " << m ni numwei ght
<< " is " << cdf (conpl ement (cpacks, minimumweight)) << endl;

/'l Cauchy Setting the packer to 3 will nean that fraction of packs >= 2.9 is 0.75
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Note that far fewer of the packs meet the specification, only 75% instead of 95%. Now we can repeat the find_location, using the
cauchy distribution as template parameter, in place of the normal used above.

double I ¢c = find_l ocati on<cauchy>(m ni num wei ght, under_fraction, standard_devi ation);
cout << "find_|l ocation<cauchy>(m ni mumwei ght, over fraction, standard_deviation); " <<lc << endl;
/1 find_l ocation<cauchy>(m ni num wei ght, over fraction, packs.standard_deviation()); 3.53138

Note that the safe_mean setting needs to be much higher, 3.53138 instead of 3.06449, so we will make rather less profit.

And again confirm that the fraction meeting specification is as expected.

cauchy goodcpacks(lc, standard_deviation);

cout << "Cauchy Setting the packer to " << lc << " will nean that
<< "fraction of packs >= " << m ni numwei ght
<< " is " << cdf (conpl enent (goodcpacks, m ni mumweight)) << endl;

/1 Cauchy Setting the packer to 3.53138 will nean that fraction of packs >= 2.9 is 0.95

Finally we could estimate the effect of a much tighter specification, that 99% of packs met the specification.

cout << "Cauchy Setting the packer to "
<< find_l ocation<cauchy>(m ni rum wei ght, 0.99, standard_devi ation)

<< " will nean that
<< "fraction of packs >= " << m ni num wei ght
<< " is " << cdf(conpl enent (goodcpacks, m ni mumweight)) << endl;

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is0.99, but will more than double the mean loss from 0.0644
to 0.133 kg per pack.

Of course, this calculation is not limited to packs of meat, it applies to dispensing anything, and it also appliesto a'virtual' material
like any measurement.

The only caveat is that the calculation assumes that the standard deviation (scale) is known with a reasonably low uncertainty,
something that is not so easy to ensure in practice. And that the distribution is well defined, Normal Distribution or Cauchy Distri-
bution, or some other.

If oneissimply dispensing avery large number of packs, then it may be feasible to measure the weight of hundreds or thousands of
packs. With a healthy 'degrees of freedom', the confidence intervals for the standard deviation are not too wide, typically about +
and - 10% for hundreds of observations.

For other applications, where it is more difficult or expensive to make many observations, the confidence intervals are depressingly
wide.

See Confidence Intervals on the standard deviation for aworked example chi_square _std dev_test.cpp of estimating these intervals.
Changing the scale or standard deviation

Alternatively, we could invest in a better (more precise) packer (or measuring device) with alower standard deviation, or scale.
This might cost more, but would reduce the amount we have to 'give away' in order to meet the specification.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be located
at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " =" << quantil e(packs, p)
<< ", nmean =" << packs.nean() << ", sd =" << packs.standard_deviation() << endl;

Quantile of 0.05=2.83551, mean=3,sd=0.1
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With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, alittle below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05 kg.

nor mal pack05(nean, 0.05);
cout << "Quantile of " << p << " =" << quantil e(pack05, p)

<< ", npean = " << pack05.nean() << ", sd = " << pack05. standard_devi ation() << endl;
/1l Quantile of 0.05 = 2.91776, nmean = 3, sd = 0.05

cout <<"Fraction of packs >= " << minimumweight << " with a nean of " << nean
<< " and standard deviation of " << pack05. standard_devi ation()
<< " is " << cdf(conpl enent (pack05, m nimumweight)) << endl;

/1l Fraction of packs >= 2.9 with a nean of 3 and standard deviation of 0.05 is 0.97725

So 0.05 was quite agood guess, but we are alittle over the 2.9 target, so the standard deviation could be atiny bit more. So we could
do some more guessing to get closer, say by increasing standard deviation to 0.06 kg, constructing another new distribution called
pack06.

nor mal pack06( nean, 0.06);
cout << "Quantile of " << p << " =" << quantil e(pack06, p)
<< ", nean = " << pack06.nmean() << ", sd = " << pack06. standard_devi ation() << endl;

/1l Quantile of 0.05 = 2.90131, nean = 3, sd = 0.06

cout <<"Fraction of packs >= " << mininmumweight << " with a nmean of " << nean
<< " and standard deviation of " << pack06. standard_devi ation()
<< " is " << cdf (conpl enent (pack06, m ni mumweight)) << endl;

/1 Fraction of packs >= 2.9 with a nmean of 3 and standard deviation of 0.06 is 0.95221

Now we are getting really close, but to do the job properly, we might need to use root finding method, for examplethetools provided,
and used elsewhere, in the Math Toolkit, see root-finding without derivatives

But in this (normal) distribution case, we can and should be even smarter and make a direct calculation.

Our required limit is minimum_weight = 2.9 kg, often called the random variate z. For a standard normal distribution, then probab-
ility p = N((minimum_weight - mean) / sd).

We want to find the standard deviation that would be required to meet this limit, so that the p th quantile is located at z (minim-
um_weight). In this case, the 0.05 (5%) quantileis at 2.9 kg pack weight, when the mean is 3 kg, ensuring that 0.95 (95%) of packs
are above the minimum weight.

Rearranging, we can directly calculate the required standard deviation:

normal NO1; // standard normal distribution with nean zero and unit standard devi ation.
p = 0.05;

doubl e gp = quantile(N01, p);

doubl e sd95 = (m ni numwei ght - mean) / qp;

cout << "For the "<< p << "th quantile to be located at
<< mni mumwei ght << ", would need a standard deviation of " << sd95 << endl;
/1 For the 0.05th quantile to be located at 2.9, would need a standard devi ation of 0.0607957

We can now construct a new (normal) distribution pack95 for the 'better' packer, and check that our distribution will meet the spe-
cification.
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nor mal pack95(nean, sd95);

cout <<"Fraction of packs >= " << mininmumweight << " with a nean of " << nean
<< " and standard deviation of " << pack95.standard_devi ation()
<< " is " << cdf(conpl enent (pack95, m nimumweight)) << endl;

/'l Fraction of packs >= 2.9 with a nean of 3 and standard devi ation of 0.0607957 is 0.95

This calculation is generalized in the free function find_scale, as shown below, giving the same standard deviation.

doubl e ss = find_scal e<normal >(m ni mum wei ght, under_fraction, packs.nean());
cout << "find_scal e<normal >(m ni rumwei ght, under _fraction, packs.nean()); " << ss << endl;
/1 find_scal e<normal >(m ni rum wei ght, under_fraction, packs.nmean()); 0.0607957

If we had defined an over_fraction, or percentage that must pass specification

doubl e over_fraction = 0.95;
And (wrongly) written

doubl e sso = find_scal e<nornmal >(m ni rum wei ght, over_fraction, packs.nean());
With the default policy, we would get a message like

Message from thrown exception was:
Error in function boost::math::find_scal e<Dist, Policy>(double, double, double, Policy):
Conput ed scal e (-0.060795683191176959) is <= 0! WAs the conpl enent intended?

But this would return a negative standard deviation - obviously impossible. The probability should be 1 - over_fraction, not
over_fraction, thus:

doubl e sslo = find_scal e<normal >(m ni mumwei ght, 1 - over_fraction, packs.nean());
cout << "find_scal e<nornmal >(m ni rum wei ght, under _fraction, packs.nean()); " << sslo << endl;
/1 find_scal e<nornmal >(mi ni num wei ght, under _fraction, packs.nean()); 0.0607957

But notice that using '1 - over_fraction' - will lead to aloss of accuracy, especialy if over_fraction was close to unity. (See why
complements?). In this (very common) case, we should instead use the complements, giving the most accurate result.

doubl e ssc = find_scal e<nornal >(conpl enent (m ni mum wei ght, over_fraction, packs.nean()));

cout << "find_scal e<nornal >(conpl enent (m ni mum wei ght, over_fraction, packs.nmean())); 0O
<< ssc << endl;

/1 find_scal e<normal >(conpl ement (m ni mrum wei ght, over_fraction, packs.nmean())); 0.0607957

Note that our guess of 0.06 was close to the accurate value of 0.060795683191176959.

We can again confirm our prediction thus:

nor mal pack95c(mean, ssc);

cout <<"Fraction of packs >= " << mninmumweight << " with a nmean of " << nean
<< " and standard deviation of " << pack95c. standard_devi ation()
<< " Is " << cdf (conpl enent (pack95c, m ni numweight)) << endl;

/'l Fraction of packs >= 2.9 with a nean of 3 and standard devi ation of 0.0607957 is 0.95

Notice that these two deceptively simple questions:

» Do we over-fill to make sure we meet a minimum specification (or under-fill to avoid an overdose)?
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and/or
» Do we mesasure better?
are actually extremely common.

The weight of beef might be replaced by a measurement of more or less anything, from drug tablet content, Apollo landing rocket
firing, X-ray treatment doses...

The scale can be variation in dispensing or uncertainty in measurement.

Seefind_mean_and_sd_normal.cpp for full source code & appended program outpui.

Comparison with C, R, FORTRAN-style Free Functions

You are probably familiar with a statistics library that has free functions, for example the classic NAG C library and matching NAG
FORTRAN Library, Microsoft Excel BINOMDIST(number_sytrials,probability s,cumulative), R, MathCAD pbinom and many
others.

If s0, you may find 'Distributions as Objects’ unfamiliar, if not aien.
However, do not panic, both definition and usage are not really very different.

A very simple example of generating the same values asthe NAG C library for the binomial distribution follows. (If you find slightly
different values, the Boost C++ version, using double or better, is very likely to be the more accurate. Of course, accuracy is not
usually a concern for most applications of this function).

The NAG function specification is

voi d nag_bi nom al _dist(lnteger n, double p, Integer Kk,
doubl e *pl ek, double *pgtk, double *pegk, NagError *fail)

andiscalled
g0lbjc(n, p, k, &plek, &pgtk, &peqgk, NAGERR DEFAULT);
The equivalent using this Boost C++ library is:

usi ng nanespace boost::math; // Using declaration avoids very |ong nanes.
bi nom al my_dist(4, 0.5); // c.f. NAGn =4, p =20.5

and values can be output thus:

cout
<< my_dist.trials() << " " /1 Echo the NAG input n = 4 trials.
<< ny_di st.success_fraction() << " " /1 Echo the NAG input p = 0.5
<< cdf (my_dist, 2) << " " /1 NAG plek with k =
<< cdf (conplenent(nmy_dist, 2)) << " " [/ NAG pgtk with k = 2
<< pdf (my_dist, 2) << endl; /1 NAG pegk with k = 2

cdf (di st, k) isequivalentto NAG library pl ek, lower tail probability of <=k
cdf (conpl enent (di st, k)) isequivaent to NAG library pgt k, upper tail probability of >k
pdf (di st, k) isequivalentto NAG library pegk, point probability of ==

See hinomia_example_nag.cpp for details.
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Using the Distributions from Within C#

The distributions in this library can be used from the C# programming language when they are built using Microsoft's Common
Language Runtime (CLR) option.

An example of thiskind of usageisgiveninthe Distribution Explorer example. Seeboost - r oot / | i bs/ mat h/ dot _net _exanpl e
for the source code: the application consists of aC++ .dll that containsthe actual distributions, and a C# GUI that allowsyou to explore
their properties.

Random Variates and Distribution Parameters

Random variates and distribution parameters are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld
by placing asemi-colon after the random variate (whose value you ‘choosg), to separate the variate from the parameter(s) that defines
the shape of the distribution.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on one trial).
It also hasthe random variate k: the number of successes observed. This means the probability density/mass function (pdf) iswritten
asf(k; n, p).

Tranglating this into code the bi nomni al _di st ri buti on constructor therefore has two parameters:

bi nom al _di stribution(Real Type n, Real Type p);

Whilethefunction pdf has one argument specifying the distribution type (which includesits parameters, if any), and asecond argument
for the random variate. So taking our binomial distribution example, we would write:

pdf (bi nom al _di stri buti on<Real Type>(n, p), Kk);

Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathematically defined
as discrete functions: only integral values of the random variate are envisaged and the functions are only defined at these integral
values. However because the method of calculation often uses continuous functions, it is convenient to treat them as if they were
continuous functions, and permit non-integral values of their parameters.

To enforce a strict mathematical model, users may use floor or ceil functions on the random variate, prior to calling the distribution
function, to enforce integral values.

For similar reasons, in continuous distributions, parameters like degrees of freedom that might appear to be integral, are treated as
real values (and are promoted from integer to floating-point if necessary). In this case however, that there are a small number of
situations where non-integral degrees of freedom do have a genuine meaning.

Generally speaking thereis no loss of performance from allowing real-values parameters: the underlying special functions contain
optimizations for integer-valued arguments when applicable.
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Caution

The quantile function of adiscretedistribution will by default return an integer result that has been rounded outwards.
That isto say lower quantiles (where the probahility is less than 0.5) are rounded downward, and upper quantiles
(where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is
requested, then at least the requested coverage will be present in the central region, and no more than the requested
coverage will be present in the tails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on adiscrete distribution. The reference docs describe how to change
the rounding policy for these distributions.
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Statistical Distributions Reference

Non-Member Properties

Propertiesthat are common to all distributions are accessed via non-member getter functions: non-membership allows more of these
functions to be added over time, as the need arises. Unfortunately the literature uses many different and confusing namesto refer to
arather small number of actual concepts; refer to the concept index to find the property you want by the name you are most familiar
with. Or use the function index to go straight to the function you want if you aready know its name.

Function Index

» Cumulative Distribution Function.

» Complement of the Cumulative Distribution Function.
» Cumulative Hazard Function.

» Hazard Function.

* Kkurtosis.

» kurtosis_excess

* mean.

* median.

* mode.

* Probability Density Function.

* range.

e Quantile.

* Quantile from the complement of the probability.
» skewness.

* standard deviation.

* support.

* variance.

Conceptual Index

» Complement of the Cumulative Distribution Function.
» Cumulative Distribution Function.

» Cumulative Hazard Function.

* |nverse Cumulative Distribution Function.

* Inverse Survival Function.

» Hazard Function

» Lower Critical Value.

208

render
httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

* kurtosis.

» Kkurtosis excess

e mean.

* median.

* mode.

e P.

* Percent Point Function.

* Probability Density Function.
* Probability Mass Function.
* range.

. Q.

e Quantile.

¢ Quantile from the complement of the probability.
+ skewness.

 standard deviation

* Surviva Function.

* support.

» Upper Critical Value.

* variance.

Cumulative Distribution Function

tenpl ate <cl ass Real Type, class Policy>
Real Type cdf (const Distribution-Type<Real Type, Policy>& dist, const Real Type& x);

The Cumulative Distribution Function is the probability that the variable takes a value less than or equal to x. It is equivalent to the
integral from -infinity to x of the Probability Density Function.

This function may return adomain_error if the random variable is outside the defined range for the distribution.

For example, the following graph shows the cdf for the normal distribution:
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CDF for the Normal Distribution

e
s

04

0

Complement of the Cumulative Distribution Function

tenpl ate <class Distribution, class Real Type>
Real Type cdf (const Unspeci fi ed- Conpl enent - Type<Di stri buti on, Real Type>& conp);

The complement of the Cumulative Distribution Function is the probability that the variable takes a value greater than x. It is equi-
valent to theintegral from x to infinity of the Probability Density Function, or 1 minus the Cumulative Distribution Function of x.

Thisis aso known as the survival function.
This function may return adomain_error if the random variable is outside the defined range for the distribution.

Inthislibrary, it is obtained by wrapping the argumentsto the cdf functioninacall to conpl ement , for example:

/1 standard normal distribution object:

boost: : mat h: : normal norm

/1 print survival function for x=2.0:

std::cout << cdf(conplenment(norm 2.0)) << std::endl;

For example, the following graph shows the __complement of the cdf for the normal distribution:
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Survival Function / Complement of the CDF of the Normal Distribution

04

See why complements? for why the complement is useful and when it should be used.

Hazard Function

tenpl ate <cl ass Real Type, class Policy>
Real Type hazard(const Distribution-Type<Real Type, Policy>& dist, const Real Type& x);

Returns the Hazard Function of x and distibution dist.

This function may return adomain_error if the random variable is outside the defined range for the distribution.

pdf (x)
[— cdf (x)

‘@ Caution
Some authors refer to this as the conditional failure density function rather than the hazard function.

Cumulative Hazard Function

hazard(x) = h(x) =

tenpl ate <cl ass Real Type, class Policy>
Real Type chf(const Distribution-Type<Real Type, Policy>& dist, const Real Type& x);

Returns the Cumulative Hazard Function of x and distibution dist.

This function may return adomain_error if the random variable is outside the defined range for the distribution.

chf (dist, x) = H(x) | h(uydu
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m Caution
Some authors refer to this as simply the "Hazard Function™.

mean

t enpl at e<cl ass Real Type, class Policy>
Real Type nean(const Distribution-Type<Real Type, Policy>& dist);

Returns the mean of the distribution dist.

This function may return adomain_error if the distribution does not have a defined mean (for example the Cauchy distribution).

median

t enpl at e<cl ass Real Type, class Policy>
Real Type nmedi an(const Distribution-Type<Real Type, Policy>& dist);

Returns the median of the distribution dist.

mode

t enpl at e<cl ass Real Type, Policy>
Real Type node(const Distribution-Type<Real Type, Policy>& dist);

Returns the mode of the distribution dist.

This function may return adomain_error if the distribution does not have a defined mode.

Probability Density Function

tenpl ate <cl ass Real Type, class Policy>
Real Type pdf (const Distribution-Type<Real Type, Policy>& dist, const Real Type& x);

For a continuous function, the probability density function (pdf) returns the probability that the variate has the value x. Since for
continuous distributions the probability at asingle point is actually zero, the probability is better expressed asthe integral of the pdf
between two points: see the Cumulative Distribution Function.

For a discrete distribution, the pdf is the probability that the variate takes the value x.
This function may return adomain_error if the random variable is outside the defined range for the distribution.

For example, for astandard normal distribution the pdf looks like this:
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The Nnn‘rfn:.;al Distribution

Odt,

(8]

Range

t enpl at e<cl ass Real Type, class Policy>
st d: : pai r<Real Type, Real Type> range(const D stribution-Type<Real Type, Policy>& dist);

Returns the valid range of the random variable over distribution dist.

Quantile

tenpl ate <cl ass Real Type, class Policy>
Real Type quantil e(const Distribution-Type<Real Type, Policy>& dist, const Real Type& p);

The quantile is best viewed as the inverse of the Cumulative Distribution Function, it returns a value x such that cdf (di st, x)
== p.

Thisis also known as the percent point function, or percentile, or fractile, it is also the same as calculating the lower critical value
of adistribution.

This function returns a domain_error if the probability lies outside [0,1]. The function may return an overflow_error if thereis no
finite value that has the specified probability.

The following graph shows the quantile function for a standard normal distribution:
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Quantile of the Mormal Distribution

Quantile from the complement of the probability.

See also complements.

tenpl ate <class Distribution, class Real Type>
Real Type quantil e(const Unspecifi ed- Conpl enent - Type<Di stri buti on, Real Type>& conp);

Thisisthe inverse of the Complement of the Cumulative Distribution Function. It is calculated by wrapping the argumentsin a call
to the quantile function in a call to complement. For example:

/1 define a standard normal distribution:

boost :: mat h: : normal norm

/'l print the value of x for which the conpl enent

/1 of the probability is 0.05:

std::cout << quantile(conplenent(norm 0.05)) << std::endl;

The function computes avalue x such that cdf (conpl ement (di st, x)) == q where giscomplement of the probahility.
Why complements?
Thisfunction isalso called the inverse survival function, and is the same as calculating the upper critical value of adistribution.

Thisfunction returnsadomain_error if the probablity lies outside [0,1]. The function may return an overflow_error if thereisnofinite
value that has the specified probability.

The following graph show the inverse survival function for the normal distribution:
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Inverse Survival Function
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Standard Deviation

tenpl ate <cl ass Real Type, class Policy>
Real Type standard_devi ation(const Distribution-Type<Real Type, Policy>& dist);

Returns the standard deviation of distribution dist.

This function may return adomain_error if the distribution does not have a defined standard deviation.

support

t enpl at e<cl ass Real Type, class Policy>
st d: : pai r <Real Type, Real Type> support(const Distribution-Type<Real Type, Policy>& dist);

Returns the supported range of random variable over the distribution dist.

The distribution is said to be 'supported' over arange that is "the smallest closed set whose complement has probability zero". Non-
mathematicians might say it means the 'interesting' smallest range of random variate x that has the cdf going from zero to unity.
Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.

Variance

tenpl ate <cl ass Real Type, class Policy>
Real Type variance(const Distribution-Type<Real Type, Policy>& dist);

Returns the variance of the distribution dist.

This function may return adomain_error if the distribution does not have a defined variance.

Skewness

tenpl ate <cl ass Real Type, class Policy>
Real Type skewness(const Distribution-Type<Real Type, Policy>& dist);
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Statistical Distributions and Functions

Returns the skewness of the distribution dist.

This function may return adomain_error if the distribution does not have a defined skewness.

Kurtosis

tenpl ate <cl ass Real Type, class Policy>
Real Type kurtosis(const Distribution-Type<Real Type, Policy>& dist);

Returns the 'proper’ kurtosis (normalized fourth moment) of the distribution dist.

kertosis= B, = g /i

Where|; isthei'th central moment of the distribution, and in particular |, isthe variance of the distribution.
The kurtosis is ameasure of the "peakedness' of adistribution.

Note that the literature definition of kurtosisis confusing. The definition used here is that used by for example Wolfram MathWorld
(that includes atable of formulae for kurtosis excess for various distributions) but NOT the definition of kurtosis used by Wikipedia
which treats "kurtosis' and "kurtosis excess' as the same quantity.

kurtosis_excess = 'proper' kurtosis - 3

This subtraction of 3 is convenient so that the kurtosis excess of a normal distribution is zero.
This function may return adomain_error if the distribution does not have a defined kurtosis.

'Proper’ kurtosis can have a value from zero to + infinity.

Kurtosis excess

tenpl ate <cl ass Real Type, Policy>
Real Type kurtosis_excess(const Distribution-Type<Real Type, Policy>& dist);

Returns the kurtosis excess of the distribution dist.
kurtosisexcess=y, = |, /W,? - 3= kurtosis- 3
Where; isthei'th central moment of the distribution, and in particular p, isthe variance of the distribution.

The kurtosis excess is a measure of the "peakedness” of a distribution, and is more widely used than the "kurtosis proper”. It is
defined so that the kurtosis excess of anormal distribution is zero.

This function may return adomain_error if the distribution does not have a defined kurtosis excess.

Kurtosis excess can have avalue from -2 to + infinity.
kurtosis = kurtosis_excess +3;

The kurtosis excess of a normal distribution is zero.

P and Q

Theterms P and Q are sometimes used to refer to the Cumulative Distribution Function and its complement respectively. L owercase
p and g are sometimes used to refer to the values returned by these functions.
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Statistical Distributions and Functions

Percent Point Function or Percentile

The percent point function, also known as the percentile, is the same as the Quantile.

Inverse CDF Function.

Theinverse of the cumulative distribution function, is the same as the Quantile.

Inverse Survival Function.

The inverse of the survival function, is the same as computing the quantile from the complement of the probability.
Probability Mass Function

The Probability Mass Function is the same as the Probability Density Function.

Theterm Mass Function isusually applied to discrete distributions, while the term Probability Density Function appliesto continuous
distributions.

Lower Critical Value.

Thelower critical value calculatesthe value of the random variabl e given the areaunder the left tail of the distribution. It isequivalent
to calculating the Quantile.

Upper Critical Value.

The upper critical value calculates the value of the random variable given the area under the right tail of the distribution. It is equi-
valent to calculating the quantile from the complement of the probability.

Survival Function

Refer to the Complement of the Cumulative Distribution Function.

Distributions
Arcsine Distribution

#i ncl ude <boost/ math/distributions/arcsine. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type
class Policy
cl ass arcsine_distribution;

doubl e,
policies::policy<> >

t ypedef arcsine_distributi on<doubl e> arcsine; // doubl e precision standard arcsine distribution O
[0,1].

tenpl ate <cl ass Real Type, class Policy>
class arcsine_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/] Constructor fromtwo range paraneters, x_mn and x_nax:
arcsi ne_distribution(Real Type x_mn, Real Type x_nax);
/1l Range Par aneter accessors:
Real Type x_nin() const;
Real Type x_nax() const;
¥

}} /1 nanespaces

Theclasstypear csi ne_di stri but i on represents an arcsine probability distribution function. The arcsine distribution is named
because its CDF uses the inverse sin™! or arcsine.

Thisisimplemented as ageneralized version with support from x_min to x_max providing the 'standard arcsine distribution’ as default
withx_min= 0and x_max = 1. (A few make other choices for 'standard’).

The arcsine distribution is generalized to include any bounded support a <= x <= b by Wolfram and Wikipedia, but also using loc-
ation and scale parameters by Virtual Laboratoriesin Probability and Statistics Arcsine distribution. The end-point versionissimpler
and more obvious, so we implement that. If desired, this outlines how the Beta Distribution can be used to add a shape factor.

The probability density function PDF for the arcsine distribution defined on the interval [x_min, Xx_max] is given by:
f(x; x_min, x_max) = 1 /(Ti/((x - x_min)[{X_max - X))

For example, Wolfram Alpha arcsine distribution, from input of
N[ PDF[ ar csi nedi stribution[0, 1], 0.5], 50]
computes the PDF value

0.63661977236758134307553505349005744813783858296183

The Probability Density Functions (PDF) of generalized arcsine distributions are symmetric U-shaped curves, centered on (X_max
- X_min)/2, highest (infinite) near the two extrema, and quite flat over the central region.

If random variate X isx_min or x_max, then the PDF isinfinity. If random variate x isx_min then the CDF is zero. If random variate
x isx_max then the CDF is unity.

The 'Standard' (O, 1) arcsine distribution is shown in blue and some generalized examples with other x ranges.
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Statistical Distributions and Functions

Arcsine Distribution PDF
2.5 VA AV/
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Random Variable x
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The Cumulative Distribution Function CDF is defined as

F(x) = 2[@rcsin(v((x-x_min)/(x_max - X))) / Tt

Arcsine Distribution CDF
1
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Constructor

arcsine_di stributi on(Real Type x_m n, Real Type x_nax);

constructs an arcsine distribution with range parameters x_min and x_max.
Requires x_min < X_max, otherwise domain_error is called.

For example:

arcsine_di stribution<> nyarcsine(-2, 4);
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Statistical Distributions and Functions

constructs an arcsine distribution with x_min = -2 and x_max = 4.

Default valuesof x min=0andx max=1anda typedef arcsine_distribution<doubl e> arcsi ne; mean that
arcsi ne as;

constructs a'Standard 01' arcsine distribution.

Parameter Accessors

Real Type x_min() const;
Real Type x_max() const;

Return the parameter x_min or x_max from which this distribution was constructed.

So, for example:

usi ng boost:: math::arcsine_distribution;
arcsine_distribution<> as(2, 5); // Cconstructs a double arcsine distribution.

assert(as.x_mn() == 2.); [/ as.x_mn() returns 2.
assert(as.x_max() == 5.); /1l as.x_max() returns 5.

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.

S Note
There are dwaystwo valuesfor themode, at x_min and at x_max, default 0 and 1, so instead we rai se the exception
domain_error. At these extrema, the PDFs are infinite, and the CDFs zero or unity.

Applications

Thearcsine distribution is useful to describe Random walks, (including drunken walks) Brownian motion, Weiner processes, Bernoulli
trials, and their appplication to solve stock market and other ruinous gambling games.

The random variate x is constrained to x_min and x_max, (for our 'standard’ distribution, O and 1), and is usually some fraction. For
any other x_min and x_max afraction can be obtained from x using

fraction = (x - x_min) / (x_max - X_min)

The simplest example is tossing heads and tails with a fair coin and modelling the risk of losing, or winning. Walkers (molecules,
drunks...) moving left or right of a centre line are another common example.

The random variate x is the fraction of time spent on the 'winning' side. If half the time is spent on the 'winning' side (and so the
other half on the'losing’ side) then x = 1/2.

For large numbers of tosses, thisis modelled by the (standard [0,1]) arcsine distribution, and the PDF can be calculated thus:

std::cout << pdf(as, 1. / 2) << std::endl; // 0.637
/1l pdf has a minimumat x = 0.5
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Statistical Distributions and Functions

From the plot of PDF, it isclear that x = % isthe minimum of the curve, so thisisthe least likely scenario. (Thisis highly counter-
intuitive, considering that fair tosses must eventually become equal. It turns out that eventually is not just very long, but infinite!).

The most likely scenarios are towards the extremawherex =0 or x = 1.

If fraction of time on theleft isa ¥, it isonly slightly more likely because the curve is quite flat bottomed.

std::cout << pdf(as, 1. / 4) << std::endl; // 0.735

If we consider fair coin-tossing games being played for 100 days (hypothetically continuously to be 'at-limit") the person winning
after day 5 will not change in fraction 0.144 of the cases.

We can easily compute this setting x = 5./100 = 0.05
std::cout << cdf(as, 0.05) << std::endl; // 0.144

Similarly, we can compute from afraction of 0.05 /2 = 0.025 (halved because we are considering both winners and losers) corres-
ponding to 1 - 0.025 or 97.5% of the gamblers, (walkers, particles...) on the same side of the origin

std::cout << 2 * cdf(as, 1 - 0.975) << std::endl; // 0.202

(use of the complement gives abit more clarity, and avoids potential 1oss of accuracy when xis closeto unity, seewhy complements?).
std::cout << 2 * cdf (conplenment (as, 0.975)) << std::endl; // 0.202

or we can reverse the calculation by assuming a fraction of time on one side, say fraction 0.2,

std::cout << quantile(as, 1 - 0.2/ 2) << std::endl; // 0.976

std::cout << quantile(conplenent(as, 0.2 / 2)) << std::endl; // 0.976

Summary: Every time we toss, the odds are equal, so on average we have the same change of winning and losing.

But thisisnot true for an an individual game where one will be mostly in a bad or good patch.

Thisis quite counter-intuitive to most people, but the mathematicsis clear, and gamblers continue to provide proof.
Moral: if you in alosing patch, leave the game. (Because the odds to recover to a good patch are poor).

Corollary: Quit while you are ahead?

A working exampleis at arcsine_example.cpp including sample output .

Related distributions

The arcsine distribution with x_min = 0 and Xx_max = 1 is specia case of the Beta Distribution with a = 1/2 and 3 = 1/2.

Accuracy

This distribution isimplemented using sgrt, sine, cos and arc sine and cos trigonometric functions which are normally accurateto a
few machine epsilon. But all values suffer from loss of significance or cancellation error for values of x closeto x_max. For example,
for astandard [0, 1] arcsine distribution as, the pdf is symmetric about random variate x = 0.5 so that one would expect pdf ( as,
0.01) == pdf (as, 0.99).Butasxnearsunity, thereisincreasinglossof significance. To counteract this, the complement versions
of CDF and quantile are implemented with alternative expressions using cos * instead of sin™. Users should see why complements?
for guidance on when to avoid loss of accuracy by using complements.
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Statistical Distributions and Functions

Testing

The results were tested against afew accurate spot values computed by Wolfram Alpha, for example:

N[ PDF[ ar csi nedi stri bution[O0,

1], 0.5], 50]

0.63661977236758134307553505349005744813783858296183

Implementation

Inthefollowing table a and b are the parametersx_min and Xx_max, x isthe random variable, p isthe probability and its complement

q= 1-p.
Function
support
pdf

cdf

cdf of complement

quantile

quantile from the complement

mean

median

mode

variance

skewness

kurtosis excess

kurtosis

The quantile was cal cul ated using an expression obtained by using Wolfram Alphato invert the formulafor the CDF thus

solve [p -

2/ pi

which was interpreted as

Sol ve[p -

(2 ArcSin[Sgrt[(-a + x)/(-a + b)]])/Pi

and produced the resulting expression

X = -a sin™2((pi

p)/2)+atb sin*2((pi p)/2)

Thanks to Wolfram for providing this facility.

sin*1(sqrt((x-a)/(b-a))) = 0, x]

| mplementation Notes

x 0 [a, b], default x 0 [0, 1]

f(x; a b) = V(1dJ(x - @) (b - X))
F(x) = 2/m@n‘(V(x-a) / (b-a))
2/(ridos(V(x - &) / (b - @)))
-alSin’(Y2mip) + a + bEin?(YTip)
-alos’(Y.Tip) + a+ blGos’(Y4Tid)
v5(ath)

Ya(atb)

x O [a, b], so raises domain_error (returning NaN).
(b-a)?/8

0

-3/2

kurtosis excess+ 3

== 01 X,
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Statistical Distributions and Functions

References

» Wikipedia arcsine distribution

» Wikipedia Beta distribution

* Wolfram MathWorld

* Wolfram Alpha

Sources

» The probahility of going through a bad patch Esteban Moro's Blog.

» What soschumcks and the arc sine have in common Peter Haggstrom.

e arcsine distribution.

Wolfram reference arcsine examples.

» Shlomo Sternberg slides.

Bernoulli Distribution

#i ncl ude <boost/math/distributions/bernoulli.hpp>

namespace boost{ nanmespace math{
tenmpl ate <cl ass Real Type = doubl e,

class Policy = policies::policy<> >
cl ass bernoul I'i _distribution;
typedef bernoul I'i _distribution<> bernoulli;

tenpl ate <cl ass Real Type, class Policy>
class bernoul I'i _distribution

{

public:
t ypedef Real Type val ue_type;
t ypedef Policy pol i cy_type;

bernoul I'i _di stri bution(Real Type p); // Constructor.
/'l Accessor function.

Real Type success_fraction() const

/1 Probability of success (as a fraction).

} .

}} /1 nanespaces

The Bernoulli distribution is a discrete distribution of the outcome of asingle trial with only two results, O (failure) or 1 (success),
with a probability of successp.

The Bernoulli distribution isthe simplest building block on which other discrete distributions of sequences of independent Bernoulli
trials can be based.

The Bernoulli isthe binomial distribution (k = 1, p) with only one trial.
probability density function pdf f(0) = 1 - p, f(1) = p. Cumulative distribution function D(k) = if (k ==0) 1- pelse 1.

The following graph illustrates how the probability density function pdf varies with the outcome of the singletrial:
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Statistical Distributions and Functions

Bernoulli Distribution PDF
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Member Functions
bernoul I'i _di stribution(Real Type p);
Constructs a bernoulli distribution with success_fraction p.
Real Type success_fraction() const

Returns the success fraction parameter of this distribution.
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Statistical Distributions and Functions

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variableis 0 and 1, and the useful supported rangeisonly O or 1.

Outside this range, functions are undefined, or may throw domain_error exception and make an error message available.
Accuracy

The Bernoulli distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation

In the following table p is the probability of successand q = 1-p. kisthe random variate, either O or 1.

S Note
The Bernoulli distribution isimplemented here as a strict discrete distribution. If ageneralised version, allowing k
to be any real, isrequired then the binomial distribution with asingle trial should be used, for example:

bi nom al _di stribution(1l, 0.25)

Function Implementation Notes
Supported range {0, 1}
pdf Using therelation: pdf =1-pfork =0, elsep
cdf Using therelation: cdf =1 -pfork =0, else1
cdf complement q=1-p
guantile if x<=(1-p)0elsel
quantile from the complement if x<=(1-p) 1else0
mean p
variance p*(1-p)
mode if((p<0.5)0elsel
skewness (1-2*p)/sart(p* q)
kurtosis 6*p*p-6*p+lp*q
kurtosis excess kurtosis-3
References

» Wikpedia Bernoulli distribution

» Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource.
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Beta Distribution

#i ncl ude <boost/ math/distributions/beta. hpp>

namespace boost{ nanmespace mat h{

tenpl ate <cl ass Real Type
class Policy
cl ass beta_distribution;

doubl e,
policies::policy<> >

/'l typedef beta_distribution<doubl e> beta;
/'l Note that this is deliberately NOT provided,
/'l to avoid a clash with the function nanme beta.

tenpl ate <cl ass Real Type, class Policy>
cl ass beta_distribution
{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/'l Constructor fromtwo shape paraneters, al pha & beta:
beta_di stribution(Real Type a, Real Type b);

/| Paraneter accessors:
Real Type al pha() const;
Real Type beta() const;

/| Paraneter estimators of al pha or beta fromnean and vari ance.
static Real Type find_al pha(

Real Type nean, // Expected val ue of nean.

Real Type variance); // Expected val ue of variance.

static Real Type find_beta(
Real Type nean, // Expected val ue of nean.
Real Type variance); // Expected val ue of variance.

/1 Paraneter estimators fromfrom
/] either al pha or beta, and x and probability.

static Real Type find_al pha(
Real Type beta, // from beta.
Real Type x, // x.
Real Type probability); // cdf
static Real Type find_beta(
Real Type al pha, // al pha.
Real Type x, // probability x.

Real Type probability); // probability cdf.
b

}} /1 namespaces

The classtypebet a_di st ri but i on represents abeta probability distribution function.

The betadistribution isused as aprior distribution for binomial proportionsin Bayesian analysis.

See also: beta distribution and Bayesian statistics.

How the beta distribution is used for Bayesian analysis of one parameter modelsis discussed by Jeff Grynaviski.

The probability density function PDF for the beta distribution defined on the interval [0,1] is given by:
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Statistical Distributions and Functions

f(x;o,B) =x""1(1- %P1/ B(a, B)

where B(a, B) isthe betafunction, implemented in thislibrary as beta. Division by the betafunction ensuresthat the pdf isnormalized
to the range zero to unity.

The following graph illustrates examples of the pdf for various values of the shape parameters. Note the o = 3 = 2 (blue line) is
dome-shaped, and might be approximated by a symmetrical triangular distribution.

Beta Distribution PDF
\V4
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1
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n

If a =B =1,thenitisa__space uniform distribution, equal to unity in the entireinterval x =0to 1. If a __spaceand 3 __space are
< 1, then the pdf is U-shaped. If a != 3, then the shape is asymmetric and could be approximated by a triangle whose apex is away
from the centre (where x = half).

Member Functions

Constructor

bet a_di stribution(Real Type al pha, Real Type beta);

Constructs a beta distribution with shape parameters alpha and beta.

Requires alpha,beta > 0,otherwise domain_error is called. Note that technically the beta distribution is defined for alpha,beta >= 0,
but it's not clear whether any program can actually make use of that latitude or how many of the non-member functions can be usefully
defined in that case. Therefore for now, we regard it as an error if alphaor betais zero.

For example:
beta_di stribution<> nybeta(2, 5);

Constructs a the beta distribution with apha=2 and beta=5 (shown in yellow in the graph above).

Parameter Accessors
Real Type al pha() const;

Returns the parameter alpha from which this distribution was constructed.
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Statistical Distributions and Functions

Real Type beta() const;

Returns the parameter beta from which this distribution was constructed.

So for example:

beta_di stribution<> nybeta(2, 5);
assert(mybeta.alpha() == 2.); [// nybeta.al pha() returns 2
assert(mybeta. beta() == 5.); /1 nybeta.beta() returns 5

Parameter Estimators

Two pairs of parameter estimators are provided.

One estimates either a __space or 3 __space from presumed-known mean and variance.
The other pair estimates either a __spaceor B __space from the cdf and x.

Itisalso possibleto estimate o spaceand 3 space from 'known' mode & quantile. For example, calculators are provided by the
Pooled Prevalence Calculator and Beta Buster but thisis not yet implemented here.

static Real Type find_al pha(
Real Type nean, // Expected val ue of nean.
Real Type variance); // Expected value of variance.

Returns the unique value of a that corresponds to a beta distribution with mean mean and variance variance.

static Real Type find_beta(
Real Type mean, // Expected val ue of nean.
Real Type variance); // Expected value of variance.

Returns the unique value of 3 that corresponds to a beta distribution with mean mean and variance variance.

static Real Type find_al pha(
Real Type beta, // from beta.
Real Type x, // x.
Real Type probability); // probability cdf

Returnsthevalue of a that gives: cdf (bet a_di st ri buti on<Real Type>(al pha, beta), x) == probability.

static Real Type find_beta(
Real Type al pha, // al pha.
Real Type x, // probability x.
Real Type probability); // probability cdf.

Returnsthe value of 3 that gives: cdf (bet a_di stri buti on<Real Type>(al pha, beta), x) == probability.
Non-member Accessor Functions

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.
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Statistical Distributions and Functions

Applications

The beta distribution can be used to model events constrained to take place within an interval defined by a minimum and maximum
value: soitisused in project management systems.

It isalso widely used in Bayesian statistical inference.

Related distributions

The beta distribution with both a __space and 3 = 1 follows a uniform distribution.
The triangular is used when less precise information is available.

The binomial distribution is closely related when a __spaceand 3 ___space are integers.

With integer valuesof a __spaceand B __space the distribution B(i, j) isthat of the j-th highest of asample of i +] + 1 independent
random variables uniformly distributed between 0 and 1. The cumulative probability from 0 to x is thus the probability that the j-th
highest value is less than x. Or it is the probability that that at least i of the random variables are less than x, a probability given by
summing over the Binomial Distribution with its p parameter set to x.

Accuracy

This distribution is implemented using the beta functions beta and incompl ete beta functions ibeta and ibetac; please refer to these
functions for information on accuracy.

Implementation

In the following table a and b are the parametersa  and [3, x is the random variable, p is the probability and q = 1-p.
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Function

pdf

cdf

cdf complement

quantile

quantile from the complement
mean

variance

mode

skewness

kurtosis excess

kurtosis

parameter estimation

apha

from mean and variance

beta

from mean and variance

The member functionsfi nd_al pha andfi nd_bet a
from cdf and probability x

and either al pha or bet a

find_al pha

find beta

References
Wikipedia Beta distribution
NIST Exploratory DataAnalysis

Wolfram MathWorld

I mplementation Notes

fox;o,B) =x "1 (1- %P1/ B(a, B)

Implemented using ibeta_derivative(a, b, X).

Using the incompl ete beta function ibeta(a, b, x)
ibetac(a, b, x)

Using the inverse incomplete beta function ibeta_inv(a, b, p)
ibetac inv(a, b, Q)

al (a+tb)

a* b/ (ath)”*2 * (a + b + 1)

(a-1) / (a+b - 2

2 (b-a) sqrt(a+b+1l)/(a+b+2) * sqgrt(a * b)

@ —o’QB— D)+ F(B—1)—2aB(B +2)
aflo+ f+2)(a+ f+3)

6

kurtosis + 3

mean * (( (mean * (1 - mean)) / variance)- 1)

(1 - nean) * (((mean * (1 - nean)) /variance)-1)

Implemented in terms of the inverse incomplete beta functions

ibeta inva, and ibeta_invb respectively.

i beta_inva(beta, x, probability)

i beta_invb(al pha, x, probability)
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Statistical Distributions and Functions

Binomial Distribution

#i ncl ude <boost/ mat h/ di stri butions/binom al . hpp>

namespace boost{ nanmespace mat h{

oubl e

tenpl ate <cl ass Real Type =
= policies::policy<> >

d
class Policy =p
cl ass binom al _distribution

t ypedef bi nomi al _di stribution<> binom al

tenpl ate <cl ass Real Type, class Policy>
cl ass binom al _distribution

{
public:
typedef Real Type value_type
typedef Policy policy_type
static const unspecified-type cl opper_pearson_exact _interval
static const unspecified-type jeffreys_prior_interval
/'l construct:
bi nom al _di stributi on(Real Type n, Real Type p);
/| paraneter access::
Real Type success_fraction() const;
Real Type trials() const;
/1 Bounds on success fraction
static Real Type find_| ower_bound_on_p(
Real Type trial s,
Real Type successes
Real Type probability,
unspeci fied-type nmethod = cl opper_pearson_exact _interval);
static Real Type find_upper_bound_on_p(
Real Type trial s,
Real Type successes
Real Type probability,
unspeci fi ed-type nmethod = cl opper_pearson_exact _interval);
/1 estimate m n/ max nunber of trials:
static Real Type find_m ni num nunber_of _tri al s(
Real Type k, /'l nunber of events
Real Type p, /'l success fraction
Real Type alpha); // risk leve
static Real Type find_maxi mum nunber_of _tri al s(
Real Type k, /'l nunber of events
Real Type p, /'l success fraction
Real Type alpha); // risk leve
b

+} /1 nanmespaces

Theclasstypebi noni al _di st ri buti on representsabinomial distribution: it isused when there are exactly two mutually exclusive
outcomes of atrial. These outcomes are labelled "success' and "failure”. The Binomial Distribution is used to obtain the probability
of observing k successesin N trials, with the probability of success on asingletria denoted by p. The binomial distribution assumes
that p isfixed for all trials.
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Statistical Distributions and Functions

S Note
Therandom variablefor the binomial distribution isthe number of successes, (the number of trialsisafixed property
of the distribution) whereas for the negative binomial, the random variableisthe number of trials, for afixed number

of successes.
The PDF for the binomial distribution is given by:
. — k —k
flk;n, p) = ,Cp'(1-p)'
— ! k —k
- k!(nn—k)!p (1-p)

The following two graphs illustrate how the PDF changes depending upon the distributions parameters, first we'll keep the success
fraction p fixed at 0.5, and vary the sample size:

Binomial Distribution PDF
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=
©
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&
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Alternatively, we can keep the sample size fixed at N=20 and vary the success fraction p:
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Binomial Distribution PDF
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‘@ Caution
The Binomial distribution is a discrete distribution: internally, functions like the cdf and pdf are treated "as if"

they are continuous functions, but in reality the results returned from these functions only have meaning if an integer
valueis provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
guantiles (where the probability islessthan 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
inthetails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Palicies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the Binomia distribution. The reference docs describe how to
change the rounding policy for these distributions.

Member Functions
Construct

bi nom al _di stribution(Real Type n, Real Type p);

Constructor: nisthe total number of trials, p isthe probability of success of asingletrial.
Requires0 <= p <= 1,andn >= 0, otherwise callsdomain_error.

Accessors
Real Type success_fraction() const;
Returns the parameter p from which this distribution was constructed.

Real Type trials() const;
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Returns the parameter n from which this distribution was constructed.

Lower Bound on the Success Fraction

static Real Type find_|l ower _bound_on_p(
Real Type trials,
Real Type successes,
Real Type al pha,
unspeci fi ed-type nethod = cl opper_pearson_exact __interval);

Returns alower bound on the success fraction:

trials The total number of trials conducted.

successes The number of successes that occurred.

alpha The largest acceptable probability that the true value of the success fraction isless than the value returned.
method An optional parameter that specifies the method to be used to compute the interval (See below).

For example, if you observe k successes from n trials the best estimate for the success fraction is ssimply k/n, but if you want to be
95% sure that the true value is greater than some value, pyn, then:

Prnin = binom al _distribution<Real Type>::find_| ower_bound_on_p(
n, k, 0.05);

See worked example.

Thereare currently two possible values avail able for the method optional parameter: clopper_pearson_exact_interval or jeffreys pri-
or_interval. These constants are both members of class template bi noni al _di st ri buti on, so usageisfor example:

p = binom al _distribution<Real Type>::find_| ower_bound_on_p(
n, k, 0.05, binom al_distribution<Real Type>::jeffreys_prior_interval);

Thedefault method if this parameter isnot specified isthe Clopper Pearson "exact" interval. This produces an interval that guarantees
at least 100( 1- al pha) %coverage, but which is known to be overly conservative, sometimes producing intervals with much greater
than the reguested coverage.

The aternative calculation method produces a non-informative Jeffreys Prior interval. It produces 100( 1- al pha) %coverage only
in the average case, though is typically very close to the requested coverage level. It is one of the main methods of calculation re-
commended in the review by Brown, Cai and DasGupta.

Please note that the "textbook™ calculation method using a normal approximation (the Wald interval) is deliberately not provided:
it is known to produce consistently poor results, even when the sample sizeis surprisingly large. Refer to Brown, Cai and DasGupta
for afull explanation. Many other methods of calculation are available, and may be more appropriate for specific situations. Unfor-
tunately there appears to be no consensus amongst statisticians asto which is"best": refer to the discussion at the end of Brown, Cai
and DasGupta for examples.

The two methods provided here were chosen principally because they can be used for both one and two sided intervals. See aso:

Lawrence D. Brown, T. Tony Cai and Anirban DasGupta (2001), Interval Estimation for a Binomial Proportion, Statistical Science,
Voal. 16, No. 2, 101-133.

T. Tony Cai (2005), One-sided confidence intervals in discrete distributions, Journal of Statistical Planning and Inference 131, 63-
88.

Agresti, A. and Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. Amer. Statist.
52 119-126.
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Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limitsillustrated in the case of the binomial. Biometrika
26 404-413.

Upper Bound on the Success Fraction

static Real Type find_upper_bound_on_p(
Real Type trials,
Real Type successes,
Real Type al pha,
unspeci fi ed-type nethod = cl opper_pearson_exact _interval);

Returns an upper bound on the success fraction:

trials The total number of trials conducted.

successes The number of successes that occurred.

alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.
method An optional parameter that specifies the method to be used to compute the interval. Refer to the documentation for

find_upper_bound_on_p above for the meaning of the method options.

For example, if you observe k successes from n trials the best estimate for the success fraction is ssmply k/n, but if you want to be
95% sure that the true value is less than some value, pyay, then:

Prax = bi nom al _distribution<Real Type>::find_upper_bound_on_p(
n, k, 0.05);

See worked example.

E Note
In order to obtain a two sided bound on the success fraction, you call both fi nd_I ower _bound_on_p and
fi nd_upper _bound_on_p each with the same arguments.

If the desired risk level that the true success fraction lies outside the boundsis a, then you pass a/2 to these functions.
So for example atwo sided 95% confidence interval would be obtained by passing a = 0.025 to each of the functions.

See worked example.

Estimating the Number of Trials Required for a Certain Number of Successes

static Real Type find_ni ni mum nunber_of _trial s(
Real Type Kk, /1 nunber of events
Real Type p, /'l success fraction
Real Type al pha); // probability threshold

Thisfunction estimates the minimum number of trialsrequired to ensure that more than k eventsis observed with alevel of risk alpha
that k or fewer events occur.

k The number of success observed.
p The probability of success for each trial.
apha  The maximum acceptable probability that k events or fewer will be observed.

For example:
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bi nom al _di stribution<Real Type>::find_nunber_of trials(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 events that occur with frequency one half.

Estimating the Maximum Number of Trials to Ensure no more than a Certain Number of Successes

static Real Type find_maxi mum nunber _of trial s(
Real Type Kk, /'l nunber of events
Real Type p, /'l success fraction
Real Type al pha); // probability threshold

This function estimates the maximum number of trials we can conduct to ensure that k successes or fewer are observed, with arisk
alpha that more than k occur.

k The number of success observed.
p The probability of success for each trial.
apha  The maximum acceptable probability that more than k events will be observed.

For example:
bi nom al _di stri bution<Real Type>: : fi nd_maxi num nunber _of _trials(0, 1le-6, 0.05);

Returns the largest number of trials we can conduct and still be 95% certain of not observing any events that occur with onein a
million frequency. Thisistypically used in failure analysis.

See Worked Example.
Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain for the random variablekis0 <= k <= N, otherwise adomain_error is returned.

It's worth taking a moment to define what these accessors actually mean in the context of this distribution:
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Table 15. M eaning of the non-member accessors

Function Meaning

Probability Density Function The probability of obtaining exactly k successes from n trials
with success fraction p. For example:

pdf (bi nom al (n, p), k)

Cumulative Distribution Function The probability of obtaining k successes or fewer from ntrials
with success fraction p. For example:

cdf (bi nom al (n, p), k)

Complement of the Cumulative Distribution Function The probability of obtaining morethan k successesfromntrials
with success fraction p. For example:

cdf (conpl enent (bi nom al (n, p), k))

Quantile The greatest number of successes that may be observed from
n trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the result. For example:

quantil e(binom al (n, p), P)

Quantile from the complement of the probability The smallest number of successes that may be observed from
n trials with success fraction p, at probability P. Note that the
value returned is areal-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the result. For example:

quantil e(conpl enent (bi nom al (n, p), P))

Examples
Various worked examples are available illustrating the use of the binomial distribution.
Accuracy

Thisdistribution isimplemented using the incomplete beta functions ibeta and ibetac, please refer to these functions for information
on accuracy.

Implementation

In the following table p is the probability that one trial will be successful (the success fraction), n is the number of trias, k is the
number of successes, p isthe probability and q = 1-p.
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Function

pdf

cdf

cdf complement

quantile

quantile from the complement
mean

variance

mode

skewness

kurtosis

kurtosis excess

I mplementation Notes

Implementation isin terms of ibeta_derivative: if ,Cy isthe bi-
nomial coefficient of aand b, then we have:

f(k;n, p) = ,Cop*(1—py™*

! k —k
k!(nn—k)!P (1-p)

r(n+1) k -
el (1= p)

P = py*
Bh+1n—k+Dn+0)

Whichcanbeevaluated asi bet a_deri vati ve(k+1, n-k+1,
p) / (n+l)

The function ibeta_derivative is used here, since it has already
been optimised for the lowest possible error - indeed this is
really just athin wrapper around part of the internals of the in-
complete beta function.

Therearealso various specia cases. refer to the codefor details.

Using the relation:

I[sub 1-p](n - k, k + 1)
1 - I[sub p](k + 1, n- k)
ibetac(k + 1, n - k, p)

Therearealso various specia cases. refer to the codefor details.
Using therelation: g =ibeta(k + 1, n- k, p)

Therearealso various specia cases: refer to the codefor details.
Sincethe cdf isnon-linear in variate k none of theinverseincom-
plete beta functions can be used here. Instead the quantile is
found numerically using a derivative free method (TOMS 748
algorithm).

Found numerically as above.

p*n

p*n* (1-p)

floor(p * (n + 1))

(1-2*p)/ sqrt(n* p* (1- p))

3-(6/n +(1/ (n*p*(1-0p)))

(1-6*p*q / (n*p*aq

render

238

httpo://www.renderx.com/


http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Statistical Distributions and Functions

Function Implementation Notes

parameter estimation The member  functions find_upper _bound _on_p
find_| ower _bound_on_p and find _nunber _of trials
are implemented in terms of the inverse incomplete beta func-
tionsibetac inv, ibeta inv, and ibetac_invb respectively
References
e Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource.
» Wikipediabinomial distribution.

* NIST Explorary DataAnalysis.

Cauchy-Lorentz Distribution

#i ncl ude <boost/ math/di stributions/cauchy. hpp>

doubl e,
policies::policy<> >

tenpl ate <cl ass Real Type
class Policy
cl ass cauchy_distribution;

t ypedef cauchy_di stributi on<> cauchy;

tenpl ate <cl ass Real Type, class Policy>
cl ass cauchy_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
cauchy_distribution(Real Type location = 0, Real Type scale = 1);
Real Type | ocation()const;
Real Type scal e()const;
3

The Cauchy-Lorentz distribution is named after Augustin Cauchy and Hendrik Lorentz. It is a continuous probability distribution
with probability distribution function PDF given by:

e - M

The location parameter X, isthelocation of the peak of the distribution (the mode of the distribution), while the scale parameter y
specifies half the width of the PDF at half the maximum height. If the location is zero, and the scale 1, then the result is a standard
Cauchy distribution.

The distribution isimportant in physics asit is the solution to the differential equation describing forced resonance, whilein spectro-
scopy it is the description of the line shape of spectral lines.

The following graph shows how the distributions moves as the location parameter changes:
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Cauchy Distribution PDF (scale = 1)
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While the following graph shows how the shape (scal€) parameter alters the distribution:
Cauchy Distribution PDF (location = 0)
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Member Functions
cauchy_di stribution(Real Type |l ocation = 0, Real Type scale = 1);

Constructs a Cauchy distribution, with location parameter location and scal e parameter scale. When these parameterstake their default
values (location = 0, scale = 1) then the result is a Standard Cauchy Distribution.

Requires scale > 0, otherwise calls domain_error.
Real Type | ocation()const;

Returns the location parameter of the distribution.
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Real Type scal e()const;

Returns the scale parameter of the distribution.
Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

Note however that the Cauchy distribution does not have amean, standard deviation, etc. See mathematically undefined function to
control whether these should fail to compile with aBOOST_STATIC_ASSERTION_FAILURE, which is the defaullt.

Alternately, the functions mean, standard deviation, variance, skewness, kurtosis and kurtosis_excesswill all return adomain_error
if caled.

The domain of the random variable is[-[max_value], +[min_valu€]].
Accuracy

The Cauchy distribution isimplemented in terms of the standard library t an and at an functions, and as such should have very low
error rates.

Implementation

In the following table X is the location parameter of the distribution, y is its scale parameter, x is the random variate, p is the
probability and g = 1-p.
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Function Implementation Notes
pdf Using therelation: pdf =1/ (1t* y* (1 + ((X - Xg) / y)2)
cdf and its complement The cdf isnormally given by:

p = 0.5 + atan(x)/Tt

But that suffersfrom cancellation error asx -> -, So recall that
forx < 0:

atan(x) = -2 - atan(1/x)
Substituting into the above we get:
p=-aan(/x); x<0

So the procedure is to calculate the cdf for -fabs(x) using the
above formula. Note that to factor in the location and scale
parameters you must substitute (x - xq) /y for x in the above.

This procedure yields the smaller of p and g, so the result may
need subtracting from 1 depending on whether we want the
complement or not, and whether x islessthan Xy or not.

quantile The same procedureis used irrespective of whether we're starting
from the probability or its complement. First the argument p is
reduced to the range [-0.5, 0.5], then the relation

X=Xg zy /tan(rt* p)
isused to obtain the result. Whether we're adding or subtracting
from xq is determined by whether we're starting from the com-

plement or not.

mode The location parameter.

References
» Cauchy-Lorentz distribution
* NIST Exploratory DataAnalysis

» Weisstein, Eric W. "Cauchy Distribution.” From MathWorld--A Wolfram Web Resource.

Chi Squared Distribution

#i ncl ude <boost/ mat h/distributions/chi_squared. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
cl ass chi _squared_di stribution;

t ypedef chi _squared_di stribution<> chi _squared;

tenpl ate <cl ass Real Type, class Policy>
cl ass chi _squared_di stribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/1 Constructor:
chi _squared_di stribution(Real Type i);
/'l Accessor to paraneter:
Real Type degrees_of freedom )const;
/1 Paraneter estinmation:
static Real Type find_degrees_of freedon{
Real Type difference_from nean,
Real Type al pha,
Real Type bet a,
Real Type sd,
Real Type hint = 100);
b

}} /1 nanespaces

The Chi-Squared distribution is one of the most widely used distributions in statistical tests. If x; arev independent, normally
distributed random variables with means ji; and variances 62, then the random variable:
)4

0 - 3

=1

is distributed according to the Chi-Squared distribution.

The Chi-Squared distribution is a specia case of the gamma distribution and has a single parameter v  that specifies the number of
degrees of freedom. The following graph illustrates how the distribution changes for different values of v:
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Statistical Distributions and Functions

Chi Squared Distribution PDF
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Member Functions
chi _squared_di stribution(Real Type v);

Constructs a Chi-Squared distribution with v degrees of freedom.

Requiresv > 0, otherwise calls domain_error.
Real Type degrees_of _freedon)const;
Returns the parameter v from which this object was constructed.

static Real Type find_degrees_of _freedonm
Real Type difference_fromvari ance,
Real Type al pha,
Real Type bet a,
Real Type vari ance,
Real Type hint = 100);

Estimates the sample size required to detect a difference from anominal variancein a Chi-Squared test for equal standard deviations.

difference from_variance The difference from the assumed nominal variance that is to be detected: Note that the sign
of thisvalue is critical, see below.

alpha The maximum acceptable risk of rejecting the null hypothesiswhen it isin fact true.

beta The maximum acceptable risk of falsely failing to reject the null hypothesis.

variance The nominal variance being tested against.

hint An optional hint on where to start looking for a result: the current sample size would be a
good choice.

Note that this calculation works with variances and not standard deviations.
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Statistical Distributions and Functions

The sign of the parameter difference_from variance is important: the Chi Squared distribution is asymmetric, and the caller must
decide in advance whether they are testing for avariance greater than anominal value (positive difference_from variance) or testing
for a variance less than a nominal value (negative difference from variance). If the latter, then obvioudly it is a requirement that
variance + difference_fromyvariance > 0, since no sample can have a negative variance!

This procedure uses the method in Diamond, W. J. (1989). Practical Experiment Designs, Van-Nostrand Reinhold, New York.
See also section on Sample sizes required in the NIST Engineering Statistics Handbook, Section 7.2.3.2.
Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

(We have followed the usual restriction of the mode to degrees of freedom >= 2, but note that the maximum of the pdf is actualy
zero for degrees of freedom from 2 down to 0, and provide an extended definition that would avoid a discontinuity in the mode as
alternative code in a comment).

The domain of the random variable is [0, +oo].

Examples

Various worked examples are available illustrating the use of the Chi Squared Distribution.

Accuracy

The Chi-Squared distribution isimplemented in terms of the incomplete gammafunctions: please refer to the accuracy datafor those
functions.

Implementation

In the following table v is the number of degrees of freedom of the distribution, x is the random variate, p is the probability, and g
= 1-p.

Function Implementation Notes
pdf Using the relation: pdf = gamma._p_derivative(v/2,x/2) /2
cdf Using therelation: p=gamma p(v/ 2, x/2)
cdf complement Using therelation: g = gamma gq(v/ 2, x/ 2)
quantile Using therelation: x =2 * gamma. p_inv(v/ 2, p)
guantile from the complement Using therelation: x =2* gamma q_inv(v/ 2, p)
mean v
variance 2v
mode v-2(ifv>=2)
skewness 2* sgrt(2/v) == sqrt(8/ v)
kurtosis 3+12/v
kurtosis excess 12/v
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Statistical Distributions and Functions

References
* NIST Exploratory DataAnalysis
» Chi-square distribution

» Weisstein, Eric W. "Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.
Exponential Distribution

#i ncl ude <boost/ mat h/ di stributions/exponenti al . hpp>

tenpl ate <cl ass Real Type = doubl e,
class Policy = policies::policy<> >
cl ass exponential _distribution;

t ypedef exponential _distribution<> exponential;

tenpl ate <cl ass Real Type, class Policy>
cl ass exponential _distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
exponenti al _distribution(Real Type | anbda = 1);
Real Type | anbda() const;
s

The exponential distribution is a continuous probability distribution with PDF:

fx) = ™
It is often used to model the time between independent events that happen at a constant average rate.

The following graph shows how the distribution changes for different values of the rate parameter lambda:

Exponential Distribution PDF
2 4
_ A=0.5
_A=1
1.5 4 _ A=2
Z
E
2 17
o
a
0.5 4
0 L] L] L] L] L]
0 1 2 3 5 6
Random Variable

246

render
httpo://www.renderx.com/


http://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
http://en.wikipedia.org/wiki/Chi-square_distribution
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Member Functions
exponenti al _distribution(Real Type | anbda = 1);

Constructs an Exponential distribution with parameter lambda. Lambda is defined as the reciprocal of the scale parameter.

Requires lambda > 0, otherwise calls domain_error.
Real Type | anbda() const;

Accessor function returns the lambda parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +oo].

Accuracy

The exponential distribution is implemented in terms of the standard library functions exp, | og, | oglp and expni and as such
should have very low error rates.

Implementation

In the following table A is the parameter lambda of the distribution, x is the random variate, p is the probability and g = 1-p.

Function Implementation Notes
pdf Using therelation: pdf = A * exp(-A * x)
cdf Using therelation: p=1 - exp(-x * A) = -expm1(-x * A)
cdf complement Using therelation: g = exp(-x * A)
quantile Using therelation: x = -log(1-p) / A = -loglp(-p) / A
quantile from the complement Using therelation: x = -log(q) / A
mean A
standard deviation UA
mode 0
skewness 2
kurtosis 9
kurtosis excess 6
references

» Weisstein, Eric W. "Exponential Distribution." From MathWorld--A Wolfram Web Resource
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» Wolfram Mathematica cal cul ator

* NIST Exploratory DataAnalysis

» Wikipedia Exponential distribution

(See also the reference documentation for the related Extreme Distributions.)

» Extreme Value Distributions, Theory and Applications Samuel Kotz & Saralees Nadargjah discuss the relationship of the types
of extreme value distributions.

Extreme Value Distribution

#i ncl ude <boost/ math/ distributions/extrene. hpp>

tenpl ate <cl ass Real Type = doubl e,
cl ass Policy = policies::policy<> >
cl ass extreme_val ue_di stribution;

typedef extreme_val ue_di stribution<> extreme_val ue;

tenpl ate <cl ass Real Type, class Policy>
cl ass extreme_val ue_distribution

{
public:
typedef Real Type val ue_type;
extrene_val ue_di stribution(Real Type location = 0, Real Type scale = 1);
Real Type scal e()const;
Real Type | ocation()const;
H

There are various extreme value distributions : this implementation represents the maximum case, and is variously known as a
Fisher-Tippett distribution, alog-Weibull distribution or a Gumbel distribution.

Extreme value theory isimportant for assessing risk for highly unusual events, such as 100-year floods.
More information can be found on the NIST, Wikipedia, Mathworld, and Extreme value theory websites.

The relationship of the types of extreme value distributions, of which thisis but one, is discussed by Extreme Value Distributions,
Theory and Applications Samuel Kotz & Saralees Nadarajah.

The distribution has a PDF given by:
f(X) - (l/SCa| e) e—(x-location)/scale e_e—(x—locaion)/a:ale
Which in the standard case (scale = 1, location = 0) reduces to:

f(x) = eXe®

The following graph illustrates how the PDF varies with the location parameter:
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Extreme Value Distribution PDF (shape=1)
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And this graph illustrates how the PDF varies with the shape parameter:
Extreme Value Distribution PDF (location=0)
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Member Functions

extrenme_val ue_di stribution(Real Type |l ocation = 0, Real Type scale = 1);

Constructs an Extreme Value distribution with the specified location and scale parameters.

Requiresscal e > 0, otherwise callsdomain_error.
Real Type | ocation()const;

Returns the location parameter of the distribution.
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Statistical Distributions and Functions

Real Type scal e()const;

Returns the scale parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random parameter is[-o, +co].

Accuracy

The extreme value distribution isimplemented in terms of the standard library exp and | og functions and as such should have very
low error rates.

Implementation

In the following table: ais the location parameter, b is the scale parameter, x is the random variate, p isthe probability and g = 1-p.

Function Implementation Notes

pdf Using the relation: pdf = exp((a-x)/b) * exp(-exp((a-x)/b)) / b
cdf Using the relation: p = exp(-exp((a-x)/b))

cdf complement Using the relation: q = -expml(-exp((a-x)/b))
quantile Using therelation: a- log(-log(p)) * b
quantile from the complement Using therelation: a- log(-loglp(-q)) * b
mean a+ Euler-Mascheroni-constant * b

standard deviation pi * b/ sqrt(6)

mode The same as the location parameter a.
skewness 12 * sqrt(6) * zeta(3) / pi°

kurtosis 2715

kurtosis excess kurtosis-3or12/5

F Distribution

#i ncl ude <boost/math/distributions/fisher_f.hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
class fisher_f _distribution;

typedef fisher_f _distribution<> fisher_f;

tenpl ate <cl ass Real Type, class Policy>
class fisher_f _distribution

{
public:
typedef Real Type val ue_type;
/'l Construct:
fisher _f _distribution(const Real Type& i, const Real Type& j);
/'l Accessors:
Real Type degrees_of freedoml()const;
Real Type degrees_of freedon®()const;
}s

}} I/ nanespaces

The F distribution is a continuous distribution that arises when testing whether two samples have the same variance. If sz and in
are independent variates each distributed as Chi-Squared with m and n degrees of freedom, then the test statistic:

Fam =0 /1) (K /M)
Isdistributed over the range [0, o] with an F distribution, and has the PDF:

n,m (ntm)

(m+nx) * B(zi%)

The following graph illustrates how the PDF varies depending on the two degrees of freedom parameters.

F Distribution PDF
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Member Functions
fisher_f_distribution(const Real Type& df1, const Real Type& df 2);

Constructs an F-distribution with numerator degrees of freedom df1 and denominator degrees of freedom df2.

Requires that df1 and df2 are both greater than zero, otherwise domain_error is called.
Real Type degrees_of _freedoml()const;

Returns the numerator degrees of freedom parameter of the distribution.
Real Type degrees_of _freedon2()const;

Returns the denominator degrees of freedom parameter of the distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +oo].

Examples

Various worked examples are available illustrating the use of the F Distribution.
Accuracy

Thenormal distribution isimplemented in terms of theincomplete betafunction and itsinverses, refer to those functionsfor accuracy
data

Implementation

In the following table v1 and v2 are the first and second degrees of freedom parameters of the distribution, X is the random variate,
p isthe probability, and q = 1-p.
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Function

pdf

cdf

I mplementation Notes

The usua form of the PDF is given by:

fon(x) = I

However, that formishard to evaluate directly without incurring
problems with either accuracy or numeric overflow.

Direct differentiation of the CDF expressed in terms of the in-
complete beta function

led to the following two formulas:

furv2(X) =y * ibeta_derivative(v2/2,v1/2,v2/(v2+Vv1* X))
withy =(v2* v1)/((v2+Vv1l* x)* (v2+Vv1* X))

and

fuava(X) =y * ibeta_derivative(vl/2,v2/2,vl* x/(v2+ V1
* X))

withy=(z*v1-x*v1*v1)/z2
andz=v2+vl*Xx

Thefirst of theseis used for v1 * x > v2, otherwise the second
is used.

Theaimisto keep thex argument to ibeta_derivative away from
1to avoid rounding error.

Using the relations:

p=ibeta(vl/2,v2/2,vl* x/(v2+vl* X))

and

p=ibetac(v2/2,v1l/2,v2/(v2+Vv1* X))

Thefirst isused for v1 * x > v2, otherwise the second is used.

The aim isto keep the x argument to ibetawell away from 1 to
avoid rounding error.
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Function Implementation Notes

cdf complement Using the relations:
p=ibetac(vl/2,v2/2,v1l* x/(v2+Vv1l* X))
and
p=ibeta(v2/2,v1l/2,v2/(v2+Vv1l* X))
Thefirst isused for v1 * x < v2, otherwise the second is used.

The aim isto keep the x argument to ibetawell away from 1 to
avoid rounding error.

guantile Using the relation:
x=v2*a/l(vl*Db)
where:
a=ibeta inv(vl/2,v2/2,p)
and
b=1-a

Quantities a and b are both computed by ibeta _inv without the
subtraction implied above.

quantile Using the relation:
from the complement x=v2*a/l(vl* b)
where

a=ibetac inv(vl/2,v2/2,p)
and
b=1-a

Quantitiesa and b are both computed by ibetac_inv without the
subtraction implied above.

mean v2/(v2-2)
variance 2% 22 * (Vi+v2-2)/(vi* (v2-2)* (v2-2)* (v2-4))
mode v2* (v1-2)/(vi* (v2+2))
skewness 2* (V2+2*v1-2)* grt((2* v2-8)/ (vi* (v2+v1-2))/
(v2-6)
kurtosis and kurtosis excess Refer to, Weisstein, Eric W. "F-Distribution." From MathWorld-
-A Wolfram Web Resource.
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Gamma (and Erlang) Distribution

#i ncl ude <boost/ mat h/ di stri butions/ganmma. hpp>

namespace boost{ nanmespace mat h{

doubl e,
policies::policy<> >

tenpl ate <cl ass Real Type
class Policy
cl ass gamma_di stribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
game_di stri buti on(Real Type shape, Real Type scale = 1)
Real Type shape()const;
Real Type scal e()const;
b

+} /1 nanmespaces

The gammadi stribution isacontinuous probability distribution. When the shape parameter isan integer then it isknown asthe Erlang
Distribution. It is also closely related to the Poisson and Chi Squared Distributions.

When the shape parameter has an integer value, the distribution is the Erlang distribution. Since this can be produced by ensuring
that the shape parameter has an integer value > 0, the Erlang distribution is not separately implemented.

Note
S To avoid potential confusion with the gamma functions, this distribution does not provide the typedef:
t ypedef ganma_di stri buti on<doubl e> gamm;
Instead if you want a double precision gamma distribution you can write

boost : : mat h: : ganma_di stri buti on<> nmy_gamma(1, 1);

For shape parameter k and scale parameter 6 it is defined by the probability density function:

X

0

fxk,0) = xF1-=E
(3 & 0) S Ia0)

Sometimes an aternative formulation is used: given parametersa =k and B = 1/ 0, then the distribution can be defined by the
PDF:

o —px
fwap - s

In this form the inverse scale parameter is called arate parameter.

Both forms are in common usage: thislibrary uses the first definition throughout. Therefore to construct a Gamma Distribution from
arate parameter, you should pass the reciprocal of the rate as the scale parameter.
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Statistical Distributions and Functions

The following two graphsiillustrate how the PDF of the gamma distribution varies as the parameters vary:
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The Erlang Distribution isthe same asthe Gamma, but with the shape parameter an integer. It is often expressed using arate rather
than a scale as the second parameter (remember that the rate is the reciprocal of the scale).

Internally the functions used to implement the Gamma Distribution are already optimised for small-integer arguments, so in general
there should be no great loss of performance from using a Gamma Distribution rather than a dedicated Erlang Distribution.

Member Functions
gamra_di stributi on(Real Type shape, Real Type scale = 1);

Constructs a gamma distribution with shape shape and scale scale.

Requires that the shape and scale parameters are greater than zero, otherwise calls domain_error.
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Real Type shape()const;
Returns the shape parameter of this distribution.
Real Type scal e() const

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +o0].
Accuracy

Thelognormal distribution isimplemented in terms of the incomplete gamma functions gamma_p and gamma_q and their inverses
gamma_p_inv and gamma_g_inv: refer to the accuracy data for those functions for more information.

Implementation

In the following table k is the shape parameter of the distribution, 6 isits scale parameter, x is the random variate, p is the probab-

ility and q= 1-p.
Function Implementation Notes
pdf Using the relation: pdf = gamma p_derivative(k, x / 8) / 6
cdf Using therelation: p = gamma _p(k, x / 6)
cdf complement Using therelation: g = gamma_q(k, x / 8)
quantile Using therelation: x =0 * gamma_p_inv(k, p)
quantile from the complement Using therelation: x =6 * gamma_q_inv(k, p)
mean ko
variance k6?2
mode (k-1)6 for k>1 otherwise adomain_error
skewness 2/ sart(k)
kurtosis 3+6/k
kurtosis excess 6/k

Geometric Distribution

#i ncl ude <boost/math/distributions/geonetric. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type = doubl e,
cl ass Policy = policies::policy<> >
cl ass geonetric_distribution;

t ypedef geonetric_distribution<> geonetric;

tenpl ate <cl ass Real Type, class Policy>
cl ass geonetric_distribution
{
public:
typedef Real Type val ue_type;
typedef Policy pol i cy_type;
/] Constructor from success_fraction:
geonetric_distribution(Real Type p);

/| Paraneter accessors:
Real Type success_fraction() const;
Real Type successes() const;

/1 Bounds on success fraction:
static Real Type find_|l ower_bound_on_p(
Real Type trials,
Real Type successes,
Real Type probability); // alpha
static Real Type find_upper_bound_on_p(
Real Type trials,
Real Type successes,
Real Type probability); // alpha

/1 Estimate m n/max nunber of trials:
static Real Type find_m ni rum nunber_of trials(

Real Type k, /1 Nunber of failures.

Real Type p, /'l Success fraction.

Real Type probability); // Probability threshold al pha.
static Real Type find_nmaxi rum nunber _of trial s(

Real Type k, /'l Nunber of failures.

Real Type p, /'l Success fraction.

Real Type probability); // Probability threshold al pha.

I

}} /1 nanespaces

Theclasstypegeonet ri c_di stri buti on represents ageometric distribution: it is used when there are exactly two mutually ex-
clusive outcomes of aBernoulli trial: these outcomes are labelled "success" and "failure”.

For Bernoulli trial s each with successfraction p, the geometric distribution givesthe probability of observing ktrials (failures, events,
occurrences, or arrivals) before the first success.

S Note
For thisimplementation, the set of trialsincludes zer o (unlike another definition where the set of trials starts at one,
sometimes named shifted).

The geometric distribution assumes that success fraction pisfixed for all k trials.
The probability that there are k failures before the first successis

Pr(Y=K) = (1-p)'p
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Statistical Distributions and Functions

For example, when throwing a 6-face dice the success probability p = 1/6 = 0.1666 . Throwing repeatedly until a three appears,
the probability distribution of the number of times not-a-three is thrown is geometric.

Geometric distribution has the Probability Density Function PDF:
(1-p)p

The following graph illustrates how the PDF and CDF vary for three examples of the success fraction p, (when considering the
geometric distribution as a continuous function),
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and as discrete.
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Geometric Distribution PDF
0.8 4 — p=0.2
0.7 4 — p=0.5
0.6 4 _ p=0.8
=
E
3
o
a
- -
5 10
Random Variable
Geometric Distribution CDF
1.1
_ p=0.2
— p=0.5
_ p=0.8
Fn
E
3
o
a
5
Random Variable

Related Distributions

The geometric distribution is a special case of the Negative Binomial Distribution with successes parameter r = 1, so only one first

and only successisrequired : thus by definition  geonetric(p) == negative_binomi al (1, p)

negati ve_bi nom al _di stribution(Real Type r, Real Type success_fraction);
negative_binom al nb(1l, success_fraction);

geonetric g(success_fraction);

ASSERT( pdf (nb, 1) == pdf(g, 1));

This implementation uses real numbers for the computation throughout (because it uses the real-valued power and exponential
functions). So to obtain a conventional strictly-discrete geometric distribution you must ensure that an integer value is provided for
the number of trials (random variable) k, and take integer values (floor or ceil functions) from functions that return a number of

SuCCesses.
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m Caution
The geometric distribution is a discrete distribution: internally, functions like the cdf and pdf are treated "as if"

they are continuous functions, but in reality the results returned from these functions only have meaning if an integer
valueis provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
guantiles (where the probability islessthan 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
inthetails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Poalicies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the geometric distribution. The reference docs describe how to
change the rounding policy for these distributions.

Member Functions

Constructor
geonetric_distribution(Real Type p);

Constructor: p or success fraction is the probability of success of asingletrial.
Requires: 0 <= p <= 1.

Accessors
Real Type success_fraction() const; // successes / trials (0 <= p <= 1)

Returns the success fraction parameter p from which this distribution was constructed.

Real Type successes() const; // required successes al ways one,
/1 included for conpatibility with negative binom al distribution
/1 with successes r == 1.

Returns unity.

The following functions are equivalent to those provided for the negative binomial, with successes = 1, but are provided here for
completeness.

The best method of cal culation for the following functionsisdisputed: see Binomial Distribution and Negative Binomial Distribution
for more discussion.

Lower Bound on success_fraction Parameter p

static Real Type find_| ower_bound_on_p(
Real Type fail ures,
Real Type probability) // (0 <= alpha <= 1), 0.05 equivalent to 95% confi dence.

Returns alower bound on the success fraction:

failures The total number of failures before the 1st success.
alpha The largest acceptable probability that the true value of the success fraction is less than the value returned.
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For example, if you observe k failures from n trials the best estimate for the successfractionis simply 1/n, but if you want to be 95%
sure that the true value is greater than some vaue, pip, then:

Prin = geonetric_distribution<Real Type>::
find_| ower_bound_on_p(failures, 0.05);

See negative_binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Upper Bound on success_fraction Parameter p

static Real Type find_upper_bound_on_p(
Real Type trials,
Real Type al pha); // (0 <= alpha <= 1), 0.05 equivalent to 95% confi dence.

Returns an upper bound on the success fraction:

trials The total number of trials conducted.
alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is less than some value, pyqy, then:

Prex = geonetric_distribution<Real Type>::find_upper_bound_on_p(
k, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Estimating Number of Trials to Ensure at Least a Certain Number of Failures

static Real Type find_m ni mum nunber_of trials(
Real Type Kk, /1 nunber of failures.
Real Type p, /'l success fraction.
Real Type al pha); // probability threshold (0.05 equivalent to 95%.

This functions estimates the number of trials required to achieve a certain probability that morethan k failures will be observed.

k The target number of failures to be observed.
p The probability of success for each trial.
apha  Themaximum acceptable risk that only k failures or fewer will be observed.

For example:
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geonetri c_di stribution<Real Type>::find_m ni mum nunber_of trials(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% (1-0.05) sure of seeing 10 failures that occur with frequency one
half.

Worked Example.

This function uses numeric inversion of the geometric distribution to obtain the result: another interpretation of the result is that it
finds the number of trials (failures) that will lead to an alpha probability of observing k failures or fewer.

Estimating Number of Trials to Ensure a Maximum Number of Failures or Less

static Real Type find_maxi mum nunber_of _trial s(
Real Type k, /1 nunmber of failures.
Real Type p, /'l success fraction.
Real Type al pha); // probability threshold (0.05 equivalent to 95%.

This functions estimates the maximum number of trials we can conduct and achieve a certain probability that k failures or fewer
will be observed.

k The maximum number of failures to be observed.
p The probability of successfor each trial.
apha  Themaximum acceptable risk that more than k failures will be observed.

For example:

geonetri c_distribution<Real Type>:: find_maxi mum nunber_of _trials(0, 1.0-1.0/1000000, O0.05);

Returns the largest number of trials we can conduct and still be 95% sure of seeing no failures that occur with frequency one in one
million.

This function uses numeric inversion of the geometric distribution to obtain the result: another interpretation of the result, is that it
finds the number of trials that will lead to an alpha probability of observing more than k failures.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

However it's worth taking a moment to define what these actually mean in the context of this distribution:
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Table 16. M eaning of the non-member accessors.

Function Meaning

Probability Density Function The probability of obtaining exactly k failures from k trials
with success fraction p. For example:

pdf (geometric(p), k)

Cumulative Distribution Function The probability of obtaining k failures or fewer from k trials
with successfraction p and successon thelast trial. For example:

cdf (geonetric(p), k)

Complement of the Cumulative Distribution Function The probability of obtaining morethan k failuresfromktrials
with successfraction p and successon thelast trial. For example:

cdf (conmpl ermrent (geonetric(p), Kk))

Quantile Thegreatest number of failuresk expected to be observed from
k trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantil e(geonetric(p), P)

Quantile from the complement of the probability The smallest number of failures k expected to be observed from
k trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantil e(conpl enent (geonetric(p), P))

Accuracy

Thisdistribution isimplemented using the pow and exp functions, so most results are accurate within afew epsilon for the Real Type.
For extreme values of doubl e p, for example 0.9999999999, accuracy can fall significantly, for exampleto 10 decimal digits (from
16).

Implementation

In the following table, p is the probability that any onetrial will be successful (the success fraction), k is the number of failures, pis
the probability and q = 1-p, x is the given probability to estimate the expected number of failures using the quantile.
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Function

pdf

cdf

cdf complement
quantile
quantile from the complement
mean

variance

mode

skewness
kurtosis

kurtosis excess

parameter estimation member functions

find_| ower_bound_on_p

find_upper_bound_on_p

find_m ni mum nunber _of trials

find_maxi mum nunber _of trials

I mplementation Notes

pdf =p* pow(q, k)

cdf =1- ¢

exp(loglp(-p) * (k+1))

k =loglp(-x) / loglp(-p) -1

k =1og(x) / loglp(-p) -1

(I-p)p

(1-p)/p?

0

(2-pg

9+p?/q

6 +p4/q

See Negative Binomial Distribution
See Negative Binomial Distribution
See Negative Binomial Distribution
See Negative Binomial Distribution

See Negative Binomial Distribution

Hyperexponential Distribution

#i ncl ude <boost/ mat h/ distributions/ hyperexponential . hpp>
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nanmespace boost{ nanespace math{
tenpl ate <typenane Real Type = doubl e

typenane Policy = policies::policy<> >
cl ass hyperexponential _distribution

t ypedef hyperexponential _distribution<> hyperexponenti al

tenpl ate <typenane Real Type, typenane Policy>
cl ass hyperexponential _distribution

{
public:
typedef Real Type val ue_type
typedef Policy policy_type
/'l Constructors:
hyper exponential _distribution(); // Default.
tenpl ate <typenanme RatelterT, typenanme RatelterT2>
hyper exponential _distribution( // Default equal probabilities.
RatelterT const& rate_first,
RatelterT2 const& rate_last); // Rates using lterators
tenpl ate <typename ProblterT, typenane RatelterT>
hyper exponenti al _di stribution(ProblterT prob_first, ProblterT prob_I ast,
RatelterT rate_first, RatelterT rate_l ast); /1 lterators.
tenpl ate <typename ProbRangeT, typenane RateRangeT>
hyper exponenti al _di stri buti on(ProbRangeT const & prob_range
Rat eRangeT const& rate_range); // Ranges
tenpl ate <typenanme RateRangeT>
hyper exponenti al _di stri buti on( Rat eRangeT const & rate_range)
#if ! defined(BOOST_NO CXX11 HDR | NI TI ALI ZER_LI ST) /1 C++11 initializer lists supported
hyper exponenti al _distribution(std::initializer_list<Real Type> 11, std::initializer_list<RealO
Type> 12);
hyper exponential _distribution(std::initializer_list<Real Type> 11)
#endi f
/'l Accessors:
std::size_t num phases() const;
std: :vector<Real Type> probabilities() const;
std::vector<Real Type> rates() const;
b

}} /1 nanespaces

S Note
An implementation-defined mechanism is provided to avoid ambiguity between constructors accepting ranges,
iterators and constants as parameters. This should be transparent to the user. See below and the header file hyperex-
ponential .hpp for details and explanatory comments.

The classtype hyper exponenti al _di stri buti on represents a hyperexponentia distribution.

A k-phase hyperexponential distribution isacontinuous probability distribution obtained asamixture of k Exponential Distributions.
It isalso referred to as mixed exponential distribution or parallel k-phase exponential distribution.

A k-phase hyperexponential distribution is characterized by two parameters, namely a phase probability vector a=(ay,...,a,) and a
rate vector A=(Aq,...,Ay).
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The probability density function for random variate x in a hyperexponential distribution is given by:

—A:x
ale '

N

=1

The following graph illustrates the PDF of the hyperexponential distribution with five different parameters, namely:
1. a=(1.0) and A=(1.0) (which degenerates to a simple exponential distribution),

2. a=(0.1,0.9) and A=(0.5, 1.5),

3. 0=(0.9, 0.1) and A=(0.5, 1.5),

4. a=(0.2,0.3,0.5) and A=(0.5, 1.0, 1.5),

5. a=(0.5,0.3, 0.2) and A=(0.5, 1.0, 1.5).

14¢

Also, the following graph illustrates the PDF of the hyperexponential distribution (solid lines) where only the phase probability
vector changes together with the PDF of the two limiting exponential distributions (dashed lines):

1. a=(0.1, 0.9) and A=(0.5, 1.5),
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2. a=(0.6,0.4) and A=(0.5, 1.5),
3. a=(0.9,0.1) and A=(0.5, 1.5),
4. Exponential distribution with parameter A=0.5,

5. Exponential distribution with parameter A=1.5.
Asexpected, asthefirst element o, of the phase probability vector approachesto 1 (or, equivalently, a, approachesto 0), theresulting

hyperexponentia distribution nears the exponential distribution with parameter A=0.5. Conversely, as the first element a, of the

phase probability vector approachesto 1 (or, equivalently, o, approachesto 0), the resulting hyperexponential distribution nearsthe
exponential distribution with parameter A=1.5.

1.5

L
1
\
1
\
\
\
\
\
\

Finally, the following graph compares the PDF of the hyperexponential distribution with different number of phases but with the
same mean value equal to 2:

1. a=(1.0) and A=(2.0) (which degenerates to a simple exponential distribution),
2. a=(0.5,0.5) and A=(0.3, 1.5),

3. a=(1.0/3.0, 1.0/3.0, 1.0/3.0) and A=(0.2, 1.5, 3.0),
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As can be noted, even if the three distributions have the same mean value, the two hyperexponential distributions have alonger tail
with respect to the one of the exponential distribution. Indeed, the hyperexponential distribution has alarger variability than the ex-
ponential distribution, thusresulting in a Coefficient of Variation greater than 1 (as opposed to the one of the exponential distribution
which is exactly 1).

Applications

A k-phase hyperexponential distribution is frequently used in queueing theory to model the distribution of the superposition of kin-
dependent events, like, for instance, the service time distribution of a queueing station with k serversin parallel wherethei-th server
is chosen with probability a; and its service time distribution is an exponentia distribution with rate A; (Allen,1990; Papadopolous
et a.,1993; Trivedi,2002).

For instance, CPUs service-time distribution in acomputing system has often been observed to possess such adistribution (Rosin,1965).
Also, the arrival of different types of customer to a single queueing station is often modeled as a hyperexponential distribution

(Papadopolous et al.,1993). Similarly, if a product manufactured in several parallel assembly lines and the outputs are merged, the
failure density of the overall product islikely to be hyperexponential (Trivedi,2002).

Finally, since the hyperexponential distribution exhibits a high Coefficient of Variation (CoV), that isa CoV > 1, it is especially
suited to fit empirical datawith large CoV (Feitelson,2014; Wolski et al.,2013) and to approximate long-tail probability distributions
(Feldmann et al.,1998).
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Related distributions
* When the number of phaseskis equal to 1, the hyperexponentia distribution is simply an Exponential Distribution.

* When thek rates are all equal to A, the hyperexponential distribution is simple an Exponential Distribution with rate A.
Examples

Lifetime of Appliances

Suppose a customer is buying an appliance and is choosing at random between an appliance with average lifetime of 10 years and
an appliance with average lifetime of 12 years. Assuming thelifetime of this appliance follows an exponential distribution, thelifetime
distribution of the purchased appliance can be modeled as a hyperexponential distribution with phase probability vector a=(1/2,1/2)
and rate vector A=(1/10,1/12) (Wolfram,2014).

In the rest of this section, we provide an example C++ implementation for computing the average lifetime and the probability that
the appliance will work for more than 15 years.

#i ncl ude <boost/ mat h/distributions/ hyperexponenti al . hpp>
#i ncl ude <i ostreanr
int main()

{
const double rates[] ={ 1.0/ 10.0, 1.0/ 12.0 };

boost: : mat h: : hyperexponential he(rates);
std::cout << "Average lifetine:
<< boost:: math:: nmean( he)
<< " years" << std::endl;
std::cout << "Probability that the appliance will work for nore than 15 years:

<< boost::math::cdf (boost:: math::conpl enent (he, 15.0))
<< std::endl;

The resulting output is:

Average lifetime: 11 years
Probability that the appliance will work for nore than 15 years: 0.254817

Workloads of Private Cloud Computing Systems

Cloud computing has become a popular metaphor for dynamic and secure self-service access to computational and storage capabil-
ities. In (Wolski et a.,2013), the authors analyze and model workloads gathered from enterprise-operated commercial private clouds
and show that 3-phase hyperexponential distributions (fitted using the Expectation Maximization algorithm) capture workload attributes
accurately.

In this type of computing system, user requests consist in demanding the provisioning of one or more Virtual Machines (VMSs). In
particular, in (Wolski et al.,2013) the workload experienced by each cloud system isafunction of four distributions, one for each of
the following workload attributes:

* Request Interarrival Time: the amount of time until the next request,
» VM Lifetime: the time duration over which aVM is provisioned to a physical machine,
* Request Sze: the number of VMsin the request, and

 Core Count: the CPU core count requested for each VM.
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The authors assume that all VMs in arequest have the same core count, but request sizes and core counts can vary from request to
request. Moreover, al VMs within a request are assumed to have the same lifetime. Given these assumptions, the authors build a
statistical model for the request interarrival time and VM lifetime attributes by fitting their respective data to a 3-phase hyperexpo-
nential distribution.

In the following table, we show the sample mean and standard deviation (SD), in seconds, of the request interarrival time and of the
VM lifetime distributions of the three datasets collected by authors:

Dataset Mean Request Interarrival Mean Multi-core VM Life- Mean Single-core VM Life-
Time (SD) time (SD) time (SD)

DS1 2202.1 (2.2e+04) 257173 (4.6e+05) 28754.4 (1.6e+05)

DS2 41285.7 (1.1e+05) 144669.0 (7.9e+05) 599815.0 (1.7e+06)

DS3 11238.8 (3.0e+04) 30739.2 (1.6e+05) 44447 8 (2.2e+05)

Whereas in the following table we show the hyperexponentia distribution parameters resulting from the fit:

Dataset Request Interarrival Time  Multi-coreVM Lifetime Single-coreVM Lifetime

DS1 0=(0.34561,0.08648,0.56791), a=(0.24667,0.37948,0.37385), a=(0.09325,0.22251,0.68424),
A=(0.008,0.00005,0.02894)  A=(0.00004,0.000002,0.00059) A= (0.000003,0.00109,0.00109)

DS2 0=(0.38881,0.18227,0.42892), a=(0.42093,0.43960,0.13947), a=(0.44885,0.30675,0.2444),
A=(0.000006,0.05228,0.00081) A=(0.00186,0.00008,0.0000008)  A=(0.00143,0.00005,0.0000004)

DS3 a=(0.39442,0.24644,0.35914), a=(0.37621,0.14838,0.47541), a=(0.34131,0.12544,0.53325),
A=(0.00030,0.00003,0.00257)  A=(0.00498,0.000005,0.00022)  A=(0.000297,0.000003,0.00410)

In the rest of this section, we provide an example C++ implementation for computing some statistical properties of the fitted distri-
butions for each of the analyzed dataset.
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#i ncl ude <boost/ math/ distributions. hpp>
#i ncl ude <i ostreanr
#i ncl ude <string>

struct ds_info
{

std::string nane;

doubl e iat_sanpl e_nean

doubl e iat_sanpl e_sd

boost: : mat h: : hyperexponential iat_he;
double multi _It_sanpl e_nean

double multi _It_sanple_sd

boost: : mat h: : hyperexponential multi _It_he;
doubl e single_It_sanple_nean

doubl e single_It_sanple_sd
boost: : mat h: : hyperexponential single_|t_he

b

/1 DS1 dataset
ds_i nfo make_ds1()

{

ds_info ds;
ds. nane = "DS1";

/'l VW interarrival time distribution

const double iat_fit_probs|] {0. 34561, 0. 08648, 0. 56791}

const double iat_fit_rates|] {0. 0008, 0. 00005, 0. 02894} ;

ds.iat_sanpl e_nean = 2202.1;

ds.iat_sanple_sd = 2. 2e+4;

ds.iat_he = boost::math::hyperexponential (iat_fit_probs, iat_fit_rates);

/[l Multi-core VMIifetine distribution

const double nulti It _fit_probs[] = {0.24667,0.37948, 0. 37385};

const double multi It _fit_rates[] = {0.00004, 0. 000002, 0. 00059}

ds.multi_It_sanple_nean = 257173

ds.multi _It_sanple_sd = 4. 6e+5

ds.multi _It_he = boost::math:: hyperexponential (multi It _fit_probs, multi It _fit_rates);

/1 Single-core VMIlifetinme distribution

const double single_ It _fit_probs[] = {0.09325,0.22251, 0. 68424}

const double single_ It _fit_rates[] = {0.000003, 0.00109, 0.00109};

ds.single_|It_sanple_nean = 28754. 4;

ds.single_|It_sanple_sd = 1.6e+5;

ds.single_It_he = boost::math::hyperexponential (single It _fit_probs, single_ It _fit_rates);

return ds;

}

/1 DS2 dat aset
ds_i nfo make_ds2()

{

ds_info ds;
ds. name = "DS2";

/'l VMinterarrival time distribution

const double iat_fit_probs|] {0. 38881, 0. 18227, 0. 42892}

const double iat_fit_rates|] {0. 000006, 0. 05228, 0. 00081} ;

ds.iat_sanpl e_nean = 41285.7

ds.iat_sanple_sd = 1. 1e+05

ds.iat_he = boost::math::hyperexponential (iat_fit_probs, iat_fit_rates);
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Statistical Distributions and Functions

/1l Multi-core VMIifetine distribution

const double nulti It _fit_probs[] = {0.42093, 0.43960, 0. 13947} ;

const double nmulti It _fit_rates[] = {0.00186,0.00008, 0. 0000008} ;

ds.multi _It_sanple_nean = 144669. 0;

ds.multi _It_sanple_sd = 7.9e+05

ds.multi _It_he = boost::math:: hyperexponential (multi It _fit_probs, multi It _fit_rates);

/1 Single-core VM Ilifetinme distribution

const double single_ It fit_probs[] = {0.44885,0.30675, 0. 2444} ;

const double single It fit_rates[] = {0.00143, 0. 00005, 0. 0000004} ;

ds.single_|It_sanple_nean = 599815. 0;

ds.single_|It_sanple_sd = 1. 7e+06

ds.single_It_he = boost::math::hyperexponential (single It _fit_probs, single_ It _fit_rates);

return ds;

}

/1 DS3 dat aset
ds_i nfo make_ds3()

{

ds_info ds;
ds. nanme = "DS3";

/'l VMinterarrival time distribution

const double iat_fit_probs[] = {0.39442, 0. 24644, 0. 35914}

const double iat_fit_rates[] = {0.00030, 0. 00003, 0.00257};

ds.iat_sanpl e_nean = 11238. §;

ds.iat_sanple_sd = 3. 0e+04;

ds.iat_he = boost::math::hyperexponential (iat_fit_probs, iat_fit_rates);

/1l Multi-core VMIifetine distribution

const double multi It _fit_probs[] {0.37621, 0. 14838, 0. 47541} ;

const double multi It _fit_rates[] {0. 00498, 0. 000005, 0. 00022}

ds.multi _It_sanple_nean = 30739.2

ds.multi _It_sanple_sd = 1. 6e+05

ds.multi _It_he = boost:: math::hyperexponential (multi It _fit_probs, multi It _fit_rates);

/1 Single-core VM Ilifetinme distribution

const double single_ It _fit_probs[] = {0.34131, 0. 12544, 0. 53325}

const double single_ It fit_rates[] = {0.000297, 0.000003, 0. 00410};

ds.single_|t_sanple_nean = 44447.8;

ds.single_|It_sanple_sd = 2. 2e+05

ds.single_It_he = boost::math::hyperexponential (single_ It _fit_probs, single_ It _fit_rates);

return ds;

}

void print_fitted(ds_info const& ds)
{

const doubl e secs_in_a hour = 3600
const doubl e secs_in_a nonth = 30*24*secs_i n_a_hour;

std::cout << "### " << ds.name << std::endl
std::cout << "* Fitted Request Interarrival Tinme" << std::endl

std::cout << " - Mean (SD): " << boost::math::nmean(ds.iat_he) << " (" << boost::nmath::standd
ard_devi ation(ds.iat_he) << ") seconds." << std::endl
std::cout << " - 99th Percentile: O
' << boost::math::quantile(ds.iat_he, 0.99) << " seconds." << std::endl;
std::cout << " - Probability that a VMw Il arrive within 30 minutes: 0O
<< boost::math::cdf(ds.iat_he, secs_in_a hour/2.0) << std::endl
std::cout << " - Probability that a VMw Il arrive after 1 hour: 0O

<< boost::math::cdf (boost::math:: conpl ement (ds.iat_he, secs_in_a_hour)) << std::endl
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Statistical Distributions and Functions

std: : cout
std:: cout
ard_devi at
std: : cout
<< boost
std: : cout
<< boost
std: : cout
' << boost

std: : cout
std:: cout
ard_devi at
std: : cout

<< boost::

std: : cout

<< boost::

std: : cout
' << boost

}
i nt

{
print_fit

mai n()

print_fit

print_fit
}

<< "* Fitted Multi-core VM Lifetinme" << std::endl;
<< " - Mean (SD): " << boost::math::nean(ds. multi_lt_he) << " ("
ion(ds.multi_It_he) << ") seconds." << std::endl;

<< boost:: math::standO

<< " - 99th Percentile: 0O
comath::quantile(ds. multi _It_he, 0.99) << " seconds." << std::endl;
<< " - Probability that a VMwill last for less than 1 nonth: O

comath::cdf (ds.multi _It_he, secs_in_a _nonth) << std::endl;
<< " - Probability that a VMw |l last for nore than 3 nonths: 0O
c:math: : cdf (boost:: math::conplenent(ds. multi It _he, 3.0*secs_in_a nonth)) << std::endl;

<< "* Fitted Single-core VMLifetine" << std::endl;
<< " - Mean (SD): " << boost::math::nean(ds.single_|It_he) <<"
ion(ds.single_It_he) << ") seconds." << std::endl;

(" << boost:: math::standd

<< - 99th Percentile: O

mat h: : quantile(ds.single_It_he, 0.99) << " seconds." << std::endl;
<< " - Probability that a VMwill last for less than 1 nonth: O
mat h: : cdf (ds.single_It_he, secs_in_a_nonth) << std::endl;

<< " - Probability that a VMw |l last for nore than 3 nonths: 0O

;o mat h: : cdf (boost: : mat h: : conpl enent (ds. single_It_he, 3.0*secs_in_a nonth)) << std::endl;

ted(nmake_dsl());
ted(nmake_ds2()):

ted(nmake_ds3()):

The resulting output (with floating-point precision set to 2) is:
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Statistical Distributions and Functions

#it# DS1
* Fitted Request Interarrival Tine
Mean (SD): 2.2e+03 (8.1e+03) seconds.
99th Percentile: 4.3e+04 seconds.
Probability that a VMwill arrive within 30 mnutes: 0.84
Probability that a VMwi Il arrive after 1 hour: 0.092
* Fitted Multi-core VM Lifetine
Mean (SD): 2e+05 (3.9e+05) seconds.
99th Percentile: 1.8e+06 seconds.
Probability that a VMwill last for Iess than 1 nonth: 1
Probability that a VMwill last for nore than 3 nonths: 6.7e-08
* Fitted Single-core VMLifetine
Mean (SD): 3.2e+04 (1.4e+05) seconds.
99th Percentile: 7.4e+05 seconds.

Probability that a VMwill last for Iess than 1 nonth: 1
Probability that a VMwill last for nobre than 3 nonths: 6.9e-12
#it# DS2

* Fitted Request Interarrival Tine
Mean (SD): 6.5e+04 (1.3e+05) seconds.
99th Percentile: 6.1e+05 seconds.
Probability that a VMwill arrive within 30 mnutes: 0.52
Probability that a VMwill arrive after 1 hour: 0.4
* Fitted Multi-core VM Lifetine
Mean (SD): 1.8e+05 (6.4e+05) seconds.
99th Percentile: 3.3e+06 seconds.
Probability that a VMwill last for Iess than 1 nonth: 0.98
Probability that a VMwill last for nore than 3 nonths: 0.00028
* Fitted Single-core VMLifetine
Mean (SD): 6.2e+05 (1.6e+06) seconds.
99th Percentile: 8e+06 seconds.

Probability that a VMwill last for Iess than 1 nonth: 0.91
Probability that a VMwill last for nore than 3 nonths: 0.011
#it# DS3

* Fitted Request Interarrival Tine
Mean (SD): 9.7e+03 (2.2e+04) seconds.
99th Percentile: 1.1e+05 seconds.
Probability that a VMwill arrive within 30 mnutes: 0.53
Probability that a VMwill arrive after 1 hour: 0.36
* Fitted Multi-core VM Lifetinme
Mean (SD): 3.2e+04 (1e+05) seconds.
99th Percentile: 5.4e+05 seconds.
Probability that a VMwill last for less than 1 nonth: 1
Probability that a VMwill last for nore than 3 nonths: 1.9e-18
* Fitted Single-core VMLifetine
Mean (SD): 4.3e+04 (1.6e+05) seconds.
99th Percentile: 8.4e+05 seconds.
Probability that a VMwill last for less than 1 nonth: 1
Probability that a VMwill last for nore than 3 nonths: 9.3e-12

S Note
The above results differ from the ones shown in Tables 111, V, and VII of (Wolski et al.,2013). We carefully double-
checked them with Wolfram Mathematica 10, which confirmed our results.

Member Functions

Default Constructor

hyper exponenti al _di stribution();
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Statistical Distributions and Functions

Constructs a 1-phase hyperexponential distribution (i.e., an exponential distribution) with rate 1.

Constructor from lterators

tenpl ate <typenane ProblterT, typenane RatelterT>
hyper exponenti al _distribution(ProblterT prob first, ProblterT prob_| ast,
RatelterT rate first, RatelterT rate_last);

Constructs a hyperexponential distribution with phase probability vector parameter given by the range defined by [prob_first,
prob_| ast) iterator pair, and rate vector parameter given by the range defined by the[rate_first,rate_| ast) iterator pair.

Parameters

* prob_first,prob_| ast:therange of non-negative real elements representing the phase probabilities; elements are normalized
to sum to unity.

e rate_first,rate_l ast: therange of positive elements representing the rates.
Type Requirements

* ProblterT,RatelterT: must meet the requirements of the Inputlterator concept.

Example
std::array<doubl e, 2> phase_prob = { 0.5, 0.5 };
std::array<double, 2> rates = { 1.0/ 10, 1.0 / 12 };

hyper exponenti al he(phase_prob. begin(), phase_prob.end(), rates.begin(), rates.end());

Construction from Ranges/Containers

tenpl ate <typenane ProbRangeT, typenane RateRangeT>
hyper exponenti al _di stri buti on(ProbRangeT const & prob_range,
Rat eRangeT const & rate_range) ;

Constructs a hyperexponential distribution with phase probability vector parameter given by the range defined by prob_r ange,
and rate vector parameter given by the range defined by r at e_r ange.

@ Note
Asanimplementation detail, this constructor uses Boost's enable_if/disable _if mechanism to disambiguate between
this and other 2-argument constructors. Refer to the source code for more details.

Parameters

» prob_range: the range of non-negative real elements representing the phase probabilities; elements are normalized to sum to
unity.

* rate_range: therange of positive real elements representing the rates.
Type Requirements

* ProbRangeT, Rat eRangeT: must meet the requirements of the Range concept: that includes native C++ arrays, standard library
containers, or astd::pair or iterators.
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Statistical Distributions and Functions

Examples

/1 W could be using any standard |ibrary container here... vector, deque, array, list etc:
std::array<doubl e, 2> phase_prob { 0.5 0.5},
std::array<double, 2> rates { 1.0/ 10, 1.0/ 12 };

hyper exponenti al hel(phase_prob, rates); /1l Construct from standard |ibrary container.
doubl e phase_probs2[] = { 0.5, 0.5 };
doubl e rates?2|] ={ 1.0/ 10, 1.0/ 12 };

hyper exponenti al he2(phase_probs2, rates2); // Construct from native C++ array.

Construction with rates-iterators (and all phase probabilities equal)

tenpl ate <typenane RatelterT, typenane RatelterT2>
hyper exponenti al _distribution(RatelterT const& rate_first,
RatelterT2 const& rate_l ast);

Constructs ahyperexponential distribution with rate vector parameter given by therangedefined by the[rate_first,rate_| ast)
iterator pair, and phase probability vector set to the equal phase probabilities (i.e., to avector of the same length n of the rate vector
and with each element set to 1. 0/ n).

@ Note
Asanimplementation detail, this constructor uses Boost's enable_if/disable_if mechanism to disambiguate between
this and other 2-argument constructors. Refer to the source code for more details.

Parameters

* rate_first,rate_| ast:therange of positive elements representing the rates.
Type Requirements

e RatelterT,RatelterT2: must meet the requirements of the Inputlterator concept.

Example

/1 We could be using any standard library container here... vector, deque, array, list etc:
std::array<double, 2> rates = { 1.0/ 10, 1.0/ 12 };

hyper exponenti al he(rates.begin(), rates.end());

assert (he.probabilities()[0] == 0.5); // Phase probabilities will be equal and normalised to unity.

Construction from a single range of rates (all phase probabilities will be equal)

t enpl at e <typenane RateRangeT>
hyper exponenti al _di stri buti on( Rat eRangeT const & rate_range) ;

Constructs a hyperexponential distribution with rate vector parameter given by the range defined by r at e_r ange, and phase
probability vector set to the equal phase probabilities (i.e., to a vector of the same length n of the rate vector and with each element
setto 1. 0/ n).
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Statistical Distributions and Functions

Parameters
» rate_range: therange of positive real elements representing the rates.
Type Requirements

* Rat eRangeT: must meet the requirements of the Range concept: thisincludes native C++ array, standard library containers, and
astd: : pai r of iterators.

Examples

std::array<double, 2> rates ={ 1.0/ 10, 1.0/ 12 };
hyper exponenti al he(rates);

assert(he. probabilities()[0] == 0.5); // Phase probabilities will be equal and nornalised to unity.

Construction from Initializer lists

hyper exponenti al _distribution(std::initializer_|list<Real Type> 11, std::initializer_|list<RealO
Type> |1 2);

Constructs a hyperexponentia distribution with phase probability vector parameter given by the brace-init-list defined by | 1, and
rate vector parameter given by the brace-init-list defined by | 2.

Parameters

* | 1: the brace-init-list of non-negative real elements representing the phase probabilities; elements are normalized to sum to unity.
* | 2: the brace-init-list of positive real elements representing the rates.

The number of elements of the phase probabilities list and the rates list must be the same.

Example

hyper exponential he = { { 0.5, 0.5}, { 1.0/ 10, 1.0/ 12 } };

Construction from a single initializer list (all phase probabilities will be equal)
hyper exponenti al _di stribution(std::initializer_list<Real Type> |1);

Constructs a hyperexponential distribution with rate vector parameter given by the brace-init-list defined by | 1, and phase probab-
ility vector set to the equal phase probabilities (i.e., to a vector of the same length n of the rate vector and with each element set to
1.0/ n).

Parameters

* | 1: the brace-init-list of non-negative real elements representing the phase probabilities; they are normalized to ensure that they
sum to unity.

Example

hyper exponential he = { 1.0/ 10, 1.0/ 12 };

assert(he. probabilities()[0] == 0.5);
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Accessors
std::size_t numphases() const;

Gets the number of phases of this distribution (the size of both the rate and probability vectors).
Return Value

An non-negative integer number representing the number of phases of this distribution.

std::vector<Real Type> probabilities() const;

Gets the phase probability vector parameter of this distribution.

S Note
The returned probabilities are the nor malized versions of the probability parameter values passed at construction
time.

Return Value

A vector of non-negative real numbers representing the phase probability vector parameter of this distribution.

std::vector<Real Type> rates() const;

Gets the rate vector parameter of this distribution.
Return Value

A vector of positive real numbers representing the rate vector parameter of this distribution.

O Warning
The return type of these functions is a vector-by-value. This is deliberate as we wish to hide the actual container
used internally which may be subject to future changes (for example to facilitate vectorization of the cdf code etc).
Users should note that some code that might otherwise have been expected to work does not. For example, an attempt
to output the (normalized) probabilities:

std:: copy(he. probabilities().begin(), he. probabilities().end(), std::ostream.iterat
or<doubl e>(std::cout, " "));

fails at compile or runtime because iterator types are incompatible, but, for example,
std::cout << he.probabilities()[0] << ' ' << he.probabilities()[1] << std::endl;

outputs the expected values.

In general if you want to access a member of the returned container, then assign to avariable first, and then access
those members:

std::vector<double>t = he.probabilities();
std::copy(t.begin(), t.end(), std::ostream.iterator<double>(std::cout, " "));
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Non-member Accessor Functions

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table bel ow.

Accuracy

The hyperexponential distribution isimplemented in terms of the Exponential Distribution and as such should have very small errors,
usually an epsilon or few.

Implementation

In the following table:

o a=(ay,...,ay) isthe phase probability vector parameter of the k-phase hyperexponential distribution,
* A=(Aq,..., Ay istherate vector parameter of the k-phase hyperexponential distribution,

» Xistherandom variate.
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Function
support

pdf

cdf

cdf complement

quantile
quantile from the complement

mean

variance

mode

skewness

kurtosis

kurtosis excess

References
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No closed form available. Computed numerically.
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Hypergeometric Distribution

#i ncl ude <boost/ math/ distributions/hypergeonetric. hpp>

namespace boost{ nanmespace mat h{

tenpl ate <cl ass Real Type = doubl e,
class Policy = policies::policy<> >
cl ass hypergeonetric_distribution;

tenpl ate <cl ass Real Type, class Policy>
cl ass hypergeonetric_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/1 Construct:
hypergeonetric_di stribution(unsigned r, unsigned n, unsigned N);
/'l Accessors:
unsi gned total ()const;
unsi gned def ective()const;
unsi gned sanpl e_count () const;
s

t ypedef hypergeonetric_distribution<> hypergeonetric;

+} /1 nanmespaces

The hypergeometric distribution describes the number of "events' k from a sample n drawn from a total population N without re-
placement.

Imaginewe have asample of N objectsof whichr are"defective" and N-r are"not defective” (the terms"success/failure” or "red/blue’
are aso used). If we sample nitemswithout replacement then what isthe probability that exactly k itemsin the sample are defective?
The answer is given by the pdf of the hypergeometric distributionf (k; r, n, N), whilst the probability of k defectives or fewer
isgiven by F(k; r, n, N), where F(K) is the CDF of the hypergeometric distribution.

S Note
Unlike almost all of the other distributions in this library, the hypergeometric distribution is strictly discrete: it can
not be extended to real valued arguments of its parameters or random variable.
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Statistical Distributions and Functions

Thefollowing graph shows how the distribution changes as the proportion of "defective” items changes, while keeping the popul ation
and sampl e sizes constant;

Hypergeometric Distribution PDF
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Random Variable

Note that since the distribution is symmetrical in parametersn and r, if we change the sample size and keep the population and pro-
portion "defective" the same then we obtain basically the same graphs:

Hypergeometric Distribution PDF
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Random Variable

Member Functions
hypergeonetric_di stribution(unsigned r, unsigned n, unsigned N);
Constructs a hypergeometric distribution with a population of N objects, of which r are defective, and from which n are sampled.

unsi gned total ()const;
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Statistical Distributions and Functions

Returns the total number of objects N.
unsi gned defective()const;

Returns the number of objectsr in population N which are defective.
unsi gned sanpl e_count () const;

Returns the number of objects n which are sampled from the population N.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is the unsigned integers in the range [max(0, n + r - N), min(n, r)]. A domain_error israised if
the random variable is outside this range, or is not an integral value.

‘@ Caution
The quantile function will by default return an integer result that has been rounded outwards. That is to say lower

guantiles (where the probability islessthan 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
inthetails.

This behaviour can be changed so that the quantile functions are rounded differently using Palicies. It is strongly
recommended that you read the tutorial Understanding Quantiles of Discrete Distributions before using the quantile
function on the Hypergeometric distribution. The reference docs describe how to change the rounding policy for
these distributions.

However, note that the implementation method of the quantile function always returns an integral value, therefore
attempting to use a Policy that requires (or produces) areal valued result will result in a compile time error.
Accuracy

For small N such that N < boost:: mat h: : max_f act ori al <Real Type>: : val ue then table based lookup of the results gives
an accuracy to afew epsilon. boost : : mat h: : max_f act ori al <Real Type>: : val ue is 170 at double or long double precision.

For larger N such that N < boost:: math: : pri me(boost: : mat h: : max_pri me) then only basic arithmetic is required for the
calculation and the accuracy istypically < 20 epsilon. Thistakes care of N up to 104729.

For N > boost:: math::prime(boost:: math:: max_prine) then accuracy quickly degrades, with 5 or 6 decimal digits being
lost for N = 110000.

In general for very large N, the user should expect to lose log;oN decimal digits of precision during the calculation, with the results
becoming meaningless for N >= 10°,

Testing

There are three sets of tests: our implementation is tested against a table of values produced by Mathematica's implementation of
this distribution. We also sanity check our implementation against some spot values computed using the online calculator here
http://stattrek.com/Tables/Hypergeometric.aspx. Finally wetest accuracy against some high precision test data using thisimplement-
ation and NTL::RR.
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Statistical Distributions and Functions

Implementation

The PDF can be calculated directly using the formula:

nlr!(N—n)!(N —r)! .
flk;r,n, N) = N!k!(n—k)(!(r—k;!EN—n)—rJrk)! ;0 max(O,N—r—n+k)< =k< =min(r, n)

However, this can only be used directly when the largest of the factorials is guaranteed not to overflow the floating point represent-
ation used. This formula is used directly when N < max_f act ori al <Real Type>: : val ue in which case table lookup of the
factorials gives arapid and accurate implementation method.

For larger N the method described in "An Accurate Computation of the Hypergeometric Distribution Function”, Trong Wu, ACM
Transactions on Mathematical Software, Vol. 19, No. 1, March 1993, Pages 33-43 is used. The method relies on the fact that there
is an easy method for factorising a factorial into the product of prime numbers:

Pi<N

N! = le.e[
i=0

Where p; isthei'th prime number, and g isasmall positive integer or zero, which can be calculated via:

pl<N

e = E floor

Jj=1

N

p;

Further we can combine the factorials in the expression for the PDF to yield the PDF directly as the product of prime numbers:

Pi<N

f(k;ra n, N) = Hp[ei
=0

With thistime the exponents e, being either positive, negative or zero. Indeed such a degree of cancellation occursin the calculation
of the g that many are zero, and typically most have a magnitude or no more than 1 or 2.

Calculation of the product of the primes requires some care to prevent numerical overflow, we use a novel recursive method which
splits the calculation into a series of sub-products, with a new sub-product started each time the next multiplication would cause
either overflow or underflow. The sub-products are stored in a linked list on the program stack, and combined in an order that will
guarantee no overflow or unnecessary-underflow once the last sub-product has been cal cul ated.

This method can be used as long as N is smaller than the largest prime number we have stored in our table of primes (currently
104729). The method is relatively slow (calculating the exponents requires the most time), but requires only a small number of
arithmetic operations to calculate the result (indeed there is no shorter method involving only basic arithmetic once the exponents
have been found), the method is therefore much more accurate than the alternatives.

For much larger N, we can cal cul ate the PDF from the factorial s using either Igamma, or by directly combining lanczos approximations
to avoid calculating vialogarithms. We use the latter method, asit isusually 1 or 2 decimal digits more accurate than computing via
logarithms with Igamma. However, in this area where N > 104729, the user should expect to lose around logygN decimal digits
during the calculation in the worst case.

The CDF and its complement is cal cul ated by directly summing the PDF's. We start by deciding whether the CDF, or its complement,
islikely to be the smaller of the two and then calculate the PDF at k (or k+1 if we're cal culating the complement) and calcul ate suc-
cessive PDF values via the recurrence relations:
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Statistical Distributions and Functions

(n—K)r— )
fe+1lir,n N) = gnw—n i/ ks, N)

x(N—n—-r+k)
fk=1r,n, N) = o= ne—rrn/ k7, n, N)

Until we either reach the end of the distributions domain, or the next PDF value to be summed would be too small to affect the result.

The quantile is calculated in asimilar manner to the CDF: we first guess which end of the distribution we're nearer to, and then sum
PDFs starting from the end of the distribution this time, until we have some value k that gives the required CDF.

The median is ssimply the quantile at 0.5, and the remaining properties are calculated via:

rn

mean =

mode = floor (%)

: AN =) =)
variance = — vy,

_ (V2N - DV - 20)
skewness = EE—S@-H(v-2)

. _ NA(N - 1) N(N+1)=6N(N=r) | 3r(N=r)N +6)
kurtosis excess = |\ xy—awv-Hv-n ( wN =) + 2 - 6)

Inverse Chi Squared Distribution

#i ncl ude <boost/ math/distributions/inverse_chi_squared. hpp>

namespace boost{ nanmespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
cl ass inverse_chi _squared_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
i nverse_chi _squared_distribution(Real Type df = 1); // Not explicitly scaled, default 1/df.
i nverse_chi _squared_di stributi on(Real Type df, Real Type scale = 1/df); // Scal ed.
Real Type degrees_of freedom )const; // Default 1.
Real Type scal e()const; // Optional scale [xi] (variance), default 1/degrees_of_freedom
H

}} /1 nanespace boost // namespace nath

The inverse chi squared distribution is a continuous probability distribution of the reciprocal of avariable distributed according to
the chi squared distribution.

The sources below give confusingly different formulae using different symbols for the distribution pdf, but they are all the same, or
related by a change of variable, or choice of scale.

Two constructors are available to implement both the scaled and (implicitly) unscaled versions.
The main version has an explicit scale parameter which implements the scaled inverse chi_squared distribution.

A second version has an implicit scale = 1/degrees of freedom and gives the 1st definition in the Wikipedia inverse chi_squared
distribution. The 2nd Wikipedia inverse chi_squared distribution definition can be implemented by explicitly specifying a scale =
1

286

httpo://www.renderx.com/


http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution
http://en.wikipedia.org/wiki/Inverse-chi-square_distribution
http://en.wikipedia.org/wiki/Inverse-chi-square_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Both definitions are al so available in Wolfram Mathematicaand in The R Project for Statistical Computing (geoR) with default scale
= 1/degrees of freedom.

See

* Inverse chi_squared distribution http://en.wikipedia.org/wiki/Inverse-chi-square_distribution

» Scaled inverse chi_squared distributionhttp://en.wikipedia.org/wiki/Scal ed-inverse-chi-square_distribution
* Rinverse chi_sguared distribution functions R

* Inverse chi_sguared distribution functions Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram
Web Resource.

 Inverse chi_squared distribution reference Weisstein, Eric W. "Inverse Chi-Squared Distribution reference.” From Wolfram
Mathematica.

The inverse _chi_squared distribution is used in Bayesian statistics: the scaled inverse chi-sgquare is conjugate prior for the normal
distribution with known mean, model parameter o2 (variance).

See conjugate priorsincluding atable of distributions and their priors.
See also Inverse Gamma Distribution and Chi Squared Distribution.

Theinverse chi_squared distribution is a special case of ainverse_ gamma distribution with v (degrees of freedom) shape (a) and
scale () where

o=v/2and = %.

Note
S This distribution does provide the typedef:
typedef inverse_chi _squared_distribution<doubl e> inverse_chi_squared;
If you want adoubl e precision inverse_chi_squared distribution you can use
boost: : mat h: : i nverse_chi _squared_di stri buti on<>
or you can writei nver se_chi _squared ny_i nvchisqr(2, 3);

For degrees of freedom parameter v, the (unscaled) inverse chi_squared distribution is defined by the probability density function
(PDF):

f(x;v) = 2V2 x V21 V2 1 (v/2)
and Cumulative Density Function (CDF)
F(x;v) =T (v/2, U2x) I T (v/2)

For degrees of freedom parameter v and scale parameter &, the scaled inverse chi_sguared distribution is defined by the probability
density function (PDF):

f(xv, &) = (Ev/2)"2 V¥ xV2 1T (u12)
and Cumulative Density Function (CDF)

F(x;v, &) =T (v/2,v&/2x) [ T (v/2)
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Statistical Distributions and Functions

The following graphs illustrate how the PDF and CDF of the inverse chi_squared distribution varies for a few values of parameters

vand¢:
Inverse Chi Squared Distribution PDF
4
_v=1
5 —v=3,(§=1/3)
] _v=3E=1
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Inverse Chi Squared Distribution CDF
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Random Variable

Member Functions

1); // Inplicitly scaled 1/df.

i nverse_chi _squared_di stribution(Real Type df
1, Real Type scale); // Explicitly scal ed.

i nverse_chi _squared_di stri bution(Real Type df

Constructs an inverse chi_sqguared distribution with v degrees of freedom df, and scale scale with default value 1/df.

Requires that the degrees of freedom v parameter is greater than zero, otherwise calls domain_error.

Real Type degrees_of _freedom )const;
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Statistical Distributions and Functions

Returns the degrees of freedom v parameter of this distribution.

Real Type scal e()const;

Returns the scale & parameter of this distribution.
Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variateis [0,+o].

S Note
Unlike some definitions, this implementation supports a random variate equal to zero as a specia case, returning
zero for both pdf and cdf.

Accuracy

The inverse gamma distribution is implemented in terms of the incomplete gamma functions like the Inverse Gamma Distribution
that use gamma_p and gamma_q and their inverses gamma_p_inv and gamma_q_inv: refer to the accuracy data for those functions
for more information. But in general, gamma (and thusinverse gamma) results are often accurate to afew epsilon, >14 decimal digits
accuracy for 64-bit double. unlessiteration isinvolved, asfor the estimation of degrees of freedom.

Implementation
In the following table v is the degrees of freedom parameter and § isthe scale parameter of the distribution, x is the random variate,

p isthe probability and q = 1-p its complement. Parameters a for shape and 3 for scale are used for the inverse gamma function: a
=v2andB=v* &/2.
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Statistical Distributions and Functions

Function

pdf

cdf
cdf complement
quantile

quantile from the complement

I mplementation Notes

Using the relation: pdf = gamma_p_derivative(a, B/ X, B) / x *
X

Using therelation: p = gamma._q(a, 3/ X)
Using the relation: g = gamma._p(a, B/ x)
Using therelation: x = / gamma_q_inv(a, p)

Using therelation: x = a / gamma_p_inv(a, Q)

mode v*¥E/(Vv+2)
median no closed form analytic equation is known, but is evaluated as
quantile(0.5)

mean vE /(v -2)forv >2 elssadomain_error

variance 2v282/((v -2)?2 (v -4)) for v >4, elseadomain_error

skewness 4+2(v-4) /(v-6) for v >6, else adomain_error

kurtosis_excess 12* (5v-22)/ ((v-6) * (v - 8)) forv >8, elseadomain_error

kurtosis 3+12* (5v-22)/((v-6)* (v-8)) forv >8, elseadomain_error
References

1. Bayesian DataAnalysis, Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, ISBN-13: 978-1584883883, Chapman
& Hall; 2 edition (29 July 2003).

2. Bayesian Computation with R, Jim Albert, ISBN-13: 978-0387922973, Springer; 2nd ed. edition (10 Jun 2009)

Inverse Gamma Distribution

#i ncl ude <boost/math/ distributions/inverse_ganma. hpp>

namespace boost{ nanmespace mat h{

tenpl ate <cl ass Real Type = doubl e

class Policy = policies::policy<> >
cl ass inverse_ganme_di stribution
{
publi c:

typedef Real Type val ue_type
typedef Policy policy_type

i nverse_ganma_di stributi on(Real Type shape, Real Type scale = 1)

Real Type shape()const;
Real Type scal e()const;

}

}} 1/ nanespaces
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Statistical Distributions and Functions

The inverse_gamma distribution is a continuous probability distribution of the reciprocal of a variable distributed according to the
gamma distribution.

The inverse_gammadistribution is used in Bayesian statistics.
See inverse gamma distribution.

R inverse gamma distribution functions.

Wolfram inverse gamma distribution.

See a'so Gamma Distribution.

Note
S In spite of potential confusion with the inverse gamma function, this distribution does provide the typedef:
typedef inverse_gama_di stri buti on<doubl e> gama;
If you want adoubl e precision gamma distribution you can use
boost:: math::inverse_gamma_di stribution<>
or you can writei nver se_gamma ny_i g(2, 3);

For shape parameter o and scale parameter 3, it is defined by the probability density function (PDF):
f(x;a, B) = B* * (1/x) *** exp(-p/x) / T'(a)

and cumulative density function (CDF)
F(x;a, B) =T (a, B/x) /T (a)

The following graphs illustrate how the PDF and CDF of the inverse gamma distribution varies as the parameters vary:

Inverse Gamma Distribution PDF
5 4
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Inverse Gamma Distribution CDF
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Member Functions
i nverse_ganmma_di stributi on(Real Type shape = 1, Real Type scale = 1);

Constructs an inverse gamma distribution with shape o and scale f3.

Requires that the shape and scale parameters are greater than zero, otherwise calls domain_error.
Real Type shape()const;

Returns the a shape parameter of this inverse gamma distribution.
Real Type scal e()const;

Returns the 3 scale parameter of this inverse gamma distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variate is [0,+o].

@ Note
Unlike some definitions, this implementation supports a random variate equal to zero as a specia case, returning
zero for pdf and cdf.

Accuracy

Theinverse gammadistribution isimplemented in terms of theincomplete gammafunctions gamma_p and gamma g and their inverses
gamma_p_inv and gamma_q_inv: refer to the accuracy datafor those functionsfor moreinformation. Butin general, inverse_gamma
results are accurate to afew epsilon, >14 decimal digits accuracy for 64-bit double.
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Statistical Distributions and Functions

Implementation

In the following table a is the shape parameter of the distribution, a isits scale parameter, X isthe random variate, p is the probab-

ility and g = 1-p.

Function

pdf

cdf

cdf complement

quantile

guantile from the complement
mode

median

mean

variance

skewness

kurtosis_excess

Implementation Notes

Using the relation: pdf = gamma_p_derivative(a, B/ x, B) / x *
X

Using the relation: p = gamma _g(a, B/ X)

Using the relation: g = gamma _p(a, B/ X)

Using therelation: x =3 / gamma_q_inv(a, p)

Using therelation: x = a / gamma_p_inv(a, q)

B/(a+1)

no analytic equation is known, but is evaluated as quantile(0.5)
B/(a-1) fora>1, elseadomain_error

B*B)/ ((a-1)* (a-1)* (a-2)) fora >2, elseadomain_error
4* sort (o -2) / (a -3) for a >3, elseadomain_error

(30* a-66)/ ((a-3)*(a - 4)) for a >4, elseadomain_error

Inverse Gaussian (or Inverse Normal) Distribution

#i ncl ude <boost/math/distributions/inverse_gaussi an. hpp>

namespace boost{ namespace

tenpl ate <cl ass Real Type =
cl ass Policy =

mat h{

doubl e,
policies::policy<> >

cl ass inverse_gaussi an_distribution

i nver se_gaussi an_di stribution(Real Type nean = 1, Real Type scale = 1);

/1 Optional scale, default 1 (unscal ed).
/'l Shape = scal e/ nean.

{
publi c:
typedef Real Type val ue_type;
typedef Policy policy_type;
Real Type nean()const; // nean default 1.
Real Type scal e()const;
Real Type shape()const;
b

t ypedef inverse_gaussi an_di stributi on<doubl e> inverse_gaussi an;

}} /1 nanespace boost // namespace math

The Inverse Gaussian distribution distribution is a continuous probability distribution.

The distribution is aso called 'normal-inverse Gaussian distribution’, and 'normal Inverse' distribution.

render
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Statistical Distributions and Functions

It is also convenient to provide unity as default for both mean and scale. Thisis the Standard form for al distributions. The Inverse
Gaussian distribution was first studied in relation to Brownian motion. In 1956 M.C.K. Tweedie used the name Inverse Gaussian
because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. The inverse
Gaussian is one of family of distributions that have been called the Tweedie distributions.

(So inverse in the name may mislead: it does not relate to the inverse of a distribution).

The tails of the distribution decrease more slowly than the normal distribution. It is therefore suitable to model phenomena where
numerically large values are more probable than is the case for the normal distribution. For stock market returns and prices, a key
characterigticisthat it modelsthat extremely large variations from typical (crashes) can occur even when almost all (normal) variations
are small.

Examples are returns from financial assets and turbulent wind speeds.
The normal-inverse Gaussian distributions form a subclass of the generalised hyperbolic distributions.
See distribution. Weisstein, Eric W. "Inverse Gaussian Distribution." From MathWorld--A Wolfram Web Resource.

If you want adoubl e precision inverse gaussian distribution you can use

boost:: math::inverse_gaussi an_di stri bution<>

or, more conveniently, you can write

usi ng boost:: nath::inverse_gaussian;
i nverse_gaussian ny_ig(2, 3);

For mean parameters u and scale (also called precision) parameter A, and random variate X, the inverse gaussian distribution is
defined by the probability density function (PDF):

f(xil, A) = V(A 2mx®) ehoema
and Cumulative Density Function (CDF):

FOGH, A) = D{VOX) (u-1)} + € D{-V(Mp) (1+x/p)}
where @ isthe standard normal distribution CDF.

The following graphs illustrate how the PDF and CDF of the inverse gaussian distribution varies for a few values of parameters
and A:
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Inverse Gaussian Distribution PDF
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Tweedie aso provided 3 other parameterisations where (L and A) are replaced by their ratio ¢ = M and by 1/u: these forms may be
more suitable for Bayesian applications. These can be found on Seshadri, page 2 and are also discussed by Chhikara and Folks on
page 105. Another related parameterisation, the wald_distrib (where mean |1 is unity) is also provided.

Member Functions

i nver se_gaussi an_di stri bution(Real Type df = 1, Real Type scale = 1); // optionally scal ed.

Constructs an inverse_gaussian distribution with © mean, and scale A, with both default values 1.

Requires that both the mean p parameter and scale A are greater than zero, otherwise calls domain_error.

Real Type mean()const;
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Statistical Distributions and Functions

Returns the mean p parameter of this distribution.

Real Type scal e()const;

Returnsthe scale A parameter of this distribution.
Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variateis [0,+).

S Note
Unlike some definitions, this implementation supports a random variate equal to zero as a specia case, returning
zero for both pdf and cdf.

Accuracy

The inverse_gaussian distribution is implemented in terms of the exponentia function and standard normal distribution NO,1 & :
refer to the accuracy datafor those functionsfor more information. But in general, gamma (and thusinverse gamma) results are often
accurate to afew epsilon, >14 decimal digits accuracy for 64-bit double.

Implementation

In the following table p is the mean parameter and A is the scale parameter of the inverse_gaussian distribution, x is the random
variate, p is the probability and g = 1-p its complement. Parameters | for shape and A for scale are used for the inverse gaussian
function.
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Statistical Distributions and Functions

Function Implementation Notes

pdf VM 2m®) e - W 2

cdf D{VAX) (xu-1)} + 2 d{-V(Mp) (L+x/p)}

cdf complement using complement of ® above.

quantile No closed form known. Estimated using a guess refined by

Newton-Raphson iteration.

quantile from the complement No closed form known. Estimated using a guess refined by
Newton-Raphson iteration.

mode U { V(1+9u2/4N2)2 - 3u/2\}
median No closed form analytic equation is known, but is evaluated as
quantile(0.5)
mean Tt
variance H3/A
skewness 3V (WA)
kurtosis_excess 15W/A
kurtosis 12u/A
References

1. Wald, A. (1947). Sequential analysis. Wiley, NY.

2. The Inverse Gaussian distribution : theory, methodology, and applications, Raj S. Chhikara, J. Leroy Folks. ISBN 0824779975
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10 Brighton Webs wald.

Laplace Distribution

#i ncl ude <boost/math/distributions/|aplace. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

doubl e,
policies::policy<> >

tenpl ate <cl ass Real Type
cl ass Policy
class |l aplace_distribution;

typedef | aplace_distribution<> |aplace;

tenpl ate <cl ass Real Type, class Policy>
class |l aplace_distribution
{
public:
typedef Real Type val ue_type
typedef Policy policy_type
/'l Construct:
| apl ace_di stribution(Real Type location = 0, Real Type scale = 1);
/'l Accessors:
Real Type | ocation()const;
Real Type scal e()const;

};

}} /1 nanespaces

Laplace distribution is the distribution of differences between two independent variates with identical exponential distributions
(Abramowitz and Stegun 1972, p. 930). It is also called the double exponential distribution.

For location parameter 1 and scale parameter o , it is defined by the probability density function:

_a
o

1
fou0) = 35
The location and scale parameters are equivalent to the mean and standard deviation of the normal or Gaussian distribution.

Thefollowing graphillustratesthe effect of the parameterspy and o onthe PDF. Note that the domain of the random variable remains
[-o0,+00] irrespective of the value of the location parameter:

Laplace Distribution PDF

1.1

13 _HM=0,0=1

0.9 - _ u=0,0=0.5
0-8 5 _u=0,0=2
0.7 -
=-1,0=1
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0.5 ] p=1,0=1

Probability

0.4 4
0.3 4
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Statistical Distributions and Functions

Member Functions
| apl ace_di stribution(Real Type | ocation = 0, Real Type scale = 1);

Constructs a laplace distribution with location location and scale scale.
The location parameter is the same as the mean of the random variate.
The scale parameter is proportional to the standard deviation of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls domain_error.

Real Type | ocation()const;

Returns the location parameter of this distribution.

Real Type scal e()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is[-co,+00].

Accuracy

The laplace distribution is implemented in terms of the standard library log and exp functions and as such should have very small
errors.

Implementation

In thefollowing table p isthe location parameter of the distribution, ¢ isits scale parameter, X isthe random variate, p isthe probab-
ility and its complement g = 1-p.
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Statistical Distributions and Functions

Function Implementation Notes
pdf Using the relation: pdf = e@XW/9 /(2% o)
cdf Using the relations:

cdf complement

quantile

quantile from the complement

Xx<p:p=eXWo g
x>=p:p=1-e0 /g
Using the relation:
X<p:q=eXWo g
Xx>=p:q=1-eto /g
Using the relations:
p<05:x=p+0o*log(2*p)
p>=05:x=u-0* log(2-2*p)
Using the relation:

q>0.5: x =+ o*log(2-2*q)

g<=0.5:x=p-o*log( 2*q)

mean M

variance 2* o?

mode V!

skewness 0

kurtosis 6

kurtosis excess 3
References

» Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.
 Laplace Distribution

* M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 1972, p. 930.

Logistic Distribution

#i ncl ude <boost/ math/distributions/logistic.hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
class logistic_distribution;

tenpl ate <cl ass Real Type, class Policy>
class logistic_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy pol i cy_type;
/'l Construct:
| ogi stic_distribution(Real Type location = 0, Real Type scale = 1);
/'l Accessors:
Real Type | ocation()const; // |ocation.
Real Type scal e()const; // scale.

s
typedef |ogistic_distribution<> |ogistic;

}} /1 nanespaces

Thelogistic distribution isacontinous probability distribution. It hastwo parameters- location and scale. The cumulative distribution
function of the logistic distribution appearsin logistic regression and feedforward neural networks. Among other applications, United
State Chess Federation and FIDE use it to calculate chess ratings.

The following graph shows how the distribution changes as the parameters change:

Logistic Distribution PDF

0.5 - __ location=0, scale=1
__ location=0, scale=3
0.4
__ location=0, scale=0.5
>
= 0.3 location=5, scale=1
= 0.3
©
Qo
o
j -
o 0.2 4
0.1
0 = - \Ik‘lx

-10 -5 0 5 10

Random Variable

Member Functions
| ogistic_distribution(Real Type u = 0, Real Type s = 1);

Constructs alogistic distribution with location u and scale s.

Requiresscal e > 0, otherwise adomain_error israised.
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Statistical Distributions and Functions

Real Type | ocation()const;

Returns the location of this distribution.

Real Type scal e()const;

Returns the scale of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

Thedomain of therandom variableis[-[max_value], +[min_value]]. However, the pdf and cdf support inputs of +co and -co as special
cases if Real Type permits.

At p=1 and p=0, the quantile function returns the result of +overflow_error and -overflow_error, while the complement quantile
function returns the result of -overflow_error and +overflow_error respectively.

Accuracy

Thelogistic distribution isimplemented in terms of the st d: : exp and the st d: : | og functions, so its accuracy is related to the ac-
curate implementations of those functions on a given platform. When calculating the quantile with a non-zero position parameter
catastrophic cancellation errors can occur: in such cases, only alow absolute error can be guarenteed.

Implementation

Function Implementation Notes

pdf Using the relation: pdf = e*W/S  (sx (146 W/8)2)
cdf Using the relation: p = 1/(1+e *YW’s)
cdf complement Using the relation: q = 1/(1+e*’9)
quantile Using therelation: x = u - s*log(1/p-1)
guantile from the complement Using therelation: x = u + s*log(p/1-p)
mean u

mode The same as the mean.

skewness 0

kurtosis excess 6/5

variance (9?13

Log Normal Distribution

#i ncl ude <boost/ math/distributions/|ognornal.hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
cl ass | ognormal _distribution;

t ypedef | ognormal _distribution<> | ognornal ;

tenpl ate <cl ass Real Type, class Policy>
cl ass | ognornal _distribution

{
public:
typedef Real Type val ue_type;
typedef Policy pol i cy_type;
/'l Construct:
| ognormal _di stribution(Real Type |ocation = 0, Real Type scale = 1);
/'l Accessors:
Real Type | ocation()const;
Real Type scal e()const;
}s

}} /1 nanespaces

The lognormal distribution is the distribution that arises when the logarithm of the random variable is normally distributed. A
lognormal distribution results when the variable is the product of alarge number of independent, identically-distributed variables.

For location and scale parameters mand sit is defined by the probability density function:

—(lnx—m)2
1 2
e 2s
XsN27

f(x) =

The location and scale parameters are equivalent to the mean and standard deviation of the logarithm of the random variable.

The following graph illustrates the effect of the location parameter on the PDF, note that the range of the random variable remains
[0,+e0] irrespective of the value of the location parameter:

Lognormal Distribution PDF (scale=1)
__ location=-1
__ location=0
1.5 4
__ location=1
oy
8 1-
0
o
a
0.5 -
0 T T
0 5 10
Random Variable

The next graph illustrates the effect of the scale parameter on the PDF:
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Statistical Distributions and Functions

Lognormal Distribution PDF (location=0)
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Random Variable

Member Functions
| ognormal _di stribution(Real Type location = 0, Real Type scale = 1);

Constructs alognormal distribution with location location and scale scale.
Thelocation parameter is the same as the mean of the logarithm of the random variate.
The scale parameter is the same as the standard deviation of the logarithm of the random variate.

Requires that the scale parameter is greater than zero, otherwise calls domain_error.
Real Type | ocation()const;

Returns the location parameter of this distribution.
Real Type scal e()const;

Returns the scale parameter of this distribution.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is[0,+c0].

Accuracy

Thelognormal distribution isimplemented in terms of the standard library log and exp functions, plusthe error function, and as such
should have very low error rates.
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Statistical Distributions and Functions

Implementation

In the following table misthe location parameter of the distribution, sisits scale parameter, X isthe random variate, p isthe probab-
ility and g = 1-p.

Function Implementation Notes

paf Using the relation: pdf = e("®)- m® /28" (x * s* sqrt(2pi))

cdf Using the relation: p = cdf(normal_distribtion<Rea Type>(m,
s), log(x))

cdf complement Using therelation: q = cdf(complement(normal_distribtion<Re-

alType>(m, s), log(x)))

quantile Using the relation: x = exp(quantile(normal_distribtion<Real -
Type>(m, s), p))

guantile from the complement Using the relation: x = exp(quantile(complement(normal_dis-
tribtion<Rea Type>(m, s), 0)))

mean em+ £12

variance € -1)* M

mode gn+s

skewness s;qr'[(e52 -1 *(2+ esz)

kurtosis & +26% +36% -3

kurtosis excess & 4263 +36% -6

Negative Binomial Distribution

#i ncl ude <boost/ math/ di stributions/ negative_binom al . hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type = doubl e,
cl ass Policy = policies::policy<> >
cl ass negative_bi nom al _di stribution;

t ypedef negative_bi nom al _distributi on<> negative_bi nom al ;

tenpl ate <cl ass Real Type, class Policy>
cl ass negative_binonial _distribution
{
public:
typedef Real Type val ue_type;
typedef Policy pol i cy_type;
/1 Constructor from successes and success_fraction:
negati ve_bi nom al _di stribution(Real Type r, Real Type p);

/| Paraneter accessors:
Real Type success_fraction() const;
Real Type successes() const;

/1 Bounds on success fraction:
static Real Type find_|l ower_bound_on_p(
Real Type trials,
Real Type successes,
Real Type probability); // alpha
static Real Type find_upper_bound_on_p(
Real Type trials,
Real Type successes,
Real Type probability); // alpha

/1 Estimate m n/max nunber of trials:
static Real Type find_m ni rum nunber_of trials(

Real Type k, /1 Nunber of failures.

Real Type p, /'l Success fraction.

Real Type probability); // Probability threshold al pha.
static Real Type find_nmaxi rum nunber _of trial s(

Real Type k, /'l Nunber of failures.

Real Type p, /'l Success fraction.

Real Type probability); // Probability threshold al pha.

I

}} /1 nanespaces

Theclasstypenegat i ve_bi noni al _di stri buti on representsanegative_binomial distribution: it isused when there are exactly
two mutually exclusive outcomes of a Bernoulli trial: these outcomes are labelled "success' and "failure".

For k + r Bernoulli trials each with success fraction p, the negative_binomial distribution gives the probability of observing k failures
and r successes with success on the last trial. The negative_binomial distribution assumes that success fraction p isfixed for al (k
+71) trias.

S Note
The random variable for the negative binomial distribution is the number of trials, (the number of successesisa
fixed property of the distribution) whereas for the binomial, the random variable is the number of successes, for a
fixed number of trials.

It has the PDF:
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Statistical Distributions and Functions

I'(r+k
i) = ey - pf

The following graph illustrate how the PDF varies as the success fraction p changes:

Negative Binomial Distribution PDF
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Alternatively, this graph shows how the shape of the PDF varies as the number of successes changes:

Negative Binomial Distribution PDF
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Related Distributions

The name negative binomial distribution is reserved by some to the case where the successes parameter r is an integer. Thisinteger
version is also called the Pascal distribution.

This implementation uses real numbers for the computation throughout (because it uses the real-valued incomplete beta function
family of functions). This real-valued version is also called the Polya Distribution.
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Statistical Distributions and Functions

The Poisson distribution isageneralization of the Pascal distribution, where the success parameter r isan integer: to obtain the Pascal
distribution you must ensure that an integer valueis provided for r, and take integer values (floor or ceiling) from functionsthat return
anumber of successes.

For large values of r (successes), the negative binomial distribution converges to the Poisson distribution.

The geometric distribution isaspecial case where the successes parameter r = 1, so only afirst and only successis required. geomet-
ric(p) = negative_binomial(1, p).

The Poisson distribution is a special case for large successes

poisson(A) =lim, _ ,, negative binomia(r, r/ (A +r)))

‘g Caution
The Negative Binomial distribution is a discrete distribution: internally, functions like the cdf and pdf are treated

"asif" they are continuous functions, but in reality the results returned from these functions only have meaning if
an integer value is provided for the random variate argument.

The quantile function will by default return an integer result that has been rounded outwards. That is to say lower
guantiles (where the probability islessthan 0.5) are rounded downward, and upper quantiles (where the probability
is greater than 0.5) are rounded upwards. This behaviour ensures that if an X% quantile is requested, then at least
the requested coverage will be present in the central region, and no more than the requested coverage will be present
inthetails.

This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on the Negative Binomial distribution. The reference docs describe
how to change the rounding policy for these distributions.

Member Functions
Construct

negati ve_bi nom al _di stribution(Real Type r, Real Type p)

Constructor: r isthe total number of successes, p is the probability of success of asingle trial.
Requires.r > 0and0 <= p <= 1.

Accessors

Real Type success_fraction() const; // successes / trials (0 <= p <= 1)
Returns the parameter p from which this distribution was constructed.

Real Type successes() const; // required successes (r > 0)

Returns the parameter r from which this distribution was constructed.

The best method of calculation for the following functionsis disputed: see Binomial Distribution for more discussion.
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Statistical Distributions and Functions

Lower Bound on Parameter p

static Real Type find_| ower_bound_on_p(
Real Type failures,
Real Type successes,
Real Type probability) // (0 <= al pha <= 1), 0.05 equivalent to 95% confidence.

Returns alower bound on the success fraction:

failures The total number of failures before the rth success.
successes The number of successes required.
alpha The largest acceptable probability that the true value of the success fraction is less than the value returned.

For example, if you observe k failures and r successes from n = k + r trias the best estimate for the success fraction is simply r/n,
but if you want to be 95% sure that the true value is greater than some value, pyin, then:

Prin = negative_bi nom al _di stribution<Real Type>::find_|l ower_bound_on_p(
failures, successes, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Upper Bound on Parameter p

static Real Type find_upper_bound_on_p(
Real Type trials,
Real Type successes,
Real Type al pha); // (0 <= alpha <= 1), 0.05 equivalent to 95% confi dence.

Returns an upper bound on the success fraction:

trials The total number of trials conducted.
successes The number of successes that occurred.
alpha The largest acceptable probability that the true value of the success fraction is greater than the value returned.

For example, if you observe k successes from n trials the best estimate for the success fraction is simply k/n, but if you want to be
95% sure that the true value is less than some value, pygy. then:

Prex = Negative_bi noni al _di stribution<Real Type>::find_upper_bound_on_p(
r, k, 0.05);

See negative binomial confidence interval example.

This function uses the Clopper-Pearson method of computing the lower bound on the success fraction, whilst many texts refer to
this method as giving an "exact" result in practice it produces an interval that guarantees at least the coverage required, and may
produce pessimistic estimates for some combinations of failures and successes. See:
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Statistical Distributions and Functions

Yong Cai and K. Krishnamoorthy, A Simple Improved Inferential Method for Some Discrete Distributions. Computational statistics
and data analysis, 2005, vol. 48, no3, 605-621.

Estimating Number of Trials to Ensure at Least a Certain Number of Failures

static Real Type find_m ni mum nunber_of trials(
Real Type Kk, /'l nunber of failures.
Real Type p, /'l success fraction.
Real Type al pha); // probability threshold (0.05 equivalent to 95%.

This functions estimates the number of trials required to achieve a certain probability that more than k failureswill be observed.

k The target number of failures to be observed.
p The probability of successfor each trial.
apha  Themaximum acceptable risk that only k failures or fewer will be observed.

For example;
negati ve_bi nom al _di stribution<Real Type>::find_m ni mum nunber_of _trial s(10, 0.5, 0.05);

Returns the smallest number of trials we must conduct to be 95% sure of seeing 10 failures that occur with frequency one half.
Worked Example.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result,
isthat it finds the number of trials (success+failures) that will lead to an alpha probability of observing k failures or fewer.

Estimating Number of Trials to Ensure a Maximum Number of Failures or Less

static Real Type find_nmaxi mum nunber_of _trial s(
Real Type Kk, /1 nunber of failures.
Real Type p, /'l success fraction.
Real Type al pha); // probability threshold (0.05 equivalent to 95%.

This functions estimates the maximum number of trials we can conduct and achieve a certain probability that k failures or fewer
will be observed.

k The maximum number of failures to be observed.
p The probability of success for each trial.
apha  The maximum acceptable risk that more than k failures will be observed.

For example:

negati ve_bi nom al _di stri buti on<Real Type>: : fi nd_maxi num nunber_of _trial s(0, 1.0-1.0/1000000, 0.05);

Returns the largest number of trials we can conduct and still be 95% sure of seeing no failures that occur with frequency onein one
million.

This function uses numeric inversion of the negative binomial distribution to obtain the result: another interpretation of the result,
isthat it finds the number of trials (success+failures) that will lead to an alpha probability of observing more than k failures.
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Statistical Distributions and Functions

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

However it's worth taking a moment to define what these actually mean in the context of this distribution:
Table 17. M eaning of the non-member accessors.

Function Meaning

Probability Density Function The probability of obtaining exactly k failures from k+r trials
with success fraction p. For example:

pdf (negative_binomal (r, p), k)

Cumulative Distribution Function The probability of obtaining k failuresor fewer fromk+r trials
with successfraction p and successon thelast trial. For example:

cdf (negative_binomal (r, p), k)

Complement of the Cumulative Distribution Function The probability of obtaining more than k failures from k+r
trials with success fraction p and success on the last trial. For
example:

cdf (conpl enent (negative_binomal (r, p), k))

Quantile Thegreatest number of failuresk expected to be observed from
k+r trials with success fraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quantil e(negative_binomal (r, p), P)

Quantile from the complement of the probability The smallest number of failuresk expected to be observed from
k+r trials with successfraction p, at probability P. Note that the
value returned is a real-number, and not an integer. Depending
on the use case you may want to take either the floor or ceiling
of the real result. For example:

quanti |l e( conpl enent (negati ve_bi nom O
al(r, p), P))

Accuracy

Thisdistribution isimplemented using the incompl ete beta functionsibeta and ibetac: please refer to these functions for information
on accuracy.
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Statistical Distributions and Functions

Implementation

In the following table, p is the probability that any onetrial will be successful (the success fraction), r is the number of successes, k
isthe number of failures, p is the probability and q = 1-p.

Function Implementation Notes

pdf pdf = exp(lgamma(r + k) - lgamma(r) - lgamma(k+1)) * pow(p,
r) * pow((1-p), k)
Implementation isin terms of ibeta_derivative:
(p/(r + k)) * ibeta_derivative(r, static_cast<Rea Type>(k+1), p)
The function ibeta_derivative is used here, since it has aready
been optimised for the lowest possible error - indeed this is

really just athin wrapper around part of the internals of thein-
complete beta function.

cdf Using the relation:

cdf = I(r, k+1) = ibeta(r, k+1, p)

= ibeta(r, static_cast<Real Type>(k+1), p)
cdf complement Using the relation:

1-cdf = Ip(k+1,1)

= ibetac(r, static_cast<Rea Type>(k+1), p)

quantile ibeta_invb(r,p, P) - 1

guantile from the complement ibetac_invb(r, p, Q) -1)

mean r(l-p)/p

variance r (1-p) / p* p

mode floor((r-1) * (1 - p)/p)

skewness (2 - p) / sqgrt(r * (1 - p))
kurtosis 6/ r+(p*p /r*(1-p)
kurtosis excess 6/ r+((p*p / r*(1L-p) -3

parameter estimation member functions

find_| ower _bound_on_p ibeta inv(successes, failures + 1, alpha)

find_upper _bound_on_p ibetac_inv(successes, failures, apha) plus see commentsin code.
find_mi ni num nunber _of _trials ibeta_inva(k + 1, p, apha)

find_maxi mum nunber _of _trials ibetac_inva(k + 1, p, apha)

I mplementation notes:
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Statistical Distributions and Functions

» Therea concept type (that deliberately lacks the Lanczos approximation), was found to take several minutes to evaluate some
extreme test values, so the test has been disabled for thistype.

» Much greater speed, and perhaps greater accuracy, might be achieved for extreme values by using a normal approximation. This
isNOT been tested or implemented.

Noncentral Beta Distribution

#i ncl ude <boost/ math/ distributions/ non_central _beta. hpp>

namespace boost{ nanmespace math{
tenpl ate <cl ass Real Type = doubl e,

cl ass Policy = policies::policy<> >
class non_central _beta_distribution;

t ypedef non_central _beta_distribution<> non_central _beta;

tenpl ate <cl ass Real Type, class Policy>
cl ass non_central _beta_distribution

{

publi c:
typedef Real Type val ue_type;
typedef Policy policy_type;

/'] Constructor:
non_central _beta_distribution(Real Type al pha, Real Type beta, Real Type | anbda);

/'l Accessor to shape paraneters:

Real Type al pha()const;

Real Type beta()const;

/'l Accessor to non-centrality paranmeter |anbda:
Real Type non_centrality()const;

}

}} /1 nanespaces

The noncentral beta distribution is a generalization of the Beta Distribution.

It is defined as the ratio X = X,2(A) / (Xm2(M) + Xp2) Where X,2(A) is a noncentral x2 random variable with m degrees of freedom,
and . isacentral X2 random variable with n degrees of freedom.

This gives a PDF that can be expressed as a Poisson mixture of beta distribution PDFs:
: : _ Ay :
S a, Bs A1) = Pi; 5 (ati, f)
i=0

where P(i;M\/2) is the discrete Poisson probablity at i, with mean A/2, and 1, (a, B) is the derivative of the incomplete beta function.
Thisleads to the usual form of the CDF as:

Foca gy = P )i p
i=0

The following graph illustrates how the distribution changes for different values of A:
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Statistical Distributions and Functions

Non Central Beta PDF
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Random Variable

Member Functions
non_central _beta_distribution(Real Type a, Real Type b, Real Type | anbda);

Constructs a noncentral beta distribution with shape parameters a and b and non-centrality parameter lambda.

Requiresa> 0, b > 0 and lambda >= 0, otherwise calls domain_error.
Real Type al pha()const;

Returns the parameter a from which this object was constructed.
Real Type beta()const;

Returns the parameter b from which this object was constructed.
Real Type non_centrality()const;

Returns the parameter lambda from which this object was constructed.

Non-member Accessors

Most of the usual hon-member accessor functions are supported: Cumulative Distribution Function, Probability Density Function,
Quantile, mean, variance, standard deviation, median, mode, Hazard Function, Cumulative Hazard Function, range and support.

Mean and variance are implemented using hypergeometric pfq functions and relations given in Wolfram Noncentral Beta Distribution.

However, the following are not currently implemented: skewness, kurtosis and kurtosis_excess.

The domain of the random variableis[0, 1].

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating point types. No
comparison to the R-2.5.1 Math library, or to the FORTRAN implementations of AS226 or AS310 are given since these appear to
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Statistical Distributions and Functions

only guarantee absolute error: this would causes our test harness to assign an "infinite" error to these libraries for some of our test
values when measuring relative error. Unless otherwise specified any floating-point type that is narrower than the one shown will
have effectively zero error.

Table 18. ErrorsIn CDF of the Noncentral Beta

Significand Size Platform and Compiler a, B,A <200 o,B,A > 200

53 Win32, Visual C++ 8 Peak=620 Mean=22 Peak=8670 Mean=1040
64 RedHat Linux 1A32,gcc-4.1.1  Peak=825 Mean=50 Peak=2.5x10" Mean=4000
64 Redhat Linux 1A64, gcc-3.4.4  Peak=825 Mean=30 Peak=1.7x10% Mean=2500
113 HPUX 1A64, aCC A.06.06 Peak=420 Mean=50 Peak=9200 Mean=1200

Error rates for the PDF, the complement of the CDF and for the quantile functions are broadly similar.

Tests

There are two sets of test data used to verify thisimplementation: firstly we can compare with afew sample values generated by the
R library. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should
be accurate to at least 50 decimal digits - and is the used for our accuracy tests.

Implementation

The CDF and its complement are evaluated as follows:

First we determine which of the two vaues (the CDF or its complement) is likely to be the smaller, the crossover point is taken to

be the mean of the distribution: for this we use the approximation due to: R. Chattamvelli and R. Shanmugam, "Algorithm AS 310:
Computing the Non-Central Beta Distribution Function”, Applied Statistics, Vol. 46, No. 1. (1997), pp. 146-156.

E(X) = 1—(%)(1+#); C=a+p+4

Then either the CDF or its complement is computed using the relations:

ZZOP(Z’ %)[x(a + la ﬂ)
> Pl )1 -1 a+i, p)

F(x; a, p; 1)

1= F(x; a, 5 2)
The summation is performed by starting at i = A/2, and then recursing in both directions, using the usual recurrence relations for the

Poisson PDF and incomplete beta functions. Thisisthe "Method 2" described by:

Denise Benton and K. Krishnamoorthy, "Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral
t and the distribution of the square of the sample multiple correlation coefficient", Computational Statistics & Data Analysis 43
(2003) 249-267.

Specific applications of the above formulae to the noncentral beta distribution can be found in:

Russell V. Lenth, "Algorithm AS 226: Computing Noncentral Beta Probabilities’, Applied Statistics, Vol. 36, No. 2. (1987), pp.
241-244,

H. Frick, "Algorithm AS R84: A Remark on Algorithm AS 226: Computing Non-Central Beta Probabilities’, Applied Statistics,
Voal. 39, No. 2. (1990), pp. 311-312.

MingLong Lam, "Remark ASR95: A Remark on Algorithm AS 226: Computing Non-Central Beta Probabilities’, Applied Statistics,
Vol. 44, No. 4. (1995), pp. 551-552.
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Statistical Distributions and Functions

Harry O. Posten, "An Effective Algorithm for the Noncentral Beta Distribution Function”, The American Statistician, Vol. 47, No.
2. (May, 1993), pp. 129-131.

R. Chattamvelli, "A Note on the Noncentral Beta Distribution Function”, The American Statistician, Vol. 49, No. 2. (May, 1995),
pp. 231-234.

Of these, the Posten reference provides the most complete overview, and includes the modification starting iteration at A/2.

The main difference between thisimplementation and the above references is the direct computation of the complement when most
efficient to do so, and the accumulation of the sum to -1 rather than subtracting the result from 1 at the end: this can substantially
reduce the number of iterations required when the result is near 1.

The PDF is computed using the methodology of Benton and Krishnamoorthy and the relation:
. : - AT -
f(x;a, B 4) = Pl,21x(a+l, b)
i=0

Quantiles are computed using a specially modified version of bracket and solve, starting the search for the root at the mean of the
distribution. (A Cornish-Fisher type expansion was aso tried, but while this gets quite close to the root in many cases, when it is
wrong it tends to introduce quite pathological behaviour: more investigation in this area is probably warranted).

Noncentral Chi-Squared Distribution

#i ncl ude <boost/ math/distributions/non_central _chi_squared. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{
tenpl ate <cl ass Real Type = doubl e,

cl ass Policy = policies::policy<> >
cl ass non_central _chi _squared_distribution;

t ypedef non_central _chi _squared_distribution<> non_central _chi _squar ed,;

tenpl ate <cl ass Real Type, class Policy>
cl ass non_central _chi_squared_distribution

{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/'l Constructor:
non_central _chi _squared_di stribution(Real Type v, Real Type | anbhda);
/'l Accessor to degrees of freedom paraneter v:
Real Type degrees_of freedom )const;
/'l Accessor to non centrality paranmeter |anbda:
Real Type non_centrality()const;
/1 Paraneter finders:
static Real Type find_degrees_of freedonm Real Type | anbda, Real Type x, Real Type p);
tenplate <class A class B, class C
static Real Type find_degrees_of freedon(const conpl enented3_type<A B, C& c);
static Real Type find_non_centrality(Real Type v, Real Type x, Real Type p);
tenplate <class A class B, class C
static Real Type find_non_centrality(const conpl enented3_type<A B, C& c);
b

}} /1 nanespaces

The noncentral chi-squared distribution isageneralization of the Chi Squared Distribution. If X; arev independent, normally distributed
random variables with means p; and variances 6,2, then the random variable

k
Xi\?
o
i=1
is distributed according to the noncentral chi-squared distribution.

The noncentral chi-squared distribution has two parameters: v which specifies the number of degrees of freedom (i.e. the number
of X;), and A which isrelated to the mean of the random variables X; by:

k
L= )
=1

(Note that some references define A as one half of the above sum).

Thisleads to a PDF of:

_GtH) v 1
F(x; v, A) - le[ 2 ](%)(4 2)[(%1)(m)

Il
~
Pongl
Ry

<

_.|_

)
=
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Statistical Distributions and Functions

where f(x; k) is the central chi-squared distribution PDF, and I,(X) is a modified Bessel function of thefirst kind.

The following graph illustrates how the distribution changes for different values of A:

Non Central Chi Squared PDF
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Random Variable

Member Functions
non_central _chi _squared_distributi on(Real Type v, Real Type | anbda);

Constructs a Chi-Squared distribution with v degrees of freedom and non-centrality parameter lambda.

Requiresv > 0 and lambda >= 0, otherwise calls domain_error.
Real Type degrees_of _freedom )const;
Returns the parameter v from which this object was constructed.
Real Type non_centrality()const;
Returns the parameter lambda from which this object was constructed.
static Real Type find_degrees_of freedom Real Type | anbda, Real Type x, Real Type p);

Thisfunction returnsthe number of degreesof freedomv such that: cdf (non_central _chi _squar ed<Real Type, Policy>(v,
lanbda), x) == p

tenpl ate <class A class B, class C
static Real Type find_degrees_of _freedom const conpl enented3_type<A B, C& c);

When called with argument boost : : mat h: : conpl enent (| anbda, x, q) thisfunction returnsthe number of degreesof freedom
v such that:

cdf (conpl ement (non_central _chi _squar ed<Real Type, Policy>(v, lanbda), x)) ==

static Real Type find_non_centrality(Real Type v, Real Type x, Real Type p);
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Statistical Distributions and Functions

This function returns the non centrality parameter lambda such that:

cdf (non_central _chi _squar ed<Real Type, Policy>(v, lanbda), x) == p

tenplate <class A class B, class C
static Real Type find_non_centrality(const conpl enented3_type<A B, C& c);

When called with argument boost : : mat h: : conpl enent (v, x, q) thisfunction returns the non centrality parameter lambda
such that:

cdf (conpl enent (non_central _chi _squar ed<Real Type, Policy>(v, |anbda), x)) == q.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +oo].

Examples

There isaworked example for the noncentral chi-squared distribution.

Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating-point types, along

with comparisonsto the R-2.5.1 Math library. Unless otherwise specified, any floating-point type that is narrower than the one shown
will have effectively zero error.

Table 19. ErrorsIn CDF of the Noncentral Chi-Squared

Significand Size Platform and Compiler Vv,A <200 v,A > 200
53 Win32, Visual C++ 8 Peak=50 Mean=9.9 Peak=9780 Mean=718
R Peak=685 Mean=109 R Peak=3x10® Mean=2x10’
64 RedHat Linux 1A32,gcc-4.1.1  Peak=270 Mean=27 Peak=7900 Mean=900
64 Redhat Linux 1A64, gcc-3.4.4  Peak=107 Mean=17 Peak=5000 Mean=630
113 HPUX 1A64, aCC A.06.06 Peak=270 Mean=20 Peak=4600 M ean=560

Error rates for the complement of the CDF and for the quantile functions are broadly similar. Special mention should go to the node
function: thereis no closed form for thisfunction, so it is evaluated numerically by finding the maxima of the PDF: in principal this
can not produce an accuracy greater than the square root of the machine epsilon.

Tests

There are two sets of test data used to verify this implementation: firstly we can compare with published data, for example with
Table 6 of "Self-Vaidating Computations of Probabilities for Selected Central and Noncentral Univariate Probability Functions’,
Morgan C. Wang and William J. Kennedy, Journal of the American Statistical Association, Vol. 89, No. 427. (Sep., 1994), pp. 878-
887. Secondly, we have tables of test data, computed with this implementation and using interval arithmetic - this data should be
accurate to at least 50 decimal digits - and is the used for our accuracy tests.
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Implementation
The CDF and its complement are evaluated as follows:

First we determine which of the two values (the CDF or its complement) is likely to be the smaller: for this we can use the relation
due to Temme (see "Asymptotic and Numerical Aspects of the Noncentral Chi-Square Distribution”, N. M. Temme, Computers
Math. Applic. Vol 25, No. 5, 55-63, 1993) that:

F(v,A;v+A) = 0.5

and so compute the CDF when the random variable is less than v+A, and its complement when the random variable is greater than
v+A. If necessary the computed result is then subtracted from 1 to give the desired result (the CDF or its complement).

For small values of the non centrality parameter, the CDF iscomputed using the method of Ding (see"Algorithm AS 275: Computing
the Non-Central #2 Distribution Function", Cherng G. Ding, Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482). This uses the
following series representation:

P(x;v, 2) = Z;iositi
4 A

_ _ _ _ A
So=up=e ", ;=8 tu, U= Uiy

v

_ 1 ) _
to_l‘(%+1)(%) e’, L=ty

which requires just one call to gamma._p_derivative with the subsequent terms being computed by recursion as shown above.

For larger values of the non-centrality parameter, Ding's method can take an unreasonable number of terms before convergence is
achieved. Furthermore, the largest term is not the first term, so in extreme cases the first term may be zero, leading to a zero result,
even though the true value may be non-zero.

Therefore, when the non-centrality parameter is greater than 200, the method due to Krishnamoorthy (see "Computing discrete
mixtures of continuous distributions. noncentral chisquare, noncentral t and the distribution of the square of the sample multiple
correlation coefficient", Denise Benton and K. Krishnamoorthy, Computational Statistics & DataAnalysis, 43, (2003), 249-267) is
used.

This method uses the well known sum:

00

Lo
4\
P(x;v, ) = E c i(!z) P%(%+i)

i=0

Where P4(X) is the incomplete gamma function.

The method starts at the Ath term, which is where the Poisson weighting function achieves its maximum value, although thisis not
necessarily the largest overall term. Subsequent terms are cal culated via the normal recurrence relations for the incomplete gamma
function, and iteration proceeds both forwards and backwards until sufficient precision has been achieved. It should be noted that
recurrence in the forwards direction of P4(x) is numerically unstable. However, since we always start after the largest term in the
series, numeric instability isintroduced more slowly than the series converges.

Computation of the complement of the CDF uses an extension of Krishnamoorthy's method, given that:

00

A ,
S
1=P(;v, ) = Ze i(!Z)Qg(%Jri)
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we can again start at the A'th term and proceed in both directions from there until the required precision is achieved. Thistimeitis
backwards recursion on the incompl ete gamma function Q4(x) which is unstable. However, aslong aswe start well before the largest
term, thisisnot an issuein practice.

The PDF is computed directly using the relation:

(x+4)

foav ) = S v+ 2) 1L ](%)(%

1
2)1 v (VAx)
(5-1)
i=0
Where f(x; v) isthe PDF of the central Chi Squared Distribution and 1,(x) is a modified Bessel function, see cyl_bessel _i. For small
values of the non-centrality parameter the relation in terms of cyl_bessel i is used. However, this method fails for large values of

the non-centrality parameter, so in that case the infinite sum is evaluated using the method of Benton and Krishnamoorthy, and the
usual recurrence relations for successive terms.

The quantile functions are computed by numeric inversion of the CDF.

Thereisno closed form for the mode of the noncentral chi-squared distribution: it is computed numerically by finding the maximum
of the PDF. Likewise, the median is computed numerically viathe quantile.

The remaining non-member functions use the following formulas:

mean = v+A4
variance = 2(v+24)
3
22(v+3)
skewness = —
(v+22)*

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andreavan Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Noncentral F Distribution

#i ncl ude <boost/ math/distributions/ non_central _f. hpp>
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Statistical Distributions and Functions

nanmespace boost{ nanespace math{

tenpl ate <cl ass Real Type doubl e,
cl ass Policy policies::policy<> >
class non_central _f_distribution;

typedef non_central _f_distribution<> non_central _f;

tenpl ate <cl ass Real Type, class Policy>
class non_central _f_distribution

{

public:
typedef Real Type val ue_type;
typedef Policy policy_type;

/1 Constructor:
non_central _f_distribution(Real Type vl, Real Type v2, Real Type | anhda);

/'l Accessor to degrees_of _freedom paraneters vl & v2:
Real Type degrees_of freedoml()const;

Real Type degrees_of freedon?2()const;

/1 Accessor to non-centrality paraneter |anbda:

Real Type non_centrality()const;

I

}} /1 nanespaces

The noncentral F distribution is a generalization of the Fisher F Distribution. It is defined as the ratio
F=(Xvl) / (Yv2)

where X isanoncentral )(2 random variable with v1 degrees of freedom and non-centrality parameter A, andY isacentral X2 random
variable with v2 degrees of freedom.

This gives the following PDF:;

"1
Avyx 1 1 -1 Avyx
G b
S(sv, v d) = e viiv i’ (v2 T vix) T 1 %
B(3vy, 59)(3(v1 + )

where L ab(c) isageneralised Laguerre polynomial and B(a,b) is the beta function, or

00

A
eif( i)k v (HH{) v (MH{) (Vflﬂﬁl)
f(x; Vi, Vo /1) = B(;—Z%j—k)k'(v_;) ? (v2 +2v1x) ’ X2
k=0 ’

The following graph illustrates how the distribution changes for different values of A:
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Non Central F PDF
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Member Functions
non_central _f_distribution(Real Type vl, Real Type v2, Real Type | anbda);

Constructs a non-central beta distribution with parameters v1 and v2 and non-centrality parameter lambda.

Requiresv1 > 0, v2 > 0 and lambda >= 0, otherwise calls domain_error.
Real Type degrees_of freedoml()const;

Returns the parameter v1 from which this object was constructed.
Real Type degrees_of _freedon2()const;

Returns the parameter v2 from which this object was constructed.
Real Type non_centrality()const;

Returns the non-centrality parameter lambda from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to al distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is [0, +oo].
Accuracy

This distribution is implemented in terms of the Noncentral Beta Distribution: refer to that distribution for accuracy data.
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Statistical Distributions and Functions

Tests

Since this distribution is implemented by adapting another distribution, the tests consist of basic sanity checks computed by the R-
2.5.1 Math library statistical package and its pbeta and dbeta functions.

Implementation

In the following table vl and v2 are the first and second degrees of freedom parameters of the distribution, A is the non-centrality
parameter, x is the random variate, p is the probability, and g = 1-p.
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Statistical Distributions and Functions

Function

pdf

cdf

cdf complement

quantile

quantile

from the complement

mean

mode

I mplementation Notes

Implemented in terms of the non-central beta PDF using the
relation:

fOGVLV2ZA) = (VINV2) [ ((1+y)* (1+y)) * 9(y/(1+y);vl/2,v2I2;N)
where g(x; a, b; A) isthe non central beta PDF, and:
y=x*vl/v2

Using the relation:

p=By(vl/2,v2/2; \)

where B,(a, b; A) is the noncentral beta distribution CDF and
y=x*vl/v2

Using the relation:

q=1-By(vl/2,v2/2; \)

where 1 - B,(a, b; A) isthe complement of the noncentral beta
distribution CDF and

y=x*vl/v2

Using the relation:

x = (bx/ (1-bx)) * (v1/v2)
where

bx = Q, ™ (vL/2, v2/2; )

and

Q(v1/2, v212; \)

isthe noncentral beta quantile.
Using the relation:

x = (bx / (1-bx)) * (v1/v2)
where

bx = QCq H(v1/2, v2/2; M)

and

QC,(vL/2, v2/2; N)

isthe noncentral beta quantile from the complement.
v2* (Vi+1)/(vl* (v2-2)

By numeric maximalisation of the PDF.
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Statistical Distributions and Functions

Function Implementation Notes

variance Refer to, Weisstein, Eric W. "Noncentral F-Distribution.” From
MathWorld--A Wolfram Web Resource.

skewness Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From
MathWorld--A Wolfram Web Resource., and to the Mathematica
documentation

kurtosis and kurtosis excess Refer to, Weisstein, Eric W. "Noncentral F-Distribution." From
MathWorld--A Wolfram Web Resource., and to the Mathematica
documentation

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andreavan Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Noncentral T Distribution

#i ncl ude <boost/math/distributions/non_central _t. hpp>

namespace boost{ nanmespace mat h{

tenpl ate <cl ass Real Type = doubl e,
cl ass Policy = policies::policy<> >
class non_central t _distribution;

t ypedef non_central _t_distribution<> non_central _t;

tenpl ate <cl ass Real Type, class Policy>
class non_central t _distribution

{

publi c:
typedef Real Type val ue_type;
typedef Policy policy_type;

/1 Constructor:
non_central _t_distribution(Real Type v, Real Type delta);

/1 Accessor to degrees_of _freedom paraneter v:
Real Type degrees_of freedom )const;

/1 Accessor to non-centrality paranmeter delta:
Real Type non_centrality()const;

b

}} 1/ nanespaces

The noncentral T distribution is a generalization of the Students t Distribution. Let X have a normal distribution with mean & and
variance 1, and let v S% have a chi-squared distribution with degrees of freedom v. Assume that X and S are independent. The dis-
tribution of t,(8)=X/Sis called anoncentral t distribution with degrees of freedom v and noncentrality parameter d.

This gives the following PDF;
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Statistical Distributions and Functions
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where 1F;(a;b;x) is a confluent hypergeometric function.

The following graph illustrates how the distribution changes for different values of v and &:

Non Central T PDF
0.4 - __v=10, 6=-10
__v=10, 8=-5
0.3 A __v=10, 6=0
E v=10, 6=5
B v=10, =10
-8 0.2 4 ’
a _ v=inf, =15
0.1 4
0 g - K T
-10 0 10
Random Variable
Non Central T CDF
1.1
14 __v=10, 6=-10
0.9 4 g _ v=10, 6=-5
0.8 4 __v=10, 6=0
0.7 4
Fy v=10, 6=5
Z 0.6 4
% 0.5 | v=10, 6=10
& 0.4 4 __ v=inf, 6=15
0.3 4
0.2 4
0.1 4
0 T - T
-10 0 10
Random Variable

Member Functions
non_central _t_distribution(Real Type v, Real Type delta);

Constructs a non-central t distribution with degrees of freedom parameter v and non-centrality parameter delta.
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Statistical Distributions and Functions

Requires v > 0 (including positive infinity) and finite delta, otherwise calls domain_error.

Real Type degrees_of _freedom )const;

Returns the parameter v from which this object was constructed.

Real Type non_centrality()const;

Returns the non-centrality parameter delta from which this object was constructed.

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The domain of the random variable is[-co, +oo].
Accuracy

The following table shows the peak errors (in units of epsilon) found on various platforms with various floating-point types. Unless
otherwise specified, any floating-point type that is narrower than the one shown will have effectively zero error.

Table 20. Errorsin CDF of the Noncentral T Distribution

Significand Size (bits) Platform and Compiler v, <600

53 Win32, Visual C++ 8 Peak=120 Mean=26
64 RedHat Linux 1A32, gcc-4.1.1 Peak=121 Mean=26
64 Redhat Linux |1A64, gcc-3.4.4 Peak=122 Mean=25
113 HPUX 1A64, aCC A.06.06 Peak=115 Mean=24

‘g Caution
The complexity of the current algorithm is dependent upon 5% consequently the time taken to evaluate the CDF

increases rapidly for & > 500, likewise the accuracy decreases rapidly for very large d.

Accuracy for the quantile and PDF functions should be broadly similar. The mode is determined numerically and cannot in principal
be more accurate than the square root of floating-point type FPT epsilon, accessed usingboost : : mat h: : t ool s: : epsi | on<FPT>().
For 64-bit doubl e, epsilon is about 1e-16, so the fractional accuracy is limited to 1e-8.

Tests
There are two sets of tests of this distribution:

Basic sanity checks compare thisimplementation to the test values given in " Computing discrete mixtures of continuous distributions:
noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient." Denise Benton,
K. Krishnamoorthy, Computational Statistics & DataAnalysis 43 (2003) 249-267.

Accuracy checks usetest data computed with thisimplementation and arbitary precision interval arithmetic: thistest datais believed
to be accurate to at least 50 decimal places.
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Statistical Distributions and Functions

The cases of large (or infinite) v and/or large & has received special treatment to avoid catastrophic loss of accuracy. New tests have
been added to confirm the improvement achieved.

From Boost 1.52, degrees of freedom v can be +co when the normal distribution located at & (equivalent to the central Student's t
distribution) is used in place for accuracy and speed.

Implementation
The CDF is computed using a modification of the method described in "Computing discrete mixtures of continuous distributions;
noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient." Denise Benton,

K. Krishnamoorthy, Computational Statistics & Data Analysis 43 (2003) 249-267.

This uses the following formulafor the CDF:

P(vi0) = @0 +3y (PU(i+5 5)+FOLI+13))

2(2) (az 2
—7\2 t

Pi:e il ) Q

Where I,(ab) is the incomplete beta function, and ®(x) is the normal CDF at x.

Iteration starts at the largest of the Poisson weighting terms (at i = 3?1 2) and then proceeds in both directions as per Benton and
Krishnamoorthy's paper.

Alternatively, by considering what happens when t = oo, we have x = 1, and therefore |, (ab) = 1 and:
P(oo; v, ) = 1 = &(— 5)+2Z(P +— )

From this we can easily show that:

00

L-Pavio) = Y (PL(F i+ d)+ FOLG i+1) 5 v=1-x= 2

and therefore we have a means to compute either the probability or its complement directly without the risk of cancellation error.
The crossover criterion for choosing whether to calculate the CDF or its complement is the same as for the Noncentral Beta Distri-
bution.

The PDF can be computed by avery similar method using:
¢ N 1
tv;o) = V Z(P.I(+— —) i+1, )
16v9) = A LN 2 3) g {i+13)
pas
Where IX'(a,b) isthe derivative of the incomplete beta function.

For both the PDF and CDF we switch to approximating the distribution by a Student's t distribution centred on 6 when v is very
large. The crossover location appears to be when 6/(4v) < €, thislocation was estimated by inspection of equation 2.6in"A Compar-
ison of Approximations To Percentiles of the Noncentral t-Distribution”. H. Sahai and M. M. Ojeda, Revista Investigacion Opera-
cional Vol 21, No 2, 2000, page 123.

Equation 2.6 isaFisher-Cornish expansion by Eeden and Johnson. The second term includestheratio &/(4v), so when thisterm become
negligible, this and following terms can be ignored, leaving just Student'st distribution centred on .

Thiswas also confirmed by experimental testing.
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Statistical Distributions and Functions

See also

» "Some Approximations to the Percentage Points of the Noncentral t-Distribution”. C. van Eeden. International Statistical Review,
29, 4-31.

* "Continuous Univariate Distributions’. N.L. Johnson, S. Kotz and N. Balkrishnan. 1995. John Wiley and Sons New York.

Thequantileiscalculated viathe usual root-finding without derivatives method with theinitial guesstaken asthe quantile of anormal
approximation to the noncentral T.

Thereis no closed form for the mode, so thisis computed via functional maximisation of the PDF.

The remaining functions (mean, variance etc) areimplemented using the formulas given in Weisstein, Eric W. "Noncentral Student's
t-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Noncentral Studentst-Distribution.html
and in the Mathematica documentation.

Some analytic properties of noncentral distributions (particularly unimodality, and monotonicity of their modes) are surveyed and
summarized by:

Andreavan Aubel & Wolfgang Gawronski, Applied Mathematics and Computation, 141 (2003) 3-12.

Normal (Gaussian) Distribution

#i ncl ude <boost/ mat h/ di stributions/ normal. hpp>

namespace boost{ nanmespace math{

doubl e,
policies::policy<> >

tenpl ate <cl ass Real Type
cl ass Policy
cl ass normal _distribution;

t ypedef normal _distribution<> nornal;

tenpl ate <cl ass Real Type, class Policy>
cl ass normal _distribution
{
public:
typedef Real Type val ue_type;
typedef Policy policy_type;
/'l Construct:
nor mal _di stribution(Real Type nmean = 0, Real Type sd = 1);
/'l Accessors:
Real Type nean()const; // |ocation.
Real Type standard_deviation()const; // scale.
/1 Synonymns, provided to allow generic use of find_location and find_scale.
Real Type | ocation()const;
Real Type scal e()const;

}

}} /1 nanespaces

The normal distribution is probably the most well known statistical distribution: it is also known as the Gaussian Distribution. A
normal distribution with mean zero and standard deviation one is known as the Standard Normal Distribution.

Given mean I and standard deviation o it has the PDF:

_w?
. _ 1 202
f (X s M, O') - O"\/E e
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Statistical Distributions and Functions

The variation the PDF with its parametersisillustrated in the following graph:

Normal Distribution PDF
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Random Variable
The cumulative distribution function is given by
1 (x—p)
5 1+erf(
2{ V(207)
and illustrated by this graph
Normal Distribution CDF
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0.9 4 _ p=0,0=0.5
0-8 4 _u=00=2
0.7 4
2 u=-1,0=1
% "0 1 1
= ’ o=
§ 05+ H
0 0.4 ]
0.3 4
0.2 4
0.1 4
o T T T T T T T T
-4 -3 -2 -1 0 1 2 3 4
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Member Functions
normal _di stribution(Real Type nmean = 0, Real Type sd = 1);

Constructs anormal distribution with mean mean and standard deviation sd.
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Statistical Distributions and Functions

Requires sd > 0, otherwise domain_error is called.

Real Type mean()const;
Real Type | ocation()const;

both return the mean of this distribution.

Real Type standard_devi ation()const;
Real Type scal e()const;

both return the standard deviation of this distribution. (Redundant location and scale function are provided to match other similar
distributions, allowing the functions find_location and find_scale to be used genericaly).

Non-member Accessors

All the usual non-member accessor functions that are generic to all distributions are su