program jt65sim ! Generate simulated JT65 data for testing WSJT-X use wavhdr use packjt use options parameter (NMAX=54*12000) ! = 648,000 parameter (NFFT=10*65536,NH=NFFT/2) type(hdr) h !Header for .wav file integer*2 iwave(NMAX) !Generated waveform integer*4 itone(126) !Channel symbols (values 0-65) integer dgen(12) !Twelve 6-bit data symbols integer sent(63) !RS(63,12) codeword real*4 xnoise(NMAX) !Generated random noise real*4 dat(NMAX) !Generated real data complex cdat(NMAX) !Generated complex waveform complex cspread(0:NFFT-1) !Complex amplitude for Rayleigh fading complex z real*8 f0,dt,twopi,phi,dphi,baud,fsample,freq,sps character msg*22,fname*11,csubmode*1,call1*5,call2*5,c,optarg*500,numbuf*32 logical :: display_help=.false.,seed_prngs=.true. type (option) :: long_options(8) = [ & option ('help',.false.,'h','Display this help message',''), & option ('sub-mode',.true.,'m','sub mode, default MODE=A','MODE'), & option ('num-sigs',.true.,'n','number of signals per file, default SIGNALS=10','SIGNALS'), & option ('doppler-spread',.true.,'d','Doppler spread, default SPREAD=0.0','SPREAD'), & option ('time-offset',.true.,'t','Time delta, default SECONDS=0.0','SECONDS'), & option ('num-files',.true.,'f','Number of files to generate, default FILES=1','FILES'), & option ('no-prng-seed',.false.,'p','Do not seed PRNGs (use for reproducible tests)',''), & option ('strength',.true.,'s','S/N in dB (2500Hz reference b/w), default SNR=0','SNR') ] integer nprc(126) !Sync pattern data nprc/1,0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,0, & 0,1,0,1,1,0,0,1,0,0,0,1,1,1,0,0,1,1,1,1, & 0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,0,1,0,1,1, & 0,0,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,1, & 1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,0,1, & 0,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1, & 1,1,1,1,1,1/ ! Default parameters: csubmode='A' mode65=1 nsigs=10 fspread=0. xdt=0. snrdb=0. nfiles=1 do call getopt('hm:n:d:t:f:ps:',long_options,c,optarg,narglen,nstat,noffset,nremain,.true.) if( nstat .ne. 0 ) then exit end if select case (c) case ('h') display_help = .true. case ('m') read (optarg(:narglen), *) csubmode if(csubmode.eq.'A') mode65=1 if(csubmode.eq.'B') mode65=2 if(csubmode.eq.'C') mode65=4 case ('n') read (optarg(:narglen), *,err=10) nsigs case ('d') read (optarg(:narglen), *,err=10) fspread case ('t') read (optarg(:narglen), *) numbuf if (numbuf(1:1) == '\') then read (numbuf(2:), *,err=10) xdt else read (numbuf, *,err=10) xdt end if case ('f') read (optarg(:narglen), *,err=10) nfiles case ('p') seed_prngs=.false. case ('s') read (optarg(:narglen), *) numbuf if (numbuf(1:1) == '\') then read (numbuf(2:), *,err=10) snrdb else read (numbuf, *,err=10) snrdb end if end select cycle 10 display_help=.true. print *, 'Optional argument format error for option -', c end do if(display_help .or. nstat.lt.0 .or. nremain.ge.1) then print *, '' print *, 'Usage: jt65sim [OPTIONS]' print *, '' print *, ' Generate one or more simulated JT65 signals in .WAV file(s)' print *, '' print *, 'Example: jt65sim -m B -n 10 -d 0.2 -s \\-24.5 -t 0.0 -f 4' print *, '' print *, 'OPTIONS: NB Use \ (\\ on *nix shells) to escape -ve arguments' print *, '' do i = 1, size (long_options) call long_options(i) % print (6) end do go to 999 endif if (seed_prngs) then call init_random_seed() ! seed Fortran RANDOM_NUMBER generator call sgran() ! see C rand generator (used in gran) end if rms=100. fsample=12000.d0 !Sample rate (Hz) dt=1.d0/fsample !Sample interval (s) twopi=8.d0*atan(1.d0) npts=54*12000 !Total samples in .wav file baud=11025.d0/4096.d0 !Keying rate sps=12000.d0/baud !Samples per symbol, at fsample=12000 Hz nsym=126 !Number of channel symbols h=default_header(12000,npts) dfsig=2000.0/nsigs !Freq spacing between sigs in file (Hz) do ifile=1,nfiles !Loop over requested number of files write(fname,1002) ifile !Output filename 1002 format('000000_',i4.4) open(10,file=fname//'.wav',access='stream',status='unknown') xnoise=0. cdat=0. if(snrdb.lt.90) then do i=1,npts xnoise(i)=gran() !Generate gaussian noise enddo endif do isig=1,nsigs !Generate requested number of sigs if(mod(nsigs,2).eq.0) f0=1500.0 + dfsig*(isig-0.5-nsigs/2) if(mod(nsigs,2).eq.1) f0=1500.0 + dfsig*(isig-(nsigs+1)/2) xsnr=snrdb if(snrdb.eq.0.0) xsnr=-19 - isig if(csubmode.eq.'B' .and. snrdb.eq.0.0) xsnr=-21 - isig if(csubmode.eq.'C' .and. snrdb.eq.0.0) xsnr=-21 - isig !### ! call1="K1ABC" ! ic3=65+mod(isig-1,26) ! ic2=65+mod((isig-1)/26,26) ! ic1=65 ! call2="W9"//char(ic1)//char(ic2)//char(ic3) ! write(msg,1010) call1,call2,nint(xsnr) !1010 format(a5,1x,a5,1x,i3.2) msg="K1ABC W9XYZ EN37" !### call packmsg(msg,dgen,itype) !Pack message into 12 six-bit bytes call rs_encode(dgen,sent) !Encode using RS(63,12) call interleave63(sent,1) !Interleave channel symbols call graycode65(sent,63,1) !Apply Gray code k=0 do j=1,nsym !Insert sync and data into itone() if(nprc(j).eq.0) then k=k+1 itone(j)=sent(k)+2 else itone(j)=0 endif enddo bandwidth_ratio=2500.0/6000.0 sig=sqrt(2*bandwidth_ratio)*10.0**(0.05*xsnr) if(xsnr.gt.90.0) sig=1.0 write(*,1020) ifile,isig,f0,csubmode,xsnr,xdt,fspread,msg 1020 format(i4,i4,f10.3,2x,a1,2x,f5.1,f6.2,f5.1,1x,a22) phi=0.d0 dphi=0.d0 k=12000 + xdt*12000 !Start audio at t = xdt + 1.0 s isym0=-99 do i=1,npts !Add this signal into cdat() isym=floor(i/sps)+1 if(isym.gt.nsym) exit if(isym.ne.isym0) then freq=f0 + itone(isym)*baud*mode65 dphi=twopi*freq*dt isym0=isym endif phi=phi + dphi if(phi.gt.twopi) phi=phi-twopi xphi=phi z=cmplx(cos(xphi),sin(xphi)) k=k+1 if(k.ge.1) cdat(k)=cdat(k) + sig*z enddo enddo if(fspread.ne.0) then !Apply specified Doppler spread df=12000.0/nfft twopi=8*atan(1.0) cspread(0)=1.0 cspread(NH)=0. ! The following options were added 3/15/2016 to make the half-power tone ! widths equal to the requested Doppler spread. (Previously we effectively ! used b=1.0 and Gaussian shape, which made the tones 1.665 times wider.) ! b=2.0*sqrt(log(2.0)) !Gaussian (before 3/15/2016) ! b=2.0 !Lorenzian 3/15 - 3/27 b=6.0 !Lorenzian 3/28 onward do i=1,NH f=i*df x=b*f/fspread z=0. a=0. if(x.lt.3.0) then !Cutoff beyond x=3 ! a=sqrt(exp(-x*x)) !Gaussian a=sqrt(1.111/(1.0+x*x)-0.1) !Lorentzian call random_number(r1) phi1=twopi*r1 z=a*cmplx(cos(phi1),sin(phi1)) endif cspread(i)=z z=0. if(x.lt.50.0) then call random_number(r2) phi2=twopi*r2 z=a*cmplx(cos(phi2),sin(phi2)) endif cspread(NFFT-i)=z enddo do i=0,NFFT-1 f=i*df if(i.gt.NH) f=(i-nfft)*df s=real(cspread(i))**2 + aimag(cspread(i))**2 ! write(13,3000) i,f,s,cspread(i) !3000 format(i5,f10.3,3f12.6) enddo ! s=real(cspread(0))**2 + aimag(cspread(0))**2 ! write(13,3000) 1024,0.0,s,cspread(0) call four2a(cspread,NFFT,1,1,1) !Transform to time domain sum=0. do i=0,NFFT-1 p=real(cspread(i))**2 + aimag(cspread(i))**2 sum=sum+p enddo avep=sum/NFFT fac=sqrt(1.0/avep) cspread=fac*cspread !Normalize to constant avg power cdat=cspread(1:npts)*cdat !Apply Rayleigh fading ! do i=0,NFFT-1 ! p=real(cspread(i))**2 + aimag(cspread(i))**2 ! write(14,3010) i,p,cspread(i) !3010 format(i8,3f12.6) ! enddo endif dat=aimag(cdat) + xnoise !Add the generated noise fac=32767.0/nsigs if(snrdb.ge.90.0) iwave(1:npts)=nint(fac*dat(1:npts)) if(snrdb.lt.90.0) iwave(1:npts)=nint(rms*dat(1:npts)) write(10) h,iwave(1:npts) !Save the .wav file close(10) enddo 999 end program jt65sim