 Vector Expressions
Vector ExpressionsThe templated class vector_expression<E>
is required to be a public base of all classes which model the Vector Expression concept.
Defined in the header expression_types.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E | The type of the vector expression. | 
None. Not a Vector Expression!
None.
None.
| Member | Description | 
|---|---|
| const expression_type &operator () ()
const | Returns a constreference of the expression. | 
| expression_type &operator () () | Returns a reference of the expression. | 
The range, slice and project functions have been removed. Use the free functions defined in vector proxy instead.
The templated class vector_container<C>
is required to be a public base of all classes which model the Vector concept.
This includes the class vector itself.
Defined in the header expression_types.hpp.
| Parameter | Description | Default | 
|---|---|---|
| C | The type of the vector container. | 
None. Not a Vector Expression OR Vector!
None.
vector_expression<C>
| Member | Description | 
|---|---|
| const container_type &operator () ()
const | Returns a constreference of the container. | 
| container_type &operator () () | Returns a reference of the container. | 
The templated class vector_reference<E>
contains a reference to a vector expression.
Defined in the header vector_expression.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E | The type of the vector expression. | 
None, except for those imposed by the requirements of Vector Expression .
vector_expression<vector_reference<E>
>
| Member | Description | 
|---|---|
| vector_reference (expression_type &e) | Constructs a reference of the expression. | 
| void resize (size_type size) | Resizes the expression to hold at most sizeelements. | 
| size_type size () const | Returns the size of the expression. | 
| const_reference operator () (size_type i)
const | Returns the value of the i-th element. | 
| reference operator () (size_type i) | Returns a reference of the i-th element. | 
| const_iterator begin () const | Returns a const_iteratorpointing to the beginning
of the expression. | 
| const_iterator end () const | Returns a const_iteratorpointing to the end of
the expression. | 
| iterator begin () | Returns a iteratorpointing to the beginning of
the expression. | 
| iterator end () | Returns a iteratorpointing to the end of the
expression. | 
| const_reverse_iterator rbegin () const | Returns a const_reverse_iteratorpointing to the
beginning of the reversed expression. | 
| const_reverse_iterator rend () const | Returns a const_reverse_iteratorpointing to the
end of the reversed expression. | 
| reverse_iterator rbegin () | Returns a reverse_iteratorpointing to the
beginning of the reversed expression. | 
| reverse_iterator rend () | Returns a reverse_iteratorpointing to the end of
the reversed expression. | 
The templated class vector_unary<E, F>
describes a unary vector operation.
Defined in the header vector_expression.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E | The type of the vector expression. | |
| F | The type of the operation. | 
None, except for those imposed by the requirements of Vector Expression .
vector_expression<vector_unary<E, F>
>
| Member | Description | 
|---|---|
| vector_unary (const expression_type &e) | Constructs a description of the expression. | 
| size_type size () const | Returns the size of the expression. | 
| const_reference operator () (size_type i)
const | Returns the value of the i-th element. | 
| const_iterator begin () const | Returns a const_iteratorpointing to the beginning
of the expression. | 
| const_iterator end () const | Returns a const_iteratorpointing to the end of
the expression. | 
| const_reverse_iterator rbegin () const | Returns a const_reverse_iteratorpointing to the
beginning of the reversed expression. | 
| const_reverse_iterator rend () const | Returns a const_reverse_iteratorpointing to the
end of the reversed expression. | 
template<class E, class F>
    struct vector_unary_traits {
        typedef vector_unary<typename E::const_closure_type, F> expression_type;
        typedef expression_type result_type;
     };
    // (- v) [i] = - v [i]
    template<class E>
     typename vector_unary_traits<E, scalar_negate<typename E::value_type> >::result_type
    operator - (const vector_expression<E> &e);
    // (conj v) [i] = conj (v [i])
    template<class E>
     typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::result_type
    conj (const vector_expression<E> &e);
    // (real v) [i] = real (v [i])
    template<class E>
     typename vector_unary_traits<E, scalar_real<typename E::value_type> >::result_type
    real (const vector_expression<E> &e);
    // (imag v) [i] = imag (v [i])
    template<class E>
     typename vector_unary_traits<E, scalar_imag<typename E::value_type> >::result_type
    imag (const vector_expression<E> &e);
    // (trans v) [i] = v [i]
    template<class E>
     typename vector_unary_traits<E, scalar_identity<typename E::value_type> >::result_type
    trans (const vector_expression<E> &e);
    // (herm v) [i] = conj (v [i])
    template<class E>
     typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::result_type
    herm (const vector_expression<E> &e);
operator - computes the additive inverse of a
vector expression. conj computes the complex conjugate
of a vector expression. real and imag
compute the real and imaginary parts of a vector expression.
trans computes the transpose of a vector expression.
herm computes the hermitian, i.e. the complex
conjugate of the transpose of a vector expression.
Defined in the header vector_expression.hpp.
E is a model of Vector Expression .None.
Linear depending from the size of the vector expression.
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<std::complex<double> > v (3);
    for (unsigned i = 0; i < v.size (); ++ i)
        v (i) = std::complex<double> (i, i);
    std::cout << - v << std::endl;
    std::cout << conj (v) << std::endl;
    std::cout << real (v) << std::endl;
    std::cout << imag (v) << std::endl;
    std::cout << trans (v) << std::endl;
    std::cout << herm (v) << std::endl;
}
The templated class vector_binary<E1, E2, F>
describes a binary vector operation.
Defined in the header vector_expression.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E1 | The type of the first vector expression. | |
| E2 | The type of the second vector expression. | |
| F | The type of the operation. | 
None, except for those imposed by the requirements of Vector Expression .
vector_expression<vector_binary<E1, E2, F>
>
| Member | Description | 
|---|---|
| vector_binary (const expression1_type &e1, const
expression2_type &e2) | Constructs a description of the expression. | 
| size_type size () const | Returns the size of the expression. | 
| const_reference operator () (size_type i)
const | Returns the value of the i-th element. | 
| const_iterator begin () const | Returns a const_iteratorpointing to the beginning
of the expression. | 
| const_iterator end () const | Returns a const_iteratorpointing to the end of
the expression. | 
| const_reverse_iterator rbegin () const | Returns a const_reverse_iteratorpointing to the
beginning of the reversed expression. | 
| const_reverse_iterator rend () const | Returns a const_reverse_iteratorpointing to the
end of the reversed expression. | 
template<class E1, class E2, class F>
    struct vector_binary_traits {
        typedef vector_binary<typename E1::const_closure_type,
                               typename E2::const_closure_type, F> expression_type;
        typedef expression_type result_type;
     };
    // (v1 + v2) [i] = v1 [i] + v2 [i]
    template<class E1, class E2>
    typename vector_binary_traits<E1, E2, scalar_plus<typename E1::value_type,
                                                       typename E2::value_type> >::result_type
    operator + (const vector_expression<E1> &e1,
                 const vector_expression<E2> &e2);
    // (v1 - v2) [i] = v1 [i] - v2 [i]
    template<class E1, class E2>
    typename vector_binary_traits<E1, E2, scalar_minus<typename E1::value_type,
                                                        typename E2::value_type> >::result_type
    operator - (const vector_expression<E1> &e1,
                 const vector_expression<E2> &e2);
operator + computes the sum of two vector
expressions. operator - computes the difference of two
vector expressions.
Defined in the header vector_expression.hpp.
E1 is a model of Vector Expression .E2 is a model of Vector Expression .e1 ().size () == e2 ().size ()Linear depending from the size of the vector expressions.
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<double> v1 (3), v2 (3);
    for (unsigned i = 0; i < std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;
    std::cout << v1 + v2 << std::endl;
    std::cout << v1 - v2 << std::endl;
}
The templated class vector_matrix_binary<E1, E2,
F> describes a binary outer vector operation.
Defined in the header matrix_expression.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E1 | The type of the first vector expression. | |
| E2 | The type of the second vector expression. | |
| F | The type of the operation. | 
None, except for those imposed by the requirements of Matrix Expression .
matrix_expression<vector_matrix_binary<E1, E2, F>
>
| Member | Description | 
|---|---|
| vector_matrix_binary (const expression1_type &e1,
const expression2_type &e2) | Constructs a description of the expression. | 
| size_type size1 () const | Returns the number of rows. | 
| size_type size2 () const | Returns the number of columns. | 
| const_reference operator () (size_type i, size_type j)
const | Returns the value of the j-th element in thei-th row. | 
| const_iterator1 begin1 () const | Returns a const_iterator1pointing to the
beginning of the expression. | 
| const_iterator1 end1 () const | Returns a const_iterator1pointing to the end of
the expression. | 
| const_iterator2 begin2 () const | Returns a const_iterator2pointing to the
beginning of the expression. | 
| const_iterator2 end2 () const | Returns a const_iterator2pointing to the end of
the expression. | 
| const_reverse_iterator1 rbegin1 () const | Returns a const_reverse_iterator1pointing to the
beginning of the reversed expression. | 
| const_reverse_iterator1 rend1 () const | Returns a const_reverse_iterator1pointing to the
end of the reversed expression. | 
| const_reverse_iterator2 rbegin2 () const | Returns a const_reverse_iterator2pointing to the
beginning of the reversed expression. | 
| const_reverse_iterator2 rend2 () const | Returns a const_reverse_iterator2pointing to the
end of the reversed expression. | 
template<class E1, class E2, class F>
    struct vector_matrix_binary_traits {
        typedef vector_matrix_binary<typename E1::const_closure_type,
                                      typename E2::const_closure_type, F> expression_type;
        typedef expression_type result_type;
     };
    // (outer_prod (v1, v2)) [i] [j] = v1 [i] * v2 [j]
    template<class E1, class E2>
    typename vector_matrix_binary_traits<E1, E2, scalar_multiplies<typename E1::value_type, typename E2::value_type> >::result_type
    outer_prod (const vector_expression<E1> &e1,
                 const vector_expression<E2> &e2);
outer_prod computes the outer product of two vector
expressions.
Defined in the header matrix_expression.hpp.
E1 is a model of Vector Expression .E2 is a model of Vector Expression .None.
Quadratic depending from the size of the vector expressions.
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<double> v1 (3), v2 (3);
    for (unsigned i = 0; i < std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;
    std::cout << outer_prod (v1, v2) << std::endl;
}
The templated classes vector_binary_scalar1<E1, E2,
F> and vector_binary_scalar2<E1, E2,
F> describe binary operations between a scalar and a
vector.
Defined in the header vector_expression.hpp.
| Parameter | Description | Default | 
|---|---|---|
| E1/E2 | The type of the scalar expression. | |
| E2/E1 | The type of the vector expression. | |
| F | The type of the operation. | 
None, except for those imposed by the requirements of Vector Expression .
vector_expression<vector_binary_scalar1<E1, E2,
F> > and
vector_expression<vector_binary_scalar2<E1, E2, F>
> resp.
| Member | Description | 
|---|---|
| vector_binary_scalar1 (const expression1_type &e1,
const expression2_type &e2) | Constructs a description of the expression. | 
| vector_binary_scalar2 (const expression1_type &e1,
const expression2_type &e2) | Constructs a description of the expression. | 
| size_type size () const | Returns the size of the expression. | 
| const_reference operator () (size_type i)
const | Returns the value of the i-th element. | 
| const_iterator begin () const | Returns a const_iteratorpointing to the beginning
of the expression. | 
| const_iterator end () const | Returns a const_iteratorpointing to the end of
the expression. | 
| const_reverse_iterator rbegin () const | Returns a const_reverse_iteratorpointing to the
beginning of the reversed expression. | 
| const_reverse_iterator rend () const | Returns a const_reverse_iteratorpointing to the
end of the reversed expression. | 
template<class T1, class E2, class F>
    struct vector_binary_scalar1_traits {
        typedef vector_binary_scalar1<scalar_const_reference<T1>,
                                      typename E2::const_closure_type, F> expression_type;
        typedef expression_type result_type;
    };
    // (t * v) [i] = t * v [i]
    template<class T1, class E2>
    typename vector_binary_scalar1_traits<T1, E2, scalar_multiplies<T1, typename E2::value_type> >::result_type
    operator * (const T1 &e1,
                const vector_expression<E2> &e2);
    template<class E1, class T2, class F>
    struct vector_binary_scalar2_traits {
        typedef vector_binary_scalar2<typename E1::const_closure_type,
                                      scalar_const_reference<T2>, F> expression_type;
        typedef expression_type result_type;
    };
    // (v * t) [i] = v [i] * t
    template<class E1, class T2>
    typename vector_binary_scalar2_traits<E1, T2, scalar_multiplies<typename E1::value_type, T2> >::result_type
    operator * (const vector_expression<E1> &e1,
                const T2 &e2);
    // (v / t) [i] = v [i] / t
    template<class E1, class T2>
    typename vector_binary_scalar2_traits<E1, T2, scalar_divides<typename E1::value_type, T2> >::result_type
    operator / (const vector_expression<E1> &e1,
                const T2 &e2);
operator * computes the product of a scalar and a
vector expression. operator / multiplies the vector
with the reciprocal of the scalar.
Defined in the header vector_expression.hpp.
T1/T2 is a model of Scalar Expression .E2/E1 is a model of Vector Expression .None.
Linear depending from the size of the vector expression.
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/io.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<double> v (3);
    for (unsigned i = 0; i < v.size (); ++ i)
        v (i) = i;
    std::cout << 2.0 * v << std::endl;
    std::cout << v * 2.0 << std::endl;
}
template<class E, class F>
    struct vector_scalar_unary_traits {
         typedef typename F::result_type result_type;
    };
    // sum v = sum (v [i])
    template<class E>
    typename vector_scalar_unary_traits<E, vector_sum<typename E::value_type> >::result_type
    sum (const vector_expression<E> &e);
    // norm_1 v = sum (abs (v [i]))
    template<class E>
    typename vector_scalar_unary_traits<E, vector_norm_1<typename E::value_type> >::result_type
    norm_1 (const vector_expression<E> &e);
    // norm_2 v = sqrt (sum (v [i] * v [i]))
    template<class E>
    typename vector_scalar_unary_traits<E, vector_norm_2<typename E::value_type> >::result_type
    norm_2 (const vector_expression<E> &e);
    // norm_inf v = max (abs (v [i]))
    template<class E>
    typename vector_scalar_unary_traits<E, vector_norm_inf<typename E::value_type> >::result_type
    norm_inf (const vector_expression<E> &e);
    // index_norm_inf v = min (i: abs (v [i]) == max (abs (v [i])))
    template<class E>
    typename vector_scalar_unary_traits<E, vector_index_norm_inf<typename E::value_type> >::result_type
    index_norm_inf (const vector_expression<E> &e);
sum computes the sum of the vector expression's
elements. norm_1, norm_2 and
norm_inf compute the corresponding
||.||1,
||.||2 and
||.||inf vector norms.
index_norm_1 computes the index of the vector
expression's first element having maximal absolute value.
Defined in the header vector_expression.hpp.
E is a model of Vector Expression .None.
Linear depending from the size of the vector expression.
#include <boost/numeric/ublas/vector.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<double> v (3);
    for (unsigned i = 0; i < v.size (); ++ i)
        v (i) = i;
    std::cout << sum (v) << std::endl;
    std::cout << norm_1 (v) << std::endl;
    std::cout << norm_2 (v) << std::endl;
    std::cout << norm_inf (v) << std::endl;
    std::cout << index_norm_inf (v) << std::endl;
}
template<class E1, class E2, class F>
    struct vector_scalar_binary_traits {
        typedef typename F::result_type result_type;
    };
    // inner_prod (v1, v2) = sum (v1 [i] * v2 [i])
    template<class E1, class E2>
    typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<typename E1::value_type,
                                                                   typename E2::value_type,
                                                                   typename promote_traits<typename E1::value_type,
                                                                                           typename E2::value_type>::promote_type> >::result_type
    inner_prod (const vector_expression<E1> &e1,
                const vector_expression<E2> &e2);
    template<class E1, class E2>
    typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<typename E1::value_type,
                                                                   typename E2::value_type,
                                                                   typename type_traits<typename promote_traits<typename E1::value_type,
                                                                                                                typename E2::value_type>::promote_type>::precision_type> >::result_type
    prec_inner_prod (const vector_expression<E1> &e1,
                     const vector_expression<E2> &e2);
inner_prod computes the inner product of the vector
expressions. prec_inner_prod computes the double
precision inner product of the vector expressions.
Defined in the header vector_expression.hpp.
E1 is a model of Vector Expression .E2 is a model of Vector Expression .e1 ().size () == e2 ().size ()Linear depending from the size of the vector expressions.
#include <boost/numeric/ublas/vector.hpp>
int main () {
    using namespace boost::numeric::ublas;
    vector<double> v1 (3), v2 (3);
    for (unsigned i = 0; i < std::min (v1.size (), v2.size ()); ++ i)
        v1 (i) = v2 (i) = i;
    std::cout << inner_prod (v1, v2) << std::endl;
}
Copyright (©) 2000-2002 Joerg Walter, Mathias Koch
   Use, modification and distribution are subject to the
   Boost Software License, Version 1.0.
   (See accompanying file LICENSE_1_0.txt
   or copy at 
      http://www.boost.org/LICENSE_1_0.txt
   ).