// Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007, 2009 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include #define BOOST_TEST_MAIN #include #include #include #include #include #include #include #include #include "functor.hpp" #ifdef TEST_GSL #include #include #endif #include "handle_test_result.hpp" #include "table_type.hpp" #ifndef SC_ #define SC_(x) static_cast::type>(BOOST_JOIN(x, L)) #endif template void test_inverses(const T& data) { using namespace std; //typedef typename T::value_type row_type; typedef Real value_type; value_type precision = static_cast(ldexp(1.0, 1-boost::math::policies::digits >()/2)) * 100; if(boost::math::policies::digits >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated for(unsigned i = 0; i < data.size(); ++i) { // // These inverse tests are thrown off if the output of the // incomplete beta is too close to 1: basically there is insuffient // information left in the value we're using as input to the inverse // to be able to get back to the original value. // if(Real(data[i][5]) == 0) { BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : boost::math::tools::max_value()); BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value()); } else if((1 - Real(data[i][5]) > 0.001) && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value()) && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value())) { value_type inv = boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])); BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision); inv = boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])); BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision); } else if(1 == Real(data[i][5])) { BOOST_CHECK_EQUAL(boost::math::ibeta_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][5])), boost::math::tools::min_value()); BOOST_CHECK_EQUAL(boost::math::ibeta_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][5])), std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : boost::math::tools::max_value()); } if(Real(data[i][6]) == 0) { BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value()); BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : boost::math::tools::max_value()); } else if((1 - Real(data[i][6]) > 0.001) && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value()) && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value())) { value_type inv = boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])); BOOST_CHECK_CLOSE(Real(data[i][0]), inv, precision); inv = boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])); BOOST_CHECK_CLOSE(Real(data[i][1]), inv, precision); } else if(Real(data[i][6]) == 1) { BOOST_CHECK_EQUAL(boost::math::ibetac_inva(Real(data[i][1]), Real(data[i][2]), Real(data[i][6])), std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : boost::math::tools::max_value()); BOOST_CHECK_EQUAL(boost::math::ibetac_invb(Real(data[i][0]), Real(data[i][2]), Real(data[i][6])), boost::math::tools::min_value()); } } } template void test_inverses2(const T& data, const char* type_name, const char* test_name) { #if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INVA_FUNCTION_TO_TEST)) //typedef typename T::value_type row_type; typedef Real value_type; typedef value_type (*pg)(value_type, value_type, value_type); #ifdef IBETA_INVA_FUNCTION_TO_TEST pg funcp = IBETA_INVA_FUNCTION_TO_TEST; #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) pg funcp = boost::math::ibeta_inva; #else pg funcp = boost::math::ibeta_inva; #endif boost::math::tools::test_result result; std::cout << "Testing " << test_name << " with type " << type_name << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; // // test ibeta_inva(T, T, T) against data: // result = boost::math::tools::test_hetero( data, bind_func(funcp, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inva", test_name); // // test ibetac_inva(T, T, T) against data: // #ifdef IBETAC_INVA_FUNCTION_TO_TEST funcp = IBETAC_INVA_FUNCTION_TO_TEST; #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) funcp = boost::math::ibetac_inva; #else funcp = boost::math::ibetac_inva; #endif result = boost::math::tools::test_hetero( data, bind_func(funcp, 0, 1, 2), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inva", test_name); // // test ibeta_invb(T, T, T) against data: // #ifdef IBETA_INVB_FUNCTION_TO_TEST funcp = IBETA_INVB_FUNCTION_TO_TEST; #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) funcp = boost::math::ibeta_invb; #else funcp = boost::math::ibeta_invb; #endif result = boost::math::tools::test_hetero( data, bind_func(funcp, 0, 1, 2), extract_result(5)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_invb", test_name); // // test ibetac_invb(T, T, T) against data: // #ifdef IBETAC_INVB_FUNCTION_TO_TEST funcp = IBETAC_INVB_FUNCTION_TO_TEST; #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) funcp = boost::math::ibetac_invb; #else funcp = boost::math::ibetac_invb; #endif result = boost::math::tools::test_hetero( data, bind_func(funcp, 0, 1, 2), extract_result(6)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_invb", test_name); #endif } template void test_beta(T, const char* name) { #if !defined(ERROR_REPORTING_MODE) // // The actual test data is rather verbose, so it's in a separate file // // The contents are as follows, each row of data contains // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x): // std::cout << "Running sanity checks for type " << name << std::endl; #if !defined(TEST_DATA) || (TEST_DATA == 1) # include "ibeta_small_data.ipp" test_inverses(ibeta_small_data); #endif #if !defined(TEST_DATA) || (TEST_DATA == 2) # include "ibeta_data.ipp" test_inverses(ibeta_data); #endif #if !defined(TEST_DATA) || (TEST_DATA == 3) # include "ibeta_large_data.ipp" test_inverses(ibeta_large_data); #endif #endif #if !defined(TEST_REAL_CONCEPT) || defined(FULL_TEST) || (TEST_DATA == 4) if(boost::is_floating_point::value){ // // This accuracy test is normally only enabled for "real" // floating point types and not for class real_concept. // The reason is that these tests are exceptionally slow // to complete when T doesn't have Lanczos support defined for it. // # include "ibeta_inva_data.ipp" test_inverses2(ibeta_inva_data, name, "Inverse incomplete beta"); } #endif }