#include "HamlibTransceiver.hpp" #include #include #include #include #include "moc_HamlibTransceiver.cpp" namespace { // Unfortunately bandwidth is conflated with mode, this is probably // because Icom do the same. So we have to care about bandwidth if // we want to set mode otherwise we will end up setting unwanted // bandwidths every time we change mode. The best we can do via the // Hamlib API is to request the normal option for the mode and hope // that an appropriate filter is selected. Also ensure that mode is // only set is absolutely necessary. On Icoms (and probably others) // the filter is selected by number without checking the actual BW // so unless the "normal" defaults are set on the rig we won't get // desirable results. // // As an ultimate workaround make sure the user always has the // option to skip mode setting altogether. // reroute Hamlib diagnostic messages to Qt int debug_callback (enum rig_debug_level_e level, rig_ptr_t /* arg */, char const * format, va_list ap) { QString message; static char const fmt[] = "Hamlib: %s"; message = message.vsprintf (format, ap).trimmed (); switch (level) { case RIG_DEBUG_BUG: qFatal (fmt, message.toLocal8Bit ().data ()); break; case RIG_DEBUG_ERR: qCritical (fmt, message.toLocal8Bit ().data ()); break; case RIG_DEBUG_WARN: qWarning (fmt, message.toLocal8Bit ().data ()); break; default: qDebug (fmt, message.toLocal8Bit ().data ()); break; } return 0; } // callback function that receives transceiver capabilities from the // hamlib libraries int rigCallback (rig_caps const * caps, void * callback_data) { TransceiverFactory::Transceivers * rigs = reinterpret_cast (callback_data); QString key; if (RIG_MODEL_DUMMY == caps->rig_model) { key = TransceiverFactory::basic_transceiver_name_; } else { key = QString::fromLatin1 (caps->mfg_name).trimmed () + ' '+ QString::fromLatin1 (caps->model_name).trimmed () // + ' '+ QString::fromLatin1 (caps->version).trimmed () // + " (" + QString::fromLatin1 (rig_strstatus (caps->status)).trimmed () + ')' ; } auto port_type = TransceiverFactory::Capabilities::none; switch (caps->port_type) { case RIG_PORT_SERIAL: port_type = TransceiverFactory::Capabilities::serial; break; case RIG_PORT_NETWORK: port_type = TransceiverFactory::Capabilities::network; break; default: break; } (*rigs)[key] = TransceiverFactory::Capabilities (caps->rig_model , port_type , RIG_MODEL_DUMMY != caps->rig_model && (RIG_PTT_RIG == caps->ptt_type || RIG_PTT_RIG_MICDATA == caps->ptt_type) , RIG_PTT_RIG_MICDATA == caps->ptt_type); return 1; // keep them coming } // int frequency_change_callback (RIG * /* rig */, vfo_t vfo, freq_t f, rig_ptr_t arg) // { // (void)vfo; // unused in release build // Q_ASSERT (vfo == RIG_VFO_CURR); // G4WJS: at the time of writing only current VFO is signalled by hamlib // HamlibTransceiver * transceiver (reinterpret_cast (arg)); // Q_EMIT transceiver->frequency_change (f, Transceiver::A); // return RIG_OK; // } class hamlib_tx_vfo_fixup final { public: hamlib_tx_vfo_fixup (RIG * rig, vfo_t tx_vfo) : rig_ {rig} { original_vfo_ = rig_->state.tx_vfo; rig_->state.tx_vfo = tx_vfo; } ~hamlib_tx_vfo_fixup () { rig_->state.tx_vfo = original_vfo_; } private: RIG * rig_; vfo_t original_vfo_; }; } freq_t HamlibTransceiver::dummy_frequency_; rmode_t HamlibTransceiver::dummy_mode_ {RIG_MODE_NONE}; void HamlibTransceiver::register_transceivers (TransceiverFactory::Transceivers * registry) { rig_set_debug_callback (debug_callback, nullptr); #if WSJT_HAMLIB_TRACE #if WSJT_HAMLIB_VERBOSE_TRACE rig_set_debug (RIG_DEBUG_TRACE); #else rig_set_debug (RIG_DEBUG_VERBOSE); #endif #elif defined (NDEBUG) rig_set_debug (RIG_DEBUG_ERR); #else rig_set_debug (RIG_DEBUG_WARN); #endif rig_load_all_backends (); rig_list_foreach (rigCallback, registry); } void HamlibTransceiver::RIGDeleter::cleanup (RIG * rig) { if (rig) { // rig->state.obj = 0; rig_cleanup (rig); } } HamlibTransceiver::HamlibTransceiver (TransceiverFactory::PTTMethod ptt_type, QString const& ptt_port) : PollingTransceiver {0} , rig_ {rig_init (RIG_MODEL_DUMMY)} , back_ptt_port_ {false} , is_dummy_ {true} , reversed_ {false} , split_query_works_ {true} , get_vfo_works_ {true} { if (!rig_) { throw error {tr ("Hamlib initialisation error")}; } switch (ptt_type) { case TransceiverFactory::PTT_method_VOX: set_conf ("ptt_type", "None"); break; case TransceiverFactory::PTT_method_CAT: // Use the default PTT_TYPE for the rig (defined in the Hamlib // rig back-end capabilities). break; case TransceiverFactory::PTT_method_DTR: case TransceiverFactory::PTT_method_RTS: if (!ptt_port.isEmpty ()) { #if defined (WIN32) set_conf ("ptt_pathname", ("\\\\.\\" + ptt_port).toLatin1 ().data ()); #else set_conf ("ptt_pathname", ptt_port.toLatin1 ().data ()); #endif } if (TransceiverFactory::PTT_method_DTR == ptt_type) { set_conf ("ptt_type", "DTR"); } else { set_conf ("ptt_type", "RTS"); } } } HamlibTransceiver::HamlibTransceiver (int model_number, TransceiverFactory::ParameterPack const& params) : PollingTransceiver {params.poll_interval} , rig_ {rig_init (model_number)} , back_ptt_port_ {TransceiverFactory::TX_audio_source_rear == params.audio_source} , is_dummy_ {RIG_MODEL_DUMMY == model_number} , reversed_ {false} , split_query_works_ {true} , tickle_hamlib_ {false} , get_vfo_works_ {true} { if (!rig_) { throw error {tr ("Hamlib initialisation error")}; } // rig_->state.obj = this; if (RIG_MODEL_DUMMY != model_number) { switch (rig_->caps->port_type) { case RIG_PORT_SERIAL: if (!params.serial_port.isEmpty ()) { set_conf ("rig_pathname", params.serial_port.toLatin1 ().data ()); } break; case RIG_PORT_NETWORK: if (!params.network_port.isEmpty ()) { set_conf ("rig_pathname", params.network_port.toLatin1 ().data ()); } break; default: throw error {tr ("Unsupported CAT type")}; break; } set_conf ("serial_speed", QByteArray::number (params.baud).data ()); set_conf ("data_bits", TransceiverFactory::seven_data_bits == params.data_bits ? "7" : "8"); set_conf ("stop_bits", TransceiverFactory::one_stop_bit == params.stop_bits ? "1" : "2"); switch (params.handshake) { case TransceiverFactory::handshake_none: set_conf ("serial_handshake", "None"); break; case TransceiverFactory::handshake_XonXoff: set_conf ("serial_handshake", "XONXOFF"); break; case TransceiverFactory::handshake_hardware: set_conf ("serial_handshake", "Hardware"); break; } if (params.force_line_control) { set_conf ("dtr_state", params.dtr_high ? "ON" : "OFF"); if (TransceiverFactory::handshake_hardware != params.handshake) { set_conf ("rts_state", params.rts_high ? "ON" : "OFF"); } } } switch (params.ptt_type) { case TransceiverFactory::PTT_method_VOX: set_conf ("ptt_type", "None"); break; case TransceiverFactory::PTT_method_CAT: // Use the default PTT_TYPE for the rig (defined in the Hamlib // rig back-end capabilities). break; case TransceiverFactory::PTT_method_DTR: case TransceiverFactory::PTT_method_RTS: if (!params.ptt_port.isEmpty () && params.ptt_port != "None" && (RIG_MODEL_DUMMY == model_number || params.ptt_port != params.serial_port)) { #if defined (WIN32) set_conf ("ptt_pathname", ("\\\\.\\" + params.ptt_port).toLatin1 ().data ()); #else set_conf ("ptt_pathname", params.ptt_port.toLatin1 ().data ()); #endif } if (TransceiverFactory::PTT_method_DTR == params.ptt_type) { set_conf ("ptt_type", "DTR"); } else { set_conf ("ptt_type", "RTS"); } } // Make Icom CAT split commands less glitchy set_conf ("no_xchg", "1"); // would be nice to get events but not supported on Windows and also not on a lot of rigs // rig_set_freq_callback (rig_.data (), &frequency_change_callback, this); } HamlibTransceiver::~HamlibTransceiver () { } void HamlibTransceiver::error_check (int ret_code, QString const& doing) const { if (RIG_OK != ret_code) { TRACE_CAT_POLL ("error:" << rigerror (ret_code)); throw error {tr ("Hamlib error: %1 while %2").arg (rigerror (ret_code)).arg (doing)}; } } void HamlibTransceiver::do_start () { TRACE_CAT (QString::fromLatin1 (rig_->caps->mfg_name).trimmed () << QString::fromLatin1 (rig_->caps->model_name).trimmed ()); error_check (rig_open (rig_.data ()), tr ("opening connection to rig")); // the Net rigctl back end promises all functions work but we must // test get_vfo as it determines our strategy for Icom rigs vfo_t vfo; int rc = rig_get_vfo (rig_.data (), &vfo); if (-RIG_ENAVAIL == rc || -RIG_ENIMPL == rc) { get_vfo_works_ = false; } else { error_check (rc, "getting current VFO"); } if (!is_dummy_ && rig_->caps->set_split_vfo) // if split is possible // do some extra setup { freq_t f1; freq_t f2; rmode_t m {RIG_MODE_USB}; rmode_t mb; pbwidth_t w {RIG_PASSBAND_NORMAL}; pbwidth_t wb; if ((!get_vfo_works_ || !rig_->caps->get_vfo) && (rig_->caps->set_vfo || rig_has_vfo_op (rig_.data (), RIG_OP_TOGGLE))) { // Icom have deficient CAT protocol with no way of reading which // VFO is selected or if SPLIT is selected so we have to simply // assume it is as when we started by setting at open time right // here. We also gather/set other initial state. error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f1), tr ("getting current frequency")); TRACE_CAT ("current frequency =" << f1); error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting current mode")); TRACE_CAT ("current mode =" << rig_strrmode (m) << "bw =" << w); if (!rig_->caps->set_vfo) { TRACE_CAT ("rig_vfo_op TOGGLE"); error_check (rig_vfo_op (rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE), tr ("exchanging VFOs")); } else { TRACE_CAT ("rig_set_vfo to other VFO"); error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB), tr ("setting current VFO")); } error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f2), tr ("getting other VFO frequency")); TRACE_CAT ("rig_get_freq other frequency =" << f2); error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &mb, &wb), tr ("getting other VFO mode")); TRACE_CAT ("rig_get_mode other mode =" << rig_strrmode (mb) << "bw =" << wb); update_other_frequency (f2); if (!rig_->caps->set_vfo) { TRACE_CAT ("rig_vfo_op TOGGLE"); error_check (rig_vfo_op (rig_.data (), RIG_VFO_CURR, RIG_OP_TOGGLE), tr ("exchanging VFOs")); } else { TRACE_CAT ("rig_set_vfo A/MAIN"); error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO")); } if (f1 != f2 || m != mb || w != wb) // we must have started with MAIN/A { update_rx_frequency (f1); } else { error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f1), tr ("getting frequency")); TRACE_CAT ("rig_get_freq frequency =" << f1); error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting mode")); TRACE_CAT ("rig_get_mode mode =" << rig_strrmode (m) << "bw =" << w); update_rx_frequency (f1); } // TRACE_CAT ("rig_set_split_vfo split off"); // error_check (rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, RIG_SPLIT_OFF, RIG_VFO_CURR), tr ("setting split off")); // update_split (false); } else { vfo_t v {RIG_VFO_A}; // assume RX always on VFO A/MAIN if (get_vfo_works_ && rig_->caps->get_vfo) { error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib TRACE_CAT ("rig_get_vfo current VFO = " << rig_strvfo (v)); } reversed_ = RIG_VFO_B == v; if (!(rig_->caps->targetable_vfo & (RIG_TARGETABLE_MODE | RIG_TARGETABLE_PURE))) { error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting current mode")); TRACE_CAT ("rig_get_mode current mode =" << rig_strrmode (m) << "bw =" << w); } } update_mode (map_mode (m)); } tickle_hamlib_ = true; if (is_dummy_ && dummy_frequency_) { // return to where last dummy instance was // TODO: this is going to break down if multiple dummy rigs are used rig_set_freq (rig_.data (), RIG_VFO_CURR, dummy_frequency_); update_rx_frequency (dummy_frequency_); if (RIG_MODE_NONE != dummy_mode_) { rig_set_mode (rig_.data (), RIG_VFO_CURR, dummy_mode_, RIG_PASSBAND_NORMAL); update_mode (map_mode (dummy_mode_)); } } poll (); TRACE_CAT ("exit" << state () << "reversed =" << reversed_); } void HamlibTransceiver::do_stop () { if (is_dummy_) { rig_get_freq (rig_.data (), RIG_VFO_CURR, &dummy_frequency_); pbwidth_t width; rig_get_mode (rig_.data (), RIG_VFO_CURR, &dummy_mode_, &width); } if (rig_) { rig_close (rig_.data ()); } TRACE_CAT ("state:" << state () << "reversed =" << reversed_); } auto HamlibTransceiver::get_vfos () const -> std::tuple { if (get_vfo_works_ && rig_->caps->get_vfo) { vfo_t v; error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib TRACE_CAT ("rig_get_vfo VFO = " << rig_strvfo (v)); reversed_ = RIG_VFO_B == v; } else if (rig_->caps->set_vfo && rig_->caps->set_split_vfo) { // use VFO A/MAIN for main frequency and B/SUB for Tx // frequency if split since these type of radios can only // support this way around TRACE_CAT ("rig_set_vfo VFO = A/MAIN"); error_check (rig_set_vfo (rig_.data (), rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN), tr ("setting current VFO")); } // else only toggle available but both VFOs should be substitutable auto rx_vfo = rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN; auto tx_vfo = !is_dummy_ && state ().split () ? (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB) : rx_vfo; if (reversed_) { TRACE_CAT ("reversing VFOs"); std::swap (rx_vfo, tx_vfo); } TRACE_CAT ("RX VFO = " << rig_strvfo (rx_vfo) << " TX VFO = " << rig_strvfo (tx_vfo)); return std::make_tuple (rx_vfo, tx_vfo); } void HamlibTransceiver::do_frequency (Frequency f, MODE m) { TRACE_CAT (f << "mode:" << m << "reversed:" << reversed_); // for the 1st time as a band change may cause a recalled mode to be // set error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency")); if (UNK != m) { do_mode (m, false); // for the 2nd time because a mode change may have caused a // frequency change error_check (rig_set_freq (rig_.data (), RIG_VFO_CURR, f), tr ("setting frequency")); // for the second time because some rigs change mode according // to frequency such as the TS-2000 auto mode setting do_mode (m, false); } update_rx_frequency (f); } void HamlibTransceiver::do_tx_frequency (Frequency tx, bool rationalise_mode) { TRACE_CAT (tx << "rationalise mode:" << rationalise_mode << "reversed:" << reversed_); if (!is_dummy_) // split is meaning less if you can't // see it { auto split = tx ? RIG_SPLIT_ON : RIG_SPLIT_OFF; update_split (tx); auto vfos = get_vfos (); // auto rx_vfo = std::get<0> (vfos); // or use RIG_VFO_CURR auto tx_vfo = std::get<1> (vfos); if (tx) { // Doing set split for the 1st of two times, this one // ensures that the internal Hamlib state is correct // otherwise rig_set_split_freq() will target the wrong VFO // on some rigs if (tickle_hamlib_) { // This potentially causes issues with the Elecraft K3 // which will block setting split mode when it deems // cross mode split operation not possible. There's not // much we can do since the Hamlib Library needs this // call at least once to establish the Tx VFO. Best we // can do is only do this once per session. TRACE_CAT ("rig_set_split_vfo split =" << split); auto rc = rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo); if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc)) { // On rigs that can't have split controlled only throw an // exception when an error other than command not accepted // is returned when trying to leave split mode. This allows // fake split mode and non-split mode to work without error // on such rigs without having to know anything about the // specific rig. error_check (rc, tr ("setting/unsetting split mode")); } tickle_hamlib_ = false; } hamlib_tx_vfo_fixup fixup (rig_.data (), tx_vfo); // do this before setting the mode because changing band may // recall the last mode used on the target band error_check (rig_set_split_freq (rig_.data (), RIG_VFO_CURR, tx), tr ("setting split TX frequency")); if (rationalise_mode) { rmode_t current_mode; pbwidth_t current_width; error_check (rig_get_split_mode (rig_.data (), RIG_VFO_CURR, ¤t_mode, ¤t_width), tr ("getting mode of split TX VFO")); TRACE_CAT ("rig_get_split_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width); auto new_mode = map_mode (state ().mode ()); if (new_mode != current_mode) { TRACE_CAT ("rig_set_split_mode mode = " << rig_strrmode (new_mode)); error_check (rig_set_split_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NORMAL), tr ("setting split TX VFO mode")); // do this again as setting the mode may change the frequency error_check (rig_set_split_freq (rig_.data (), RIG_VFO_CURR, tx), tr ("setting split TX frequency")); } } } // Enable split last since some rigs (Kenwood for one) come out // of split when you switch RX VFO (to set split mode above for // example). Also the Elecraft K3 will refuse to go to split // with certain VFO A/B mode combinations. TRACE_CAT ("rig_set_split_vfo split =" << split); auto rc = rig_set_split_vfo (rig_.data (), RIG_VFO_CURR, split, tx_vfo); if (tx || (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc)) { // On rigs that can't have split controlled only throw an // exception when an error other than command not accepted // is returned when trying to leave split mode. This allows // fake split mode and non-split mode to work without error // on such rigs without having to know anything about the // specific rig. error_check (rc, tr ("setting/unsetting split mode")); } update_other_frequency (tx); } } void HamlibTransceiver::do_mode (MODE mode, bool rationalise) { TRACE_CAT (mode << "rationalise:" << rationalise); auto vfos = get_vfos (); // auto rx_vfo = std::get<0> (vfos); auto tx_vfo = std::get<1> (vfos); rmode_t current_mode; pbwidth_t current_width; error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, ¤t_mode, ¤t_width), tr ("getting current VFO mode")); TRACE_CAT ("rig_get_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width); auto new_mode = map_mode (mode); if (new_mode != current_mode) { TRACE_CAT ("rig_set_mode mode = " << rig_strrmode (new_mode)); error_check (rig_set_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NORMAL), tr ("setting current VFO mode")); } if (!is_dummy_ && state ().split () && rationalise) { error_check (rig_get_split_mode (rig_.data (), RIG_VFO_CURR, ¤t_mode, ¤t_width), tr ("getting split TX VFO mode")); TRACE_CAT ("rig_get_split_mode mode = " << rig_strrmode (current_mode) << "bw =" << current_width); if (new_mode != current_mode) { TRACE_CAT ("rig_set_split_mode mode = " << rig_strrmode (new_mode)); hamlib_tx_vfo_fixup fixup (rig_.data (), tx_vfo); error_check (rig_set_split_mode (rig_.data (), RIG_VFO_CURR, new_mode, RIG_PASSBAND_NORMAL), tr ("setting split TX VFO mode")); } } update_mode (mode); } void HamlibTransceiver::poll () { #if !WSJT_TRACE_CAT_POLLS #if defined (NDEBUG) rig_set_debug (RIG_DEBUG_ERR); #else rig_set_debug (RIG_DEBUG_WARN); #endif #endif freq_t f; rmode_t m; pbwidth_t w; split_t s; if (get_vfo_works_ && rig_->caps->get_vfo) { vfo_t v; error_check (rig_get_vfo (rig_.data (), &v), tr ("getting current VFO")); // has side effect of establishing current VFO inside hamlib TRACE_CAT_POLL ("VFO =" << rig_strvfo (v)); reversed_ = RIG_VFO_B == v; } error_check (rig_get_freq (rig_.data (), RIG_VFO_CURR, &f), tr ("getting current VFO frequency")); TRACE_CAT_POLL ("rig_get_freq frequency =" << f); update_rx_frequency (f); if (!is_dummy_ && state ().split () && (rig_->caps->targetable_vfo & (RIG_TARGETABLE_FREQ | RIG_TARGETABLE_PURE))) { // only read "other" VFO if in split, this allows rigs like // FlexRadio to work in Kenwood TS-2000 mode despite them // not having a FB; command // we can only probe current VFO unless rig supports reading // the other one directly because we can't glitch the Rx error_check (rig_get_freq (rig_.data () , reversed_ ? (rig_->state.vfo_list & RIG_VFO_A ? RIG_VFO_A : RIG_VFO_MAIN) : (rig_->state.vfo_list & RIG_VFO_B ? RIG_VFO_B : RIG_VFO_SUB) , &f), tr ("getting current VFO frequency")); TRACE_CAT_POLL ("rig_get_freq other VFO =" << f); update_other_frequency (f); } error_check (rig_get_mode (rig_.data (), RIG_VFO_CURR, &m, &w), tr ("getting current VFO mode")); TRACE_CAT_POLL ("rig_get_mode mode =" << rig_strrmode (m) << "bw =" << w); update_mode (map_mode (m)); if (!is_dummy_ && rig_->caps->get_split_vfo && split_query_works_) { vfo_t v {RIG_VFO_NONE}; // so we can tell if it doesn't get updated :( auto rc = rig_get_split_vfo (rig_.data (), RIG_VFO_CURR, &s, &v); if (-RIG_OK == rc && RIG_SPLIT_ON == s) { TRACE_CAT_POLL ("rig_get_split_vfo split = " << s << " VFO = " << rig_strvfo (v)); update_split (true); // if (RIG_VFO_A == v) // { // reversed_ = true; // not sure if this helps us here // } } else if (-RIG_OK == rc) // not split { TRACE_CAT_POLL ("rig_get_split_vfo split = " << s << " VFO = " << rig_strvfo (v)); update_split (false); } else { // Some rigs (Icom) don't have a way of reporting SPLIT // mode TRACE_CAT_POLL ("rig_get_split_vfo can't do on this rig"); // just report how we see it based on prior commands split_query_works_ = false; } } if (RIG_PTT_NONE != rig_->state.pttport.type.ptt && rig_->caps->get_ptt) { ptt_t p; auto rc = rig_get_ptt (rig_.data (), RIG_VFO_CURR, &p); if (-RIG_ENAVAIL != rc && -RIG_ENIMPL != rc) // may fail if // Net rig ctl and target doesn't // support command { error_check (rc, tr ("getting PTT state")); TRACE_CAT_POLL ("rig_get_ptt PTT =" << p); update_PTT (!(RIG_PTT_OFF == p)); } } #if !WSJT_TRACE_CAT_POLLS #if WSJT_HAMLIB_TRACE #if WSJT_HAMLIB_VERBOSE_TRACE rig_set_debug (RIG_DEBUG_TRACE); #else rig_set_debug (RIG_DEBUG_VERBOSE); #endif #elif defined (NDEBUG) rig_set_debug (RIG_DEBUG_ERR); #else rig_set_debug (RIG_DEBUG_WARN); #endif #endif } void HamlibTransceiver::do_ptt (bool on) { TRACE_CAT (on << state () << "reversed =" << reversed_); if (on) { if (RIG_PTT_NONE != rig_->state.pttport.type.ptt) { TRACE_CAT ("rig_set_ptt PTT = true"); error_check (rig_set_ptt (rig_.data (), RIG_VFO_CURR , RIG_PTT_RIG_MICDATA == rig_->caps->ptt_type && back_ptt_port_ ? RIG_PTT_ON_DATA : RIG_PTT_ON), tr ("setting PTT on")); } } else { if (RIG_PTT_NONE != rig_->state.pttport.type.ptt) { TRACE_CAT ("rig_set_ptt PTT = false"); error_check (rig_set_ptt (rig_.data (), RIG_VFO_CURR, RIG_PTT_OFF), tr ("setting PTT off")); } } update_PTT (on); } void HamlibTransceiver::set_conf (char const * item, char const * value) { token_t token = rig_token_lookup (rig_.data (), item); if (RIG_CONF_END != token) // only set if valid for rig model { error_check (rig_set_conf (rig_.data (), token, value), tr ("setting a configuration item")); } } QByteArray HamlibTransceiver::get_conf (char const * item) { token_t token = rig_token_lookup (rig_.data (), item); QByteArray value {128, '\0'}; if (RIG_CONF_END != token) // only get if valid for rig model { error_check (rig_get_conf (rig_.data (), token, value.data ()), tr ("getting a configuration item")); } return value; } auto HamlibTransceiver::map_mode (rmode_t m) const -> MODE { switch (m) { case RIG_MODE_AM: case RIG_MODE_SAM: case RIG_MODE_AMS: case RIG_MODE_DSB: return AM; case RIG_MODE_CW: return CW; case RIG_MODE_CWR: return CW_R; case RIG_MODE_USB: case RIG_MODE_ECSSUSB: case RIG_MODE_SAH: case RIG_MODE_FAX: return USB; case RIG_MODE_LSB: case RIG_MODE_ECSSLSB: case RIG_MODE_SAL: return LSB; case RIG_MODE_RTTY: return FSK; case RIG_MODE_RTTYR: return FSK_R; case RIG_MODE_PKTLSB: return DIG_L; case RIG_MODE_PKTUSB: return DIG_U; case RIG_MODE_FM: case RIG_MODE_WFM: return FM; case RIG_MODE_PKTFM: return DIG_FM; default: return UNK; } } rmode_t HamlibTransceiver::map_mode (MODE mode) const { switch (mode) { case AM: return RIG_MODE_AM; case CW: return RIG_MODE_CW; case CW_R: return RIG_MODE_CWR; case USB: return RIG_MODE_USB; case LSB: return RIG_MODE_LSB; case FSK: return RIG_MODE_RTTY; case FSK_R: return RIG_MODE_RTTYR; case DIG_L: return RIG_MODE_PKTLSB; case DIG_U: return RIG_MODE_PKTUSB; case FM: return RIG_MODE_FM; case DIG_FM: return RIG_MODE_PKTFM; default: break; } return RIG_MODE_USB; // quieten compiler grumble }