subroutine filbig(dd,nmax,f0,newdat,nfsample,xpol,c4a,c4b,n4) ! Filter and downsample complex data stored in array dd(4,nmax). ! Output is downsampled from 96000 Hz to 1375.125 Hz. parameter (MAXFFT1=5376000,MAXFFT2=77175) real*4 dd(4,nmax) !Input data complex ca(MAXFFT1),cb(MAXFFT1) !FFTs of input complex c4a(MAXFFT2),c4b(MAXFFT2) !Output data real*8 df real halfpulse(8) !Impulse response of filter (one sided) complex cfilt(MAXFFT2) !Filter (complex; imag = 0) real rfilt(MAXFFT2) !Filter (real) integer*8 plan1,plan2,plan3,plan4,plan5 logical first,xpol include 'fftw3.f' common/cacb/ca,cb equivalence (rfilt,cfilt) data first/.true./,npatience/1/ data halfpulse/114.97547150,36.57879257,-20.93789101, & 5.89886379,1.59355187,-2.49138308,0.60910773,-0.04248129/ save if(nmax.lt.0) go to 900 nfft1=MAXFFT1 nfft2=MAXFFT2 if(nfsample.eq.95238) then nfft1=5120000 nfft2=74088 endif if(first) then nflags=FFTW_ESTIMATE if(npatience.eq.1) nflags=FFTW_ESTIMATE_PATIENT if(npatience.eq.2) nflags=FFTW_MEASURE if(npatience.eq.3) nflags=FFTW_PATIENT if(npatience.eq.4) nflags=FFTW_EXHAUSTIVE ! Plan the FFTs just once call timer('FFTplans ',0) call sfftw_plan_dft_1d(plan1,nfft1,ca,ca,FFTW_BACKWARD,nflags) call sfftw_plan_dft_1d(plan2,nfft1,cb,cb,FFTW_BACKWARD,nflags) call sfftw_plan_dft_1d(plan3,nfft2,c4a,c4a,FFTW_FORWARD,nflags) call sfftw_plan_dft_1d(plan4,nfft2,c4b,c4b,FFTW_FORWARD,nflags) call sfftw_plan_dft_1d(plan5,nfft2,cfilt,cfilt,FFTW_BACKWARD,nflags) call timer('FFTplans ',1) ! Convert impulse response to filter function do i=1,nfft2 cfilt(i)=0. enddo fac=0.00625/nfft1 cfilt(1)=fac*halfpulse(1) do i=2,8 cfilt(i)=fac*halfpulse(i) cfilt(nfft2+2-i)=fac*halfpulse(i) enddo call timer('FFTfilt ',0) call sfftw_execute(plan5) call timer('FFTfilt ',1) base=cfilt(nfft2/2+1) do i=1,nfft2 rfilt(i)=real(cfilt(i))-base enddo df=96000.d0/nfft1 if(nfsample.eq.95238) df=95238.1d0/nfft1 first=.false. endif ! When new data comes along, we need to compute a new "big FFT" ! If we just have a new f0, continue with the existing ca and cb. if(newdat.ne.0 .or. sum(abs(ca)).eq.0.0) then !### Test on ca should be unnecessary? nz=min(nmax,nfft1) do i=1,nz ca(i)=cmplx(dd(1,i),dd(2,i)) if(xpol) cb(i)=cmplx(dd(3,i),dd(4,i)) enddo if(nmax.lt.nfft1) then do i=nmax+1,nfft1 ca(i)=0. if(xpol) cb(i)=0. enddo endif call timer('FFTbig ',0) call sfftw_execute(plan1) if(xpol) call sfftw_execute(plan2) call timer('FFTbig ',1) newdat=0 endif ! NB: f0 is the frequency at which we want our filter centered. ! i0 is the bin number in ca and cb closest to f0. i0=nint(f0/df) + 1 nh=nfft2/2 do i=1,nh !Copy data into c4a and c4b, j=i0+i-1 !and apply the filter function if(j.ge.1 .and. j.le.nfft1) then c4a(i)=rfilt(i)*ca(j) if(xpol) c4b(i)=rfilt(i)*cb(j) else c4a(i)=0. if(xpol) c4b(i)=0. endif enddo do i=nh+1,nfft2 j=i0+i-1-nfft2 if(j.lt.1) j=j+nfft1 !nfft1 was nfft2 c4a(i)=rfilt(i)*ca(j) if(xpol) c4b(i)=rfilt(i)*cb(j) enddo ! Do the short reverse transform, to go back to time domain. call timer('FFTsmall',0) call sfftw_execute(plan3) if(xpol) call sfftw_execute(plan4) call timer('FFTsmall',1) n4=min(nmax/64,nfft2) go to 999 900 call sfftw_destroy_plan(plan1) call sfftw_destroy_plan(plan2) call sfftw_destroy_plan(plan3) call sfftw_destroy_plan(plan4) call sfftw_destroy_plan(plan5) 999 return end subroutine filbig