// Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning(disable: 4127) // conditional expression is constant. # pragma warning(disable: 4245) // int/unsigned int conversion #endif // Return infinities not exceptions: #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include <boost/cstdfloat.hpp> #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> #include <boost/test/floating_point_comparison.hpp> #include <boost/math/special_functions/factorials.hpp> #include <boost/math/special_functions/gamma.hpp> #include <boost/math/tools/stats.hpp> #include <boost/math/tools/test.hpp> #include <iostream> using std::cout; using std::endl; template <class T> T naive_falling_factorial(T x, unsigned n) { if(n == 0) return 1; T result = x; while(--n) { x -= 1; result *= x; } return result; } template <class T> void test_spots(T) { // // Basic sanity checks. // T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent. BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(10), static_cast<T>(3628800L), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(10), static_cast<T>(3628800L), tolerance); // // Try some double factorials: // BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(0), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(1), static_cast<T>(1), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(2), static_cast<T>(2), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(5), static_cast<T>(15), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(10), static_cast<T>(3840), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(19), static_cast<T>(6.547290750e8Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(24), static_cast<T>(1.961990553600000e12Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(33), static_cast<T>(6.33265987076285062500000e18Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(42), static_cast<T>(1.0714547155728479551488000000e26Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::double_factorial<T>(47), static_cast<T>(1.19256819277443412353990764062500000e30Q), tolerance); if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024)) { BOOST_CHECK_EQUAL( ::boost::math::double_factorial<T>(320), std::numeric_limits<T>::infinity()); BOOST_CHECK_EQUAL( ::boost::math::double_factorial<T>(301), std::numeric_limits<T>::infinity()); } // // Rising factorials: // tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. if(std::numeric_limits<T>::is_specialized == 0) tolerance *= 5; // higher error rates without Lanczos support BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(3), 4), static_cast<T>(360), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(7), -4), static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(120.5f), 8), static_cast<T>(5.58187566784927180664062500e16Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(120.5f), -4), static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8), static_cast<T>(3.92974581976666067544013393509103775024414062500000e29Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7), static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(30.25), 21), static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33Q), tolerance * 2); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(30.25), -21), static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 21), static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26Q), tolerance * 2); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -21), static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34Q), 2 * tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 5), static_cast<T>(-1.78799177197265625000000e7Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -5), static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), 6), static_cast<T>(4.5146792242309570312500000e8Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-30.25), -6), static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3), 6), static_cast<T>(0), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3.25), 6), static_cast<T>(2.99926757812500Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), 6), static_cast<T>(50.987548828125000000000000Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), 13), static_cast<T>(127230.91046623885631561279296875000Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-3.25), -6), static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), -6), static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6Q), tolerance); BOOST_CHECK_CLOSE( ::boost::math::rising_factorial(static_cast<T>(-5.25), -13), static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14Q), tolerance); // // Falling factorials: // BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 0), static_cast<T>(naive_falling_factorial(30.25Q, 0)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 1), static_cast<T>(naive_falling_factorial(30.25Q, 1)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 2), static_cast<T>(naive_falling_factorial(30.25Q, 2)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 5), static_cast<T>(naive_falling_factorial(30.25Q, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.25), 22), static_cast<T>(naive_falling_factorial(30.25Q, 22)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(100.5), 6), static_cast<T>(naive_falling_factorial(100.5Q, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(30.75), 30), static_cast<T>(naive_falling_factorial(30.75Q, 30)), tolerance * 3); if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50) { BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 30), static_cast<T>(naive_falling_factorial(-30.75Q, 30)), tolerance * 3); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 27), static_cast<T>(naive_falling_factorial(-30.75Q, 27)), tolerance * 3); } BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-12.0), 6), static_cast<T>(naive_falling_factorial(-12.0Q, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-12), 5), static_cast<T>(naive_falling_factorial(-12.0Q, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-3.0), 6), static_cast<T>(naive_falling_factorial(-3.0Q, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(-3), 5), static_cast<T>(naive_falling_factorial(-3.0Q, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.0), 6), static_cast<T>(naive_falling_factorial(3.0Q, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3), 5), static_cast<T>(naive_falling_factorial(3.0Q, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 4), static_cast<T>(naive_falling_factorial(3.25Q, 4)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 5), static_cast<T>(naive_falling_factorial(3.25Q, 5)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 6), static_cast<T>(naive_falling_factorial(3.25Q, 6)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(3.25), 7), static_cast<T>(naive_falling_factorial(3.25Q, 7)), tolerance); BOOST_CHECK_CLOSE( ::boost::math::falling_factorial(static_cast<T>(8.25), 12), static_cast<T>(naive_falling_factorial(8.25Q, 12)), tolerance); tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. unsigned i = boost::math::max_factorial<T>::value; if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double))) { // Without Lanczos support, tgamma isn't accurate enough for this test: BOOST_CHECK_CLOSE( ::boost::math::unchecked_factorial<T>(i), boost::math::tgamma(static_cast<T>(i+1)), tolerance); } i += 10; while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>()) { BOOST_CHECK_CLOSE( ::boost::math::factorial<T>(i), boost::math::tgamma(static_cast<T>(i+1)), tolerance); i += 10; } } // template <class T> void test_spots(T) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; test_spots(0.0Q); cout << "max factorial for __float128" << boost::math::max_factorial<boost::floatmax_t>::value << endl; }