// (C) Copyright Jeremy Murphy 2015. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #include <boost/config.hpp> #define BOOST_TEST_MAIN #include <boost/array.hpp> #include <boost/math/tools/polynomial.hpp> #include <boost/math/common_factor_rt.hpp> #include <boost/mpl/list.hpp> #include <boost/mpl/joint_view.hpp> #include <boost/test/test_case_template.hpp> #include <boost/test/unit_test.hpp> #include <boost/multiprecision/cpp_int.hpp> #include <boost/multiprecision/cpp_bin_float.hpp> #include <boost/multiprecision/cpp_dec_float.hpp> #include <utility> using namespace boost::math::tools; using namespace std; template <typename T> struct answer { answer(std::pair< polynomial<T>, polynomial<T> > const &x) : quotient(x.first), remainder(x.second) {} polynomial<T> quotient; polynomial<T> remainder; }; boost::array<double, 4> const d3a = {{10, -6, -4, 3}}; boost::array<double, 4> const d3b = {{-7, 5, 6, 1}}; boost::array<double, 4> const d3c = {{10.0/3.0, -2.0, -4.0/3.0, 1.0}}; boost::array<double, 2> const d1a = {{-2, 1}}; boost::array<double, 3> const d2a = {{-2, 2, 3}}; boost::array<double, 3> const d2b = {{-7, 5, 6}}; boost::array<double, 3> const d2c = {{31, -21, -22}}; boost::array<double, 1> const d0a = {{6}}; boost::array<double, 2> const d0a1 = {{0, 6}}; boost::array<double, 6> const d0a5 = {{0, 0, 0, 0, 0, 6}}; boost::array<double, 1> const d0b = {{3}}; boost::array<int, 9> const d8 = {{-5, 2, 8, -3, -3, 0, 1, 0, 1}}; boost::array<int, 9> const d8b = {{0, 2, 8, -3, -3, 0, 1, 0, 1}}; boost::array<int, 7> const d6 = {{21, -9, -4, 0, 5, 0, 3}}; boost::array<int, 3> const d2 = {{-6, 0, 9}}; boost::array<int, 6> const d5 = {{-9, 0, 3, 0, -15}}; BOOST_AUTO_TEST_CASE( test_construction ) { polynomial<double> const a(d3a.begin(), d3a.end()); polynomial<double> const b(d3a.begin(), 3); BOOST_CHECK_EQUAL(a, b); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !BOOST_WORKAROUND(BOOST_GCC_VERSION, < 40500) BOOST_AUTO_TEST_CASE( test_initializer_list_construction ) { polynomial<double> a(begin(d3a), end(d3a)); polynomial<double> b = {10, -6, -4, 3}; polynomial<double> c{{10, -6, -4, 3}}; polynomial<double> d{{10, -6, -4, 3, 0, 0}}; BOOST_CHECK_EQUAL(a, b); BOOST_CHECK_EQUAL(b, c); BOOST_CHECK_EQUAL(d.degree(), 3u); } BOOST_AUTO_TEST_CASE( test_initializer_list_assignment ) { polynomial<double> a(begin(d3a), end(d3a)); polynomial<double> b; b = {10, -6, -4, 3, 0, 0}; BOOST_CHECK_EQUAL(b.degree(), 3u); BOOST_CHECK_EQUAL(a, b); } #endif BOOST_AUTO_TEST_CASE( test_degree ) { polynomial<double> const zero; polynomial<double> const a(d3a.begin(), d3a.end()); BOOST_CHECK_THROW(zero.degree(), std::logic_error); BOOST_CHECK_EQUAL(a.degree(), 3u); } BOOST_AUTO_TEST_CASE( test_division_over_field ) { polynomial<double> const a(d3a.begin(), d3a.end()); polynomial<double> const b(d1a.begin(), d1a.end()); polynomial<double> const q(d2a.begin(), d2a.end()); polynomial<double> const r(d0a.begin(), d0a.end()); polynomial<double> const c(d3b.begin(), d3b.end()); polynomial<double> const d(d2b.begin(), d2b.end()); polynomial<double> const e(d2c.begin(), d2c.end()); polynomial<double> const f(d0b.begin(), d0b.end()); polynomial<double> const g(d3c.begin(), d3c.end()); polynomial<double> const zero; polynomial<double> const one(1.0); answer<double> result = quotient_remainder(a, b); BOOST_CHECK_EQUAL(result.quotient, q); BOOST_CHECK_EQUAL(result.remainder, r); BOOST_CHECK_EQUAL(a, q * b + r); // Sanity check. result = quotient_remainder(a, c); BOOST_CHECK_EQUAL(result.quotient, f); BOOST_CHECK_EQUAL(result.remainder, e); BOOST_CHECK_EQUAL(a, f * c + e); // Sanity check. result = quotient_remainder(a, f); BOOST_CHECK_EQUAL(result.quotient, g); BOOST_CHECK_EQUAL(result.remainder, zero); BOOST_CHECK_EQUAL(a, g * f + zero); // Sanity check. // Check that division by a regular number gives the same result. BOOST_CHECK_EQUAL(a / 3.0, g); BOOST_CHECK_EQUAL(a % 3.0, zero); // Sanity checks. BOOST_CHECK_EQUAL(a / a, one); BOOST_CHECK_EQUAL(a % a, zero); // BOOST_CHECK_EQUAL(zero / zero, zero); // TODO } BOOST_AUTO_TEST_CASE( test_division_over_ufd ) { polynomial<int> const zero; polynomial<int> const one(1); polynomial<int> const aa(d8.begin(), d8.end()); polynomial<int> const bb(d6.begin(), d6.end()); polynomial<int> const q(d2.begin(), d2.end()); polynomial<int> const r(d5.begin(), d5.end()); answer<int> result = quotient_remainder(aa, bb); BOOST_CHECK_EQUAL(result.quotient, q); BOOST_CHECK_EQUAL(result.remainder, r); // Sanity checks. BOOST_CHECK_EQUAL(aa / aa, one); BOOST_CHECK_EQUAL(aa % aa, zero); } BOOST_AUTO_TEST_CASE( test_gcd ) { /* NOTE: Euclidean gcd is not yet customized to return THE greatest * common polynomial divisor. If d is THE greatest common divisior of u and * v, then gcd(u, v) will return d or -d according to the algorithm. * By convention, it should return d, as for example Maxima and Wolfram * Alpha do. * This test is an example of the fact that it returns -d. */ boost::array<double, 9> const d8 = {{105, 278, -88, -56, 16}}; boost::array<double, 7> const d6 = {{70, 232, -44, -64, 16}}; boost::array<double, 7> const d2 = {{-35, 24, -4}}; polynomial<double> const u(d8.begin(), d8.end()); polynomial<double> const v(d6.begin(), d6.end()); polynomial<double> const w(d2.begin(), d2.end()); polynomial<double> const d = boost::math::gcd(u, v); BOOST_CHECK_EQUAL(w, d); } // Sanity checks to make sure I didn't break it. typedef boost::mpl::list<int, long #if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500) , boost::multiprecision::cpp_int #endif > integral_test_types; typedef boost::mpl::list<double #if !BOOST_WORKAROUND(BOOST_MSVC, <= 1500) , boost::multiprecision::cpp_rational, boost::multiprecision::cpp_bin_float_single, boost::multiprecision::cpp_dec_float_50 #endif > non_integral_test_types; typedef boost::mpl::joint_view<integral_test_types, non_integral_test_types> all_test_types; BOOST_AUTO_TEST_CASE_TEMPLATE( test_addition, T, all_test_types ) { polynomial<T> const a(d3a.begin(), d3a.end()); polynomial<T> const b(d1a.begin(), d1a.end()); polynomial<T> const zero; polynomial<T> result = a + b; // different degree boost::array<T, 4> tmp = {{8, -5, -4, 3}}; polynomial<T> expected(tmp.begin(), tmp.end()); BOOST_CHECK_EQUAL(result, expected); BOOST_CHECK_EQUAL(a + zero, a); BOOST_CHECK_EQUAL(a + b, b + a); } BOOST_AUTO_TEST_CASE_TEMPLATE( test_subtraction, T, all_test_types ) { polynomial<T> const a(d3a.begin(), d3a.end()); polynomial<T> const zero; BOOST_CHECK_EQUAL(a - T(0), a); BOOST_CHECK_EQUAL(T(0) - a, -a); BOOST_CHECK_EQUAL(a - zero, a); BOOST_CHECK_EQUAL(zero - a, -a); BOOST_CHECK_EQUAL(a - a, zero); } BOOST_AUTO_TEST_CASE_TEMPLATE( test_multiplication, T, all_test_types ) { polynomial<T> const a(d3a.begin(), d3a.end()); polynomial<T> const b(d1a.begin(), d1a.end()); polynomial<T> const zero; boost::array<T, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}}; polynomial<T> const a_sq(d3a_sq.begin(), d3a_sq.end()); BOOST_CHECK_EQUAL(a * T(0), zero); BOOST_CHECK_EQUAL(a * zero, zero); BOOST_CHECK_EQUAL(zero * T(0), zero); BOOST_CHECK_EQUAL(zero * zero, zero); BOOST_CHECK_EQUAL(a * b, b * a); polynomial<T> aa(a); aa *= aa; BOOST_CHECK_EQUAL(aa, a_sq); BOOST_CHECK_EQUAL(aa, a * a); } BOOST_AUTO_TEST_CASE_TEMPLATE( test_arithmetic_relations, T, all_test_types ) { polynomial<T> const a(d8b.begin(), d8b.end()); polynomial<T> const b(d1a.begin(), d1a.end()); BOOST_CHECK_EQUAL(a * T(2), a + a); BOOST_CHECK_EQUAL(a - b, -b + a); BOOST_CHECK_EQUAL(a, (a * a) / a); BOOST_CHECK_EQUAL(a, (a / a) * a); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_non_integral_arithmetic_relations, T, non_integral_test_types ) { polynomial<T> const a(d8b.begin(), d8b.end()); polynomial<T> const b(d1a.begin(), d1a.end()); BOOST_CHECK_EQUAL(a * T(0.5), a / T(2)); } BOOST_AUTO_TEST_CASE_TEMPLATE( test_self_multiply_assign, T, all_test_types ) { polynomial<T> a(d3a.begin(), d3a.end()); polynomial<T> const b(a); boost::array<double, 7> const d3a_sq = {{100, -120, -44, 108, -20, -24, 9}}; polynomial<T> const asq(d3a_sq.begin(), d3a_sq.end()); a *= a; BOOST_CHECK_EQUAL(a, b*b); BOOST_CHECK_EQUAL(a, asq); a *= a; BOOST_CHECK_EQUAL(a, b*b*b*b); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_right_shift, T, all_test_types ) { polynomial<T> a(d8b.begin(), d8b.end()); polynomial<T> const aa(a); polynomial<T> const b(d8b.begin() + 1, d8b.end()); polynomial<T> const c(d8b.begin() + 5, d8b.end()); a >>= 0u; BOOST_CHECK_EQUAL(a, aa); a >>= 1u; BOOST_CHECK_EQUAL(a, b); a = a >> 4u; BOOST_CHECK_EQUAL(a, c); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_left_shift, T, all_test_types ) { polynomial<T> a(d0a.begin(), d0a.end()); polynomial<T> const aa(a); polynomial<T> const b(d0a1.begin(), d0a1.end()); polynomial<T> const c(d0a5.begin(), d0a5.end()); a <<= 0u; BOOST_CHECK_EQUAL(a, aa); a <<= 1u; BOOST_CHECK_EQUAL(a, b); a = a << 4u; BOOST_CHECK_EQUAL(a, c); polynomial<T> zero; // Multiplying zero by x should still be zero. zero <<= 1u; BOOST_CHECK_EQUAL(zero, zero_element(multiplies< polynomial<T> >())); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_odd_even, T, all_test_types) { polynomial<T> const zero; BOOST_CHECK_EQUAL(odd(zero), false); BOOST_CHECK_EQUAL(even(zero), true); polynomial<T> const a(d0a.begin(), d0a.end()); BOOST_CHECK_EQUAL(odd(a), true); BOOST_CHECK_EQUAL(even(a), false); polynomial<T> const b(d0a1.begin(), d0a1.end()); BOOST_CHECK_EQUAL(odd(b), false); BOOST_CHECK_EQUAL(even(b), true); } BOOST_AUTO_TEST_CASE_TEMPLATE( test_pow, T, all_test_types ) { polynomial<T> a(d3a.begin(), d3a.end()); polynomial<T> const one(T(1)); boost::array<double, 7> const d3a_sqr = {{100, -120, -44, 108, -20, -24, 9}}; boost::array<double, 10> const d3a_cub = {{1000, -1800, -120, 2124, -1032, -684, 638, -18, -108, 27}}; polynomial<T> const asqr(d3a_sqr.begin(), d3a_sqr.end()); polynomial<T> const acub(d3a_cub.begin(), d3a_cub.end()); BOOST_CHECK_EQUAL(pow(a, 0), one); BOOST_CHECK_EQUAL(pow(a, 1), a); BOOST_CHECK_EQUAL(pow(a, 2), asqr); BOOST_CHECK_EQUAL(pow(a, 3), acub); BOOST_CHECK_EQUAL(pow(a, 4), pow(asqr, 2)); BOOST_CHECK_EQUAL(pow(a, 5), asqr * acub); BOOST_CHECK_EQUAL(pow(a, 6), pow(acub, 2)); BOOST_CHECK_EQUAL(pow(a, 7), acub * acub * a); BOOST_CHECK_THROW(pow(a, -1), std::domain_error); BOOST_CHECK_EQUAL(pow(one, 137), one); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_bool, T, all_test_types) { polynomial<T> const zero; polynomial<T> const a(d0a.begin(), d0a.end()); BOOST_CHECK_EQUAL(bool(zero), false); BOOST_CHECK_EQUAL(bool(a), true); } BOOST_AUTO_TEST_CASE_TEMPLATE(test_set_zero, T, all_test_types) { polynomial<T> const zero; polynomial<T> a(d0a.begin(), d0a.end()); a.set_zero(); BOOST_CHECK_EQUAL(a, zero); a.set_zero(); // Ensure that setting zero to zero is a no-op. BOOST_CHECK_EQUAL(a, zero); }