subroutine osd300(llr,norder,decoded,niterations,cw) ! ! An ordered-statistics decoder based on ideas from: ! "Soft-decision decoding of linear block codes based on ordered statistics," ! by Marc P. C. Fossorier and Shu Lin, ! IEEE Trans Inf Theory, Vol 41, No 5, Sep 1995 ! include "ldpc_300_60_params.f90" integer*1 gen(K,N) integer*1 genmrb(K,N) integer*1 temp(K),m0(K),me(K) integer indices(N) integer*1 codeword(N),cw(N),hdec(N) integer*1 decoded(K) integer indx(N) real llr(N),rx(N),absrx(N) logical first data first/.true./ save first,gen if( first ) then ! fill the generator matrix gen=0 do i=1,M do j=1,15 read(g(i)(j:j),"(Z1)") istr do jj=1, 4 irow=(j-1)*4+jj if( btest(istr,4-jj) ) gen(irow,i)=1 enddo enddo enddo do irow=1,K gen(irow,M+irow)=1 enddo first=.false. endif ! re-order received vector to place systematic msg bits at the end rx=llr(colorder+1) ! hard decode the received word hdec=0 where(rx .ge. 0) hdec=1 ! use magnitude of received symbols as a measure of reliability. absrx=abs(rx) call indexx(absrx,N,indx) ! re-order the columns of the generator matrix in order of increasing reliability. do i=1,N genmrb(1:K,N+1-i)=gen(1:K,indx(N+1-i)) enddo ! do gaussian elimination to create a generator matrix with the most reliable ! received bits as the systematic bits. if it happens that the K most reliable ! bits are not independent, then we will encounter a zero pivot, in that case ! we dip into the less reliable bits to find K independent MRBs. ! the "indices" array will track any column reordering that is done as part ! of the gaussian elimination. do i=1,N indices(i)=indx(i) enddo do id=1,K ! diagonal element indices do ic=id,K+20 ! The 20 is ad hoc - beware icol=N-K+ic if( icol .gt. N ) icol=M+1-(icol-N) iflag=0 if( genmrb(id,icol) .eq. 1 ) then iflag=1 if( icol-M .ne. id ) then ! reorder column temp(1:K)=genmrb(1:K,M+id) genmrb(1:K,M+id)=genmrb(1:K,icol) genmrb(1:K,icol)=temp(1:K) itmp=indices(M+id) indices(M+id)=indices(icol) indices(icol)=itmp endif do ii=1,K if( ii .ne. id .and. genmrb(ii,N-K+id) .eq. 1 ) then genmrb(ii,1:N)=mod(genmrb(ii,1:N)+genmrb(id,1:N),2) endif enddo exit endif enddo enddo ! now, use the indices of the K MRB bits to find the hard-decisions ! for those bits. the resulting message is encoded to find the ! zero'th order codeword estimate (assuming no errors in the MRB). m0=0 where (rx(indices(M+1:N)).ge.0.0) m0=1 ! the MRB should have only a few errors. Try various error patterns, ! re-encode each errored version of the MRBs, re-order the resulting codeword ! and compare with the original received vector. Keep the best codeword. nhardmin=N corrmax=-1.0e32 j0=0 j1=0 j2=0 j3=0 if( norder.ge.4 ) j0=K if( norder.ge.3 ) j1=K if( norder.ge.2 ) j2=K if( norder.ge.1 ) j3=K do i1=0,j0 do i2=i1,j1 do i3=i2,j2 do i4=i3,j3 me=m0 if( i1 .ne. 0 ) me(i1)=1-me(i1) if( i2 .ne. 0 ) me(i2)=1-me(i2) if( i3 .ne. 0 ) me(i3)=1-me(i3) if( i4 .ne. 0 ) me(i4)=1-me(i4) ! me is the MRB message + error pattern ! use the modified generator matrix to encode this message, ! producing a codeword that will be tested against the received vector do i=1,N nsum=sum(iand(me,genmrb(1:K,i))) codeword(i)=mod(nsum,2) enddo ! undo the index permutations to put the "real" message bits at the end codeword(indices)=codeword nhard=count(codeword .ne. hdec) ! corr=sum(codeword*rx) ! to save time use nhard to pick best codeword if( nhard .lt. nhardmin ) then ! if( corr .gt. corrmax ) then cw=codeword nhardmin=nhard ! corrmax=corr i1min=i1 i2min=i2 i3min=i3 i4min=i4 if( nhardmin .le. 85 ) goto 200 ! tune for each code endif enddo enddo enddo enddo 200 decoded=cw(M+1:N) niterations=-1 if( nhardmin .le. 90 ) niterations=1 ! tune for each code return end subroutine osd300