subroutine gf64_osd(mrsym,mrprob,mr2sym,mr2prob,cw) use jt65_generator_matrix integer mrsym(63),mrprob(63),mr2sym(63),mr2prob(63),cw(63) integer indx(63) integer gmrb(12,63) integer correct(63) integer correctr(63) integer candidate(63) integer candidater(63) logical mask(63) data correct/ & ! K1ABC W9XYZ EN37 41, 0, 54, 46, 55, 29, 57, 35, 35, 48, 48, 61, & 21, 58, 25, 10, 50, 43, 28, 37, 10, 2, 61, 55, & 25, 5, 5, 57, 28, 11, 32, 45, 16, 55, 31, 46, & 44, 55, 34, 38, 50, 62, 52, 58, 17, 62, 35, 34, & 28, 21, 15, 47, 33, 20, 15, 28, 58, 4, 58, 61, & 59, 42, 2/ correctr=correct(63:1:-1) call indexx(mrprob,63,indx) ! do i=1,63 ! write(*,*) i,correctr(indx(i)),mrsym(indx(i)),mr2sym(indx(i)) ! enddo nhard=count(mrsym.ne.correctr) nerrtop12=count(mrsym(indx(52:63)).ne.correctr(indx(52:63))) nerrnext12=count(mrsym(indx(40:51)).ne.correctr(indx(40:51))) write(*,*) 'nerr, nerrtop12, nerrnext12 ',nerr,nerrtop12,nerrnext12 ! The best 12 symbols will be used as the Most Reliable Basis ! Reorder the columns of the generator matrix in order of decreasing quality. do i=1,63 gmrb(:,i)=g(:,indx(63+1-i)) enddo ! Put the generator matrix in standard form so that top 12 symbols are ! encoded systematically. call gf64_standardize_genmat(gmrb) ! Add various error patterns to the 12 basis symbols and reencode each one ! to get a list of codewords. For now, just find the zero'th order codeword. call gf64_encode(gmrb,mrsym(indx(63:52:-1)),candidate) ! Undo the sorting to put the codeword symbols back into the "right" order. candidater=candidate(63:1:-1) candidate(indx)=candidater !write(*,'(63i3)') candidate !write(*,'(63i3)') correctr !write(*,'(63i3)') mrsym nerr=count(correctr.ne.candidate) write(*,*) 'Number of differences between candidate and correct codeword: ',nerr if( nerr .eq. 0 ) write(*,*) 'Successful decode' return end subroutine gf64_osd subroutine gf64_standardize_genmat(gmrb) use gf64math integer gmrb(12,63),temp(63),gkk,gjk,gkkinv do k=1,12 gkk=gmrb(k,k) if(gkk.eq.0) then ! zero pivot - swap with the first row with nonzero value do kk=k+1,12 if(gmrb(kk,k).ne.0) then temp=gmrb(k,:) gmrb(k,:)=gmrb(kk,:) gmrb(kk,:)=temp gkk=gmrb(k,k) goto 20 endif enddo endif 20 gkkinv=gf64_inverse(gkk) do ic=1,63 gmrb(k,ic)=gf64_product(gmrb(k,ic),gkkinv) enddo do j=1,12 if(j.ne.k) then gjk=gmrb(j,k) do ic=1,63 gmrb(j,ic)=gf64_sum(gmrb(j,ic),gf64_product(gmrb(k,ic),gjk)) enddo endif enddo enddo return end subroutine gf64_standardize_genmat subroutine gf64_encode(gg,message,codeword) ! ! Encoder for a (63,12) Reed-Solomon code. ! The generator matrix is supplied in array gg. ! use gf64math integer message(12) !Twelve 6-bit data symbols integer codeword(63) !RS(63,12) codeword integer gg(12,63) codeword=0 do j=1,12 do i=1,63 iprod=gf64_product(message(j),gg(j,i)) codeword(i)=gf64_sum(codeword(i),iprod) enddo enddo return end subroutine gf64_encode