// Copyright John Maddock 2015. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning(disable : 4756) // overflow in constant arithmetic // Constants are too big for float case, but this doesn't matter for test. #endif #include <boost/math/concepts/real_concept.hpp> #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> #include <boost/test/floating_point_comparison.hpp> #include <boost/math/special_functions/math_fwd.hpp> #include <boost/math/constants/constants.hpp> #include <boost/array.hpp> #include "functor.hpp" #include "handle_test_result.hpp" #include "table_type.hpp" #ifndef SC_ #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L)) #endif template <class Real, typename T> void do_test_heuman_lambda(const T& data, const char* type_name, const char* test) { #if !(defined(ERROR_REPORTING_MODE) && !defined(HEUMAN_LAMBDA_FUNCTION_TO_TEST)) typedef Real value_type; std::cout << "Testing: " << test << std::endl; #ifdef HEUMAN_LAMBDA_FUNCTION_TO_TEST value_type(*fp2)(value_type, value_type) = HEUMAN_LAMBDA_FUNCTION_TO_TEST; #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS) value_type (*fp2)(value_type, value_type) = boost::math::ellint_d<value_type, value_type>; #else value_type(*fp2)(value_type, value_type) = boost::math::heuman_lambda; #endif boost::math::tools::test_result<value_type> result; result = boost::math::tools::test_hetero<Real>( data, bind_func<Real>(fp2, 1, 0), extract_result<Real>(2)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "heuman_lambda", test); std::cout << std::endl; #endif } template <typename T> void test_spots(T, const char* type_name) { BOOST_MATH_STD_USING // Function values calculated on http://functions.wolfram.com/ // Note that Mathematica's EllipticE accepts k^2 as the second parameter. static const boost::array<boost::array<T, 3>, 5> data1 = {{ { { SC_(0.25), SC_(0.5), SC_(0.231195544262270355901990821099667428154924832224446817213200) } }, { { SC_(-0.25), SC_(0.5), SC_(-0.231195544262270355901990821099667428154924832224446817213200) } }, { { SC_(0), SC_(0.5), SC_(0) } }, { { SC_(1), T(0.5), SC_(0.792745183008071035953588061452801838417979005666066982987549) } }, { { SC_(1), T(0), SC_(0.841470984807896506652502321630298999622563060798371065672751) } }, }}; do_test_heuman_lambda<T>(data1, type_name, "Elliptic Integral Jacobi Zeta: Mathworld Data"); #include "heuman_lambda_data.ipp" do_test_heuman_lambda<T>(heuman_lambda_data, type_name, "Elliptic Integral Heuman Lambda: Random Data"); }