// Copyright Paul A. Bristow 2010. // Copyright John Maddock 2010. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'type' was previously defined as a type // in Boost.test and lexical_cast # pragma warning (disable : 4310) // cast truncates constant value # pragma warning (disable : 4512) // assignment operator could not be generated #endif //#include <pch.hpp> // include directory libs/math/src/tr1/ is needed. #include <boost/math/tools/test.hpp> #include <boost/math/concepts/real_concept.hpp> // for real_concept #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> // Boost.Test #include <boost/test/floating_point_comparison.hpp> #include <boost/math/distributions/inverse_gaussian.hpp> using boost::math::inverse_gaussian_distribution; using boost::math::inverse_gaussian; #include <boost/math/tools/test.hpp> #include "test_out_of_range.hpp" #include <iostream> #include <iomanip> using std::cout; using std::endl; using std::setprecision; #include <limits> using std::numeric_limits; template <class RealType> void check_inverse_gaussian(RealType mean, RealType scale, RealType x, RealType p, RealType q, RealType tol) { using boost::math::inverse_gaussian_distribution; BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( // Check cdf inverse_gaussian_distribution<RealType>(mean, scale), // distribution. x), // random variable. p, // probability. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::cdf( // Check cdf complement complement( inverse_gaussian_distribution<RealType>(mean, scale), // distribution. x)), // random variable. q, // probability complement. tol); // %tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( // Check quantile inverse_gaussian_distribution<RealType>(mean, scale), // distribution. p), // probability. x, // random variable. tol); // tolerance. BOOST_CHECK_CLOSE_FRACTION( ::boost::math::quantile( // Check quantile complement complement( inverse_gaussian_distribution<RealType>(mean, scale), // distribution. q)), // probability complement. x, // random variable. tol); // tolerance. inverse_gaussian_distribution<RealType> dist (mean, scale); if((p < 0.999) && (q < 0.999)) { // We can only check this if P is not too close to 1, // so that we can guarantee Q is accurate: BOOST_CHECK_CLOSE_FRACTION( cdf(complement(dist, x)), q, tol); // 1 - cdf BOOST_CHECK_CLOSE_FRACTION( quantile(dist, p), x, tol); // quantile(cdf) = x BOOST_CHECK_CLOSE_FRACTION( quantile(complement(dist, q)), x, tol); // quantile(complement(1 - cdf)) = x } } template <class RealType> void test_spots(RealType) { // Basic sanity checks RealType tolerance = static_cast<RealType>(1e-4L); // cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << endl; // Check some bad parameters to the distribution, #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, 0), std::domain_error); // zero scale BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType> nbad1(0, -1), std::domain_error); // negative scale #else BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, 0), std::domain_error); // zero scale BOOST_MATH_CHECK_THROW(boost::math::inverse_gaussian_distribution<RealType>(0, -1), std::domain_error); // negative scale #endif inverse_gaussian_distribution<RealType> w11; // Error tests: check_out_of_range<inverse_gaussian_distribution<RealType> >(0.25, 1); // Check complements. BOOST_CHECK_CLOSE_FRACTION( cdf(complement(w11, 1.)), static_cast<RealType>(1) - cdf(w11, 1.), tolerance); // cdf complement // cdf(complement = 1 - cdf - but if cdf near unity, then loss of accuracy in cdf, // but cdf complement is near zero but more accurate. BOOST_CHECK_CLOSE_FRACTION( // quantile(complement p) == quantile(1 - p) quantile(complement(w11, static_cast<RealType>(0.5))), quantile(w11, 1 - static_cast<RealType>(0.5)), tolerance); // cdf complement check_inverse_gaussian( static_cast<RealType>(2), static_cast<RealType>(3), static_cast<RealType>(1), static_cast<RealType>(0.28738674440477374), static_cast<RealType>(1 - 0.28738674440477374), tolerance); RealType tolfeweps = boost::math::tools::epsilon<RealType>() * 5; inverse_gaussian_distribution<RealType> dist(2, 3); using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE_FRACTION(mean(dist), static_cast<RealType>(2), tolfeweps); BOOST_CHECK_CLOSE_FRACTION(scale(dist), static_cast<RealType>(3), tolfeweps); // variance: BOOST_CHECK_CLOSE_FRACTION(variance(dist), static_cast<RealType>(2.6666666666666666666666666666666666666666666666666666666667L), 1000*tolfeweps); // std deviation: BOOST_CHECK_CLOSE_FRACTION(standard_deviation(dist), static_cast<RealType>(1.632993L), 1000 * tolerance); //// hazard: //BOOST_CHECK_CLOSE_FRACTION(hazard(dist, x), // pdf(dist, x) / cdf(complement(dist, x)), tolerance); //// cumulative hazard: //BOOST_CHECK_CLOSE_FRACTION(chf(dist, x), // -log(cdf(complement(dist, x))), tolerance); // coefficient_of_variation: BOOST_CHECK_CLOSE_FRACTION(coefficient_of_variation(dist), standard_deviation(dist) / mean(dist), tolerance); // mode: BOOST_CHECK_CLOSE_FRACTION(mode(dist), static_cast<RealType>(0.8284271L), tolerance); // median BOOST_CHECK_CLOSE_FRACTION(median(dist), static_cast<RealType>(1.5122506636053668L), tolerance); // Fails for real_concept - because std::numeric_limits<RealType>::digits = 0 // skewness: BOOST_CHECK_CLOSE_FRACTION(skewness(dist), static_cast<RealType>(2.449490L), tolerance); // kurtosis: BOOST_CHECK_CLOSE_FRACTION(kurtosis(dist), static_cast<RealType>(10-3), tolerance); BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(dist), static_cast<RealType>(10), tolerance); } // template <class RealType>void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { using boost::math::inverse_gaussian; using boost::math::inverse_gaussian_distribution; //int precision = 17; // std::numeric_limits<double::max_digits10; double tolfeweps = numeric_limits<double>::epsilon() * 5; //double tol6decdigits = numeric_limits<float>::epsilon() * 2; // Check that can generate inverse_gaussian distribution using the two convenience methods: boost::math::inverse_gaussian w12(1., 2); // Using typedef inverse_gaussian_distribution<> w23(2., 3); // Using default RealType double. boost::math::inverse_gaussian w11; // Use default unity values for mean and scale. // Note NOT myn01() as the compiler will interpret as a function! BOOST_CHECK_EQUAL(w11.mean(), 1); BOOST_CHECK_EQUAL(w11.scale(), 1); BOOST_CHECK_EQUAL(w23.mean(), 2); BOOST_CHECK_EQUAL(w23.scale(), 3); BOOST_CHECK_EQUAL(w23.shape(), 1.5L); // Check the synonyms, provided to allow generic use of find_location and find_scale. BOOST_CHECK_EQUAL(w11.mean(), w11.location()); BOOST_CHECK_EQUAL(w11.scale(), w11.scale()); BOOST_CHECK_CLOSE_FRACTION(mean(w11), static_cast<double>(1), tolfeweps); // Default mean == unity BOOST_CHECK_CLOSE_FRACTION(scale(w11), static_cast<double>(1), tolfeweps); // Default mean == unity // median // (test double because fails for real_concept because numeric_limits<real_concept>::digits = 0) BOOST_CHECK_CLOSE_FRACTION(median(w11), static_cast<double>(0.67584130569523893), tolfeweps); BOOST_CHECK_CLOSE_FRACTION(median(w23), static_cast<double>(1.5122506636053668), tolfeweps); // Initial spot tests using double values from R. // library(SuppDists) // formatC(SuppDists::dinverse_gaussian(1, 1, 1), digits=17) ... BOOST_CHECK_CLOSE_FRACTION( // x = 1 pdf(w11, 1.), static_cast<double>(0.3989422804014327), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 1.), static_cast<double>(0.66810200122317065), 10 * tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 0.1), static_cast<double>(0.21979480031862672), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), 10 * tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( // small x pdf(w11, 0.01), static_cast<double>(2.0811768202028392e-19), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.01), static_cast<double>(4.122313403318778e-23), 10 * tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( // smaller x pdf(w11, 0.001), static_cast<double>(2.4420044378793562e-213), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.001), static_cast<double>(4.8791443010851493e-219), 1000 * tolfeweps); // cdf // 4.8791443010859224e-219 versus 4.8791443010851493e-219 so still 14 decimal digits. BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 0.66810200122317065), static_cast<double>(1.), 1 * tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), 1 * tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 4.122313403318778e-23), 0.01, 1 * tolfeweps); // quantile BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 2.4420044378793562e-213), 0.001, 0.03); // quantile // quantile 0.001026926242348481 compared to expected 0.001, so much less accurate, // but better than R that gives up completely! // R Error in SuppDists::qinverse_gaussian(4.87914430108515e-219, 1, 1) : Infinite value in NewtonRoot() BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 0.5), static_cast<double>(0.87878257893544476), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 2), static_cast<double>(0.10984782236693059), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 2), static_cast<double>(.88547542598600637), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 10), static_cast<double>(0.00021979480031862676), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 10), static_cast<double>(0.99964958546279115), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 100), static_cast<double>(2.0811768202028246e-25), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 100), static_cast<double>(1), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( pdf(w11, 1000), static_cast<double>(2.4420044378793564e-222), 10 * tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 1000), static_cast<double>(1.), tolfeweps); // cdf // A few more misc tests, probably not very useful. BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 1.), static_cast<double>(0.66810200122317065), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.1), static_cast<double>(0.0040761113207110162), tolfeweps * 5); // cdf // 0.0040761113207110162 0.0040761113207110362 BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.2), static_cast<double>(0.063753567519976254), tolfeweps * 5); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.5), static_cast<double>(0.3649755481729598), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.9), static_cast<double>(0.62502320258649202), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.99), static_cast<double>(0.66408247396139031), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 0.999), static_cast<double>(0.66770275955311675), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 10.), static_cast<double>(0.99964958546279115), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(w11, 50.), static_cast<double>(0.99999999999992029), tolfeweps); // cdf BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 0.3649755481729598), static_cast<double>(0.5), tolfeweps); // quantile BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 0.62502320258649202), static_cast<double>(0.9), tolfeweps); // quantile BOOST_CHECK_CLOSE_FRACTION( quantile(w11, 0.0040761113207110162), static_cast<double>(0.1), tolfeweps); // quantile // Wald(2,3) tests // =================== BOOST_CHECK_CLOSE_FRACTION( // formatC(SuppDists::dinvGauss(1, 2, 3), digits=17) "0.47490884963330904" pdf(w23, 1.), static_cast<double>(0.47490884963330904), tolfeweps ); // pdf BOOST_CHECK_CLOSE_FRACTION( pdf(w23, 0.1), static_cast<double>(2.8854207087665401e-05), tolfeweps * 2); // pdf //2.8854207087665452e-005 2.8854207087665401e-005 BOOST_CHECK_CLOSE_FRACTION( pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf BOOST_CHECK_CLOSE_FRACTION( pdf(w23, 10.), static_cast<double>(0.0019822751498574636), tolfeweps); // pdf // Bigger changes in mean and scale. inverse_gaussian w012(0.1, 2); BOOST_CHECK_CLOSE_FRACTION( pdf(w012, 1.), static_cast<double>(3.7460367141230404e-36), tolfeweps ); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w012, 1.), static_cast<double>(1), tolfeweps ); // pdf inverse_gaussian w0110(0.1, 10); BOOST_CHECK_CLOSE_FRACTION( pdf(w0110, 1.), static_cast<double>(1.6279643678071011e-176), 100 * tolfeweps ); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w0110, 1.), static_cast<double>(1), tolfeweps ); // cdf BOOST_CHECK_CLOSE_FRACTION( cdf(complement(w0110, 1.)), static_cast<double>(3.2787685715328683e-179), 1e6 * tolfeweps ); // cdf complement // Differs because of loss of accuracy. BOOST_CHECK_CLOSE_FRACTION( pdf(w0110, 0.1), static_cast<double>(39.894228040143268), tolfeweps ); // pdf BOOST_CHECK_CLOSE_FRACTION( cdf(w0110, 0.1), static_cast<double>(0.51989761564832704), 10 * tolfeweps ); // cdf // Basic sanity-check spot values for all floating-point types.. // (Parameter value, arbitrarily zero, only communicates the floating point type). test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 % test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 % #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS test_spots(0.0L); // Test long double. #ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #else std::cout << "<note>The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass.</note>" << std::endl; #endif /* */ } // BOOST_AUTO_TEST_CASE( test_main ) /* Output: */