/*! \file dist_graphs.cpp \brief Produces Scalable Vector Graphic (.svg) files for all distributions. \details These files can be viewed using most browsers, though MS Internet Explorer requires a plugin from Adobe. These file can be converted to .png using Inkscape (see www.inkscape.org) Export Bit option which by default produces a Portable Network Graphic file with that same filename but .png suffix instead of .svg. Using Python, generate.sh does this conversion automatically for all .svg files in a folder. \author John Maddock and Paul A. Bristow */ // Copyright John Maddock 2008. // Copyright Paul A. Bristow 2008, 2009, 2012 // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifdef _MSC_VER # pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored # pragma warning (disable : 4503) // decorated name length exceeded, name was truncated # pragma warning (disable : 4512) // assignment operator could not be generated # pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'function_ptr' was previously defined as a type # pragma warning (disable : 4127) // conditional expression is constant #endif #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include #include #include #include #include #include template struct is_discrete_distribution : public boost::mpl::false_{}; template struct is_discrete_distribution > : public boost::mpl::true_{}; template struct is_discrete_distribution > : public boost::mpl::true_{}; template struct is_discrete_distribution > : public boost::mpl::true_{}; template struct is_discrete_distribution > : public boost::mpl::true_{}; template struct is_discrete_distribution > : public boost::mpl::true_{}; template struct value_finder { value_finder(Dist const& d, typename Dist::value_type v) : m_dist(d), m_value(v) {} inline typename Dist::value_type operator()(const typename Dist::value_type& x) { return pdf(m_dist, x) - m_value; } private: Dist m_dist; typename Dist::value_type m_value; }; template class distribution_plotter { public: distribution_plotter() : m_pdf(true), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {} distribution_plotter(bool pdf) : m_pdf(pdf), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {} void add(const Dist& d, const std::string& name) { // Add name of distribution to our list for later: m_distributions.push_back(std::make_pair(name, d)); // // Get the extent of the distribution from the support: double a, b; std::tr1::tie(a, b) = support(d); // // PDF maximimum is at the mode (probably): double mod; try { mod = mode(d); } catch(const std::domain_error& ) { // but if not use the lower limit of support. mod = a; } if((mod <= a) && !is_discrete_distribution::value) { // Continuous distribution at or below lower limit of support. double margin = 1e-2; // Margin of 1% (say) to get lowest off the 'end stop'. if((a != 0) && (fabs(a) > margin)) { mod = a * (1 + ((a > 0) ? margin : -margin)); } else { // Case of mod near zero? mod = margin; } } double peek_y = pdf(d, mod); double min_y = peek_y / 20; // // If the extent is "infinite" then find out how large it // has to be for the PDF to decay to min_y: // if(a <= -(std::numeric_limits::max)()) { boost::uintmax_t max_iter = 500; double guess = mod; if((pdf(d, 0) > min_y) || (guess == 0)) guess = -1e-3; a = boost::math::tools::bracket_and_solve_root( value_finder(d, min_y), guess, 8.0, true, boost::math::tools::eps_tolerance(10), max_iter).first; } if(b >= (std::numeric_limits::max)()) { boost::uintmax_t max_iter = 500; double guess = mod; if(a <= 0) if((pdf(d, 0) > min_y) || (guess == 0)) guess = 1e-3; b = boost::math::tools::bracket_and_solve_root( value_finder(d, min_y), guess, 8.0, false, boost::math::tools::eps_tolerance(10), max_iter).first; } // // Recalculate peek_y and location of mod so that // it's not too close to one end of the graph: // otherwise we may be shooting off to infinity. // if(!is_discrete_distribution::value) { if(mod <= a + (b-a)/50) { mod = a + (b-a)/50; } if(mod >= b - (b-a)/50) { mod = b - (b-a)/50; } peek_y = pdf(d, mod); } // // Now set our limits: // if(peek_y > m_max_y) m_max_y = peek_y; if(m_max_x == m_min_x) { m_max_x = b; m_min_x = a; } else { if(a < m_min_x) m_min_x = a; if(b > m_max_x) m_max_x = b; } } void plot(const std::string& title, const std::string& file) { using namespace boost::svg; static const svg_color colors[5] = { darkblue, darkred, darkgreen, darkorange, chartreuse }; if(m_pdf == false) { m_min_y = 0; m_max_y = 1; } svg_2d_plot plot; plot.image_x_size(750); plot.image_y_size(400); plot.coord_precision(4); // Avoids any visible steps. plot.title_font_size(20); plot.legend_title_font_size(15); plot.title(title); if((m_distributions.size() == 1) && (m_distributions.begin()->first == "")) plot.legend_on(false); else plot.legend_on(true); plot.title_on(true); //plot.x_major_labels_on(true).y_major_labels_on(true); //double x_delta = (m_max_x - m_min_x) / 10; double y_delta = (m_max_y - m_min_y) / 10; if(is_discrete_distribution::value) plot.x_range(m_min_x - 0.5, m_max_x + 0.5) .y_range(m_min_y, m_max_y + y_delta); else plot.x_range(m_min_x, m_max_x) .y_range(m_min_y, m_max_y + y_delta); plot.x_label_on(true).x_label("Random Variable"); plot.y_label_on(true).y_label("Probability"); plot.plot_border_color(lightslategray) .background_border_color(lightslategray) .legend_border_color(lightslategray) .legend_background_color(white); // // Work out axis tick intervals: // double l = std::floor(std::log10((m_max_x - m_min_x) / 10) + 0.5); double interval = std::pow(10.0, (int)l); if(((m_max_x - m_min_x) / interval) > 10) interval *= 5; if(is_discrete_distribution::value) { interval = interval > 1 ? std::floor(interval) : 1; plot.x_num_minor_ticks(0); } plot.x_major_interval(interval); l = std::floor(std::log10((m_max_y - m_min_y) / 10) + 0.5); interval = std::pow(10.0, (int)l); if(((m_max_y - m_min_y) / interval) > 10) interval *= 5; plot.y_major_interval(interval); int color_index = 0; if(!is_discrete_distribution::value) { // // Continuous distribution: // for(std::list >::const_iterator i = m_distributions.begin(); i != m_distributions.end(); ++i) { double x = m_min_x; double interval = (m_max_x - m_min_x) / 200; std::map data; while(x <= m_max_x) { data[x] = m_pdf ? pdf(i->second, x) : cdf(i->second, x); x += interval; } plot.plot(data, i->first) .line_on(true) .line_color(colors[color_index]) .line_width(1.) .shape(none); //.bezier_on(true) // Bezier can't cope with badly behaved like uniform & triangular. ++color_index; color_index = color_index % (sizeof(colors)/sizeof(colors[0])); } } else { // // Discrete distribution: // double x_width = 0.75 / m_distributions.size(); double x_off = -0.5 * 0.75; for(std::list >::const_iterator i = m_distributions.begin(); i != m_distributions.end(); ++i) { double x = ceil(m_min_x); double interval = 1; std::map data; while(x <= m_max_x) { double p; try{ p = m_pdf ? pdf(i->second, x) : cdf(i->second, x); } catch(const std::domain_error&) { p = 0; } data[x + x_off] = 0; data[x + x_off + 0.00001] = p; data[x + x_off + x_width] = p; data[x + x_off + x_width + 0.00001] = 0; x += interval; } x_off += x_width; svg_2d_plot_series& s = plot.plot(data, i->first); s.line_on(true) .line_color(colors[color_index]) .line_width(1.) .shape(none) .area_fill(colors[color_index]); ++color_index; color_index = color_index % (sizeof(colors)/sizeof(colors[0])); } } plot.write(file); } private: bool m_pdf; std::list > m_distributions; double m_min_x, m_max_x, m_min_y, m_max_y; }; int main() { try { distribution_plotter > gamma_plotter; gamma_plotter.add(boost::math::gamma_distribution<>(0.75), "shape = 0.75"); gamma_plotter.add(boost::math::gamma_distribution<>(1), "shape = 1"); gamma_plotter.add(boost::math::gamma_distribution<>(3), "shape = 3"); gamma_plotter.plot("Gamma Distribution PDF With Scale = 1", "gamma1_pdf.svg"); distribution_plotter > gamma_plotter2; gamma_plotter2.add(boost::math::gamma_distribution<>(2, 0.5), "scale = 0.5"); gamma_plotter2.add(boost::math::gamma_distribution<>(2, 1), "scale = 1"); gamma_plotter2.add(boost::math::gamma_distribution<>(2, 2), "scale = 2"); gamma_plotter2.plot("Gamma Distribution PDF With Shape = 2", "gamma2_pdf.svg"); distribution_plotter normal_plotter; normal_plotter.add(boost::math::normal(0, 1), "μ = 0, σ = 1"); normal_plotter.add(boost::math::normal(0, 0.5), "μ = 0, σ = 0.5"); normal_plotter.add(boost::math::normal(0, 2), "μ = 0, σ = 2"); normal_plotter.add(boost::math::normal(-1, 1), "μ = -1, σ = 1"); normal_plotter.add(boost::math::normal(1, 1), "μ = 1, σ = 1"); normal_plotter.plot("Normal Distribution PDF", "normal_pdf.svg"); distribution_plotter laplace_plotter; laplace_plotter.add(boost::math::laplace(0, 1), "μ = 0, σ = 1"); laplace_plotter.add(boost::math::laplace(0, 0.5), "μ = 0, σ = 0.5"); laplace_plotter.add(boost::math::laplace(0, 2), "μ = 0, σ = 2"); laplace_plotter.add(boost::math::laplace(-1, 1), "μ = -1, σ = 1"); laplace_plotter.add(boost::math::laplace(1, 1), "μ = 1, σ = 1"); laplace_plotter.plot("Laplace Distribution PDF", "laplace_pdf.svg"); distribution_plotter nc_cs_plotter; nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 0), "v=20, λ=0"); nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 1), "v=20, λ=1"); nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 5), "v=20, λ=5"); nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 10), "v=20, λ=10"); nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 20), "v=20, λ=20"); nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 100), "v=20, λ=100"); nc_cs_plotter.plot("Non Central Chi Squared PDF", "nccs_pdf.svg"); distribution_plotter nc_beta_plotter; nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 0), "α=10, β=15, δ=0"); nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 1), "α=10, β=15, δ=1"); nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 5), "α=10, β=15, δ=5"); nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 10), "α=10, β=15, δ=10"); nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 40), "α=10, β=15, δ=40"); nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 100), "α=10, β=15, δ=100"); nc_beta_plotter.plot("Non Central Beta PDF", "nc_beta_pdf.svg"); distribution_plotter nc_f_plotter; nc_f_plotter.add(boost::math::non_central_f(10, 20, 0), "v1=10, v2=20, λ=0"); nc_f_plotter.add(boost::math::non_central_f(10, 20, 1), "v1=10, v2=20, λ=1"); nc_f_plotter.add(boost::math::non_central_f(10, 20, 5), "v1=10, v2=20, λ=5"); nc_f_plotter.add(boost::math::non_central_f(10, 20, 10), "v1=10, v2=20, λ=10"); nc_f_plotter.add(boost::math::non_central_f(10, 20, 40), "v1=10, v2=20, λ=40"); nc_f_plotter.add(boost::math::non_central_f(10, 20, 100), "v1=10, v2=20, λ=100"); nc_f_plotter.plot("Non Central F PDF", "nc_f_pdf.svg"); distribution_plotter nc_t_plotter; nc_t_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10"); nc_t_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5"); nc_t_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0"); nc_t_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5"); nc_t_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10"); nc_t_plotter.add(boost::math::non_central_t(std::numeric_limits::infinity(), 15), "v=inf, δ=15"); nc_t_plotter.plot("Non Central T PDF", "nc_t_pdf.svg"); distribution_plotter nc_t_CDF_plotter(false); nc_t_CDF_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10"); nc_t_CDF_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5"); nc_t_CDF_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0"); nc_t_CDF_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5"); nc_t_CDF_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10"); nc_t_CDF_plotter.add(boost::math::non_central_t(std::numeric_limits::infinity(), 15), "v=inf, δ=15"); nc_t_CDF_plotter.plot("Non Central T CDF", "nc_t_cdf.svg"); distribution_plotter > beta_plotter; beta_plotter.add(boost::math::beta_distribution<>(0.5, 0.5), "alpha=0.5, beta=0.5"); beta_plotter.add(boost::math::beta_distribution<>(5, 1), "alpha=5, beta=1"); beta_plotter.add(boost::math::beta_distribution<>(1, 3), "alpha=1, beta=3"); beta_plotter.add(boost::math::beta_distribution<>(2, 2), "alpha=2, beta=2"); beta_plotter.add(boost::math::beta_distribution<>(2, 5), "alpha=2, beta=5"); beta_plotter.plot("Beta Distribution PDF", "beta_pdf.svg"); distribution_plotter > cauchy_plotter; cauchy_plotter.add(boost::math::cauchy_distribution<>(-5, 1), "location = -5"); cauchy_plotter.add(boost::math::cauchy_distribution<>(0, 1), "location = 0"); cauchy_plotter.add(boost::math::cauchy_distribution<>(5, 1), "location = 5"); cauchy_plotter.plot("Cauchy Distribution PDF (scale = 1)", "cauchy_pdf1.svg"); distribution_plotter > cauchy_plotter2; cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 0.5), "scale = 0.5"); cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 1), "scale = 1"); cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 2), "scale = 2"); cauchy_plotter2.plot("Cauchy Distribution PDF (location = 0)", "cauchy_pdf2.svg"); distribution_plotter > chi_squared_plotter; //chi_squared_plotter.add(boost::math::chi_squared_distribution<>(1), "v=1"); chi_squared_plotter.add(boost::math::chi_squared_distribution<>(2), "v=2"); chi_squared_plotter.add(boost::math::chi_squared_distribution<>(5), "v=5"); chi_squared_plotter.add(boost::math::chi_squared_distribution<>(10), "v=10"); chi_squared_plotter.plot("Chi Squared Distribution PDF", "chi_squared_pdf.svg"); distribution_plotter > exponential_plotter; exponential_plotter.add(boost::math::exponential_distribution<>(0.5), "λ=0.5"); exponential_plotter.add(boost::math::exponential_distribution<>(1), "λ=1"); exponential_plotter.add(boost::math::exponential_distribution<>(2), "λ=2"); exponential_plotter.plot("Exponential Distribution PDF", "exponential_pdf.svg"); distribution_plotter > extreme_value_plotter; extreme_value_plotter.add(boost::math::extreme_value_distribution<>(-5), "location=-5"); extreme_value_plotter.add(boost::math::extreme_value_distribution<>(0), "location=0"); extreme_value_plotter.add(boost::math::extreme_value_distribution<>(5), "location=5"); extreme_value_plotter.plot("Extreme Value Distribution PDF (shape=1)", "extreme_value_pdf1.svg"); distribution_plotter > extreme_value_plotter2; extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 0.5), "shape=0.5"); extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 1), "shape=1"); extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 2), "shape=2"); extreme_value_plotter2.plot("Extreme Value Distribution PDF (location=0)", "extreme_value_pdf2.svg"); distribution_plotter > fisher_f_plotter; fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 4), "n=4, m=4"); fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 4), "n=10, m=4"); fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 10), "n=10, m=10"); fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 10), "n=4, m=10"); fisher_f_plotter.plot("F Distribution PDF", "fisher_f_pdf.svg"); distribution_plotter > lognormal_plotter; lognormal_plotter.add(boost::math::lognormal_distribution<>(-1), "location=-1"); lognormal_plotter.add(boost::math::lognormal_distribution<>(0), "location=0"); lognormal_plotter.add(boost::math::lognormal_distribution<>(1), "location=1"); lognormal_plotter.plot("Lognormal Distribution PDF (scale=1)", "lognormal_pdf1.svg"); distribution_plotter > lognormal_plotter2; lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 0.5), "scale=0.5"); lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 1), "scale=1"); lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 2), "scale=2"); lognormal_plotter2.plot("Lognormal Distribution PDF (location=0)", "lognormal_pdf2.svg"); distribution_plotter > pareto_plotter; // Rely on 2nd parameter shape = 1 default. pareto_plotter.add(boost::math::pareto_distribution<>(1), "scale=1"); pareto_plotter.add(boost::math::pareto_distribution<>(2), "scale=2"); pareto_plotter.add(boost::math::pareto_distribution<>(3), "scale=3"); pareto_plotter.plot("Pareto Distribution PDF (shape=1)", "pareto_pdf1.svg"); distribution_plotter > pareto_plotter2; pareto_plotter2.add(boost::math::pareto_distribution<>(1, 0.5), "shape=0.5"); pareto_plotter2.add(boost::math::pareto_distribution<>(1, 1), "shape=1"); pareto_plotter2.add(boost::math::pareto_distribution<>(1, 2), "shape=2"); pareto_plotter2.plot("Pareto Distribution PDF (scale=1)", "pareto_pdf2.svg"); distribution_plotter > rayleigh_plotter; rayleigh_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5"); rayleigh_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1"); rayleigh_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2"); rayleigh_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4"); rayleigh_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10"); rayleigh_plotter.plot("Rayleigh Distribution PDF", "rayleigh_pdf.svg"); distribution_plotter > rayleigh_cdf_plotter(false); rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5"); rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1"); rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2"); rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4"); rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10"); rayleigh_cdf_plotter.plot("Rayleigh Distribution CDF", "rayleigh_cdf.svg"); distribution_plotter > skew_normal_plotter; skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}"); skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}"); skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}"); skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}"); skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}"); skew_normal_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}"); skew_normal_plotter.plot("Skew Normal Distribution PDF", "skew_normal_pdf.svg"); distribution_plotter > skew_normal_cdf_plotter(false); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}"); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}"); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}"); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}"); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}"); skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}"); skew_normal_cdf_plotter.plot("Skew Normal Distribution CDF", "skew_normal_cdf.svg"); distribution_plotter > triangular_plotter; triangular_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}"); triangular_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}"); triangular_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}"); triangular_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}"); triangular_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}"); triangular_plotter.plot("Triangular Distribution PDF", "triangular_pdf.svg"); distribution_plotter > triangular_cdf_plotter(false); triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}"); triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}"); triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}"); triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}"); triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}"); triangular_cdf_plotter.plot("Triangular Distribution CDF", "triangular_cdf.svg"); distribution_plotter > students_t_plotter; students_t_plotter.add(boost::math::students_t_distribution<>(1), "v=1"); students_t_plotter.add(boost::math::students_t_distribution<>(5), "v=5"); students_t_plotter.add(boost::math::students_t_distribution<>(30), "v=30"); students_t_plotter.plot("Students T Distribution PDF", "students_t_pdf.svg"); distribution_plotter > weibull_plotter; weibull_plotter.add(boost::math::weibull_distribution<>(0.75), "shape=0.75"); weibull_plotter.add(boost::math::weibull_distribution<>(1), "shape=1"); weibull_plotter.add(boost::math::weibull_distribution<>(5), "shape=5"); weibull_plotter.add(boost::math::weibull_distribution<>(10), "shape=10"); weibull_plotter.plot("Weibull Distribution PDF (scale=1)", "weibull_pdf1.svg"); distribution_plotter > weibull_plotter2; weibull_plotter2.add(boost::math::weibull_distribution<>(3, 0.5), "scale=0.5"); weibull_plotter2.add(boost::math::weibull_distribution<>(3, 1), "scale=1"); weibull_plotter2.add(boost::math::weibull_distribution<>(3, 2), "scale=2"); weibull_plotter2.plot("Weibull Distribution PDF (shape=3)", "weibull_pdf2.svg"); distribution_plotter > uniform_plotter; uniform_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}"); uniform_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}"); uniform_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}"); uniform_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}"); uniform_plotter.plot("Uniform Distribution PDF", "uniform_pdf.svg"); distribution_plotter > uniform_cdf_plotter(false); uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}"); uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}"); uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}"); uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}"); uniform_cdf_plotter.plot("Uniform Distribution CDF", "uniform_cdf.svg"); distribution_plotter > bernoulli_plotter; bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25"); bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5"); bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75"); bernoulli_plotter.plot("Bernoulli Distribution PDF", "bernoulli_pdf.svg"); distribution_plotter > bernoulli_cdf_plotter(false); bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25"); bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5"); bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75"); bernoulli_cdf_plotter.plot("Bernoulli Distribution CDF", "bernoulli_cdf.svg"); distribution_plotter > binomial_plotter; binomial_plotter.add(boost::math::binomial_distribution<>(5, 0.5), "n=5 p=0.5"); binomial_plotter.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5"); binomial_plotter.add(boost::math::binomial_distribution<>(50, 0.5), "n=50 p=0.5"); binomial_plotter.plot("Binomial Distribution PDF", "binomial_pdf_1.svg"); distribution_plotter > binomial_plotter2; binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.1), "n=20 p=0.1"); binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5"); binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.9), "n=20 p=0.9"); binomial_plotter2.plot("Binomial Distribution PDF", "binomial_pdf_2.svg"); distribution_plotter > negative_binomial_plotter; negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.25), "n=20 p=0.25"); negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5"); negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.75), "n=20 p=0.75"); negative_binomial_plotter.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_1.svg"); distribution_plotter > negative_binomial_plotter2; negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(10, 0.5), "n=10 p=0.5"); negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5"); negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(70, 0.5), "n=70 p=0.5"); negative_binomial_plotter2.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_2.svg"); distribution_plotter > poisson_plotter; poisson_plotter.add(boost::math::poisson_distribution<>(5), "λ=5"); poisson_plotter.add(boost::math::poisson_distribution<>(10), "λ=10"); poisson_plotter.add(boost::math::poisson_distribution<>(20), "λ=20"); poisson_plotter.plot("Poisson Distribution PDF", "poisson_pdf_1.svg"); distribution_plotter > hypergeometric_plotter; hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 50, 500), "N=500, r=50, n=30"); hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 100, 500), "N=500, r=100, n=30"); hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 250, 500), "N=500, r=250, n=30"); hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 400, 500), "N=500, r=400, n=30"); hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 450, 500), "N=500, r=450, n=30"); hypergeometric_plotter.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_1.svg"); distribution_plotter > hypergeometric_plotter2; hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(50, 50, 500), "N=500, r=50, n=50"); hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(100, 50, 500), "N=500, r=50, n=100"); hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(250, 50, 500), "N=500, r=50, n=250"); hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(400, 50, 500), "N=500, r=50, n=400"); hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(450, 50, 500), "N=500, r=50, n=450"); hypergeometric_plotter2.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_2.svg"); } catch (std::exception ex) { std::cout << ex.what() << std::endl; } /* these graphs for hyperexponential distribution not used. distribution_plotter > hyperexponential_plotter; { const double probs1_1[] = {1.0}; const double rates1_1[] = {1.0}; hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs1_1,rates1_1), "α=(1.0), λ=(1.0)"); const double probs2_1[] = {0.1,0.9}; const double rates2_1[] = {0.5,1.5}; hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_1,rates2_1), "α=(0.1,0.9), λ=(0.5,1.5)"); const double probs2_2[] = {0.9,0.1}; const double rates2_2[] = {0.5,1.5}; hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_2,rates2_2), "α=(0.9,0.1), λ=(0.5,1.5)"); const double probs3_1[] = {0.2,0.3,0.5}; const double rates3_1[] = {0.5,1.0,1.5}; hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.2,0.3,0.5), λ=(0.5,1.0,1.5)"); const double probs3_2[] = {0.5,0.3,0.2}; const double rates3_2[] = {0.5,1.0,1.5}; hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.5,0.3,0.2), λ=(0.5,1.0,1.5)"); } hyperexponential_plotter.plot("Hyperexponential Distribution PDF", "hyperexponential_pdf.svg"); distribution_plotter > hyperexponential_plotter2; { const double rates[] = {0.5,1.5}; const double probs1[] = {0.1,0.9}; hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs1,rates), "α=(0.1,0.9), λ=(0.5,1.5)"); const double probs2[] = {0.6,0.4}; hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs2,rates), "α=(0.6,0.4), λ=(0.5,1.5)"); const double probs3[] = {0.9,0.1}; hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs3,rates), "α=(0.9,0.1), λ=(0.5,1.5)"); } hyperexponential_plotter2.plot("Hyperexponential Distribution PDF (Different Probabilities, Same Rates)", "hyperexponential_pdf_samerate.svg"); distribution_plotter > hyperexponential_plotter3; { const double probs1[] = {1.0}; const double rates1[] = {2.0}; hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs1,rates1), "α=(1.0), λ=(2.0)"); const double probs2[] = {0.5,0.5}; const double rates2[] = {0.3,1.5}; hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(0.5,0.5), λ=(0.3,1.5)"); const double probs3[] = {1.0/3.0,1.0/3.0,1.0/3.0}; const double rates3[] = {0.2,1.5,3.0}; hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(1.0/3.0,1.0/3.0,1.0/3.0), λ=(0.2,1.5,3.0)"); } hyperexponential_plotter3.plot("Hyperexponential Distribution PDF (Different Number of Phases, Same Mean)", "hyperexponential_pdf_samemean.svg"); */ } // int main()