subroutine timf2x(k,nfft,ntrperiod,nwindow,nb,peaklimit,faclim,cx0,cx1, & slimit,lstrong,px,nzap) ! Sequential processing of time-domain I/Q data, using Linrad-like ! "first FFT" and "first backward FFT". ! cx0 - complex input data ! nfft - length of FFTs ! nwindow - 0 for no window, 2 for sin^2 window ! cx1 - output data ! Non-windowed processing means no overlap, so kstep=nfft. ! Sin^2 window has 50% overlap, kstep=nfft/2. ! Frequencies with strong signals are identified and separated. Back ! transforms are done separately for weak and strong signals, so that ! noise blanking can be applied to the weak-signal portion. Strong and ! weak signals are finally re-combined in the time domain. parameter (MAXFFT=32768,MAXNH=MAXFFT/2) parameter (MAXSIGS=100) complex cx0(0:nfft-1),cx1(0:nfft-1) complex cx(0:MAXFFT-1),cxt(0:MAXFFT-1) complex cxs(0:MAXFFT-1),covxs(0:MAXNH-1) !Strong X signals complex cxw(0:MAXFFT-1),covxw(0:MAXNH-1) !Weak X signals complex cxw2(0:8191) complex cxs2(0:8191) real*4 w(0:MAXFFT-1) real*4 s(0:MAXFFT-1) logical*1 lstrong(0:MAXFFT-1),lprev integer ia(MAXSIGS),ib(MAXSIGS) logical first data first/.true./ data k0/99999999/ save if(first) then pi=4.0*atan(1.0) do i=0,nfft-1 w(i)=(sin(i*pi/nfft))**2 enddo s=0. nh=nfft/2 nfft2=nfft/4 if(ntrperiod.ge.300) nfft2=nfft/32 nh2=nfft2/2 kstep=nfft if(nwindow.eq.2) kstep=nh fac=1.0/nfft slimit=1.e30 first=.false. endif if(k.lt.k0) then covxs=0. covxw=0. endif k0=k cx(0:nfft-1)=cx0 if(nwindow.eq.2) cx(0:nfft-1)=w(0:nfft-1)*cx(0:nfft-1) call four2a(cx,nfft,1,-1,0) !First forward FFT, r2c cxt(0:nfft-1)=cx(0:nfft-1) ! Identify frequencies with strong signals, copy frequency-domain ! data into array cs (strong) or cw (weak). do i=0,nfft-1 s(i)=real(cxt(i))**2 + aimag(cxt(i))**2 enddo ave=sum(s(0:nfft-1))/nfft lstrong(0:nfft-1)=s(0:nfft-1).gt.10.0*ave nsigs=0 lprev=.false. iwid=1 ib=-99 do i=0,nfft-1 if(lstrong(i) .and. (.not.lprev)) then if(nsigs.lt.MAXSIGS) nsigs=nsigs+1 ia(nsigs)=i-iwid if(ia(nsigs).lt.0) ia(nsigs)=0 endif if(.not.lstrong(i) .and. lprev) then ib(nsigs)=i-1+iwid if(ib(nsigs).gt.nfft-1) ib(nsigs)=nfft-1 endif lprev=lstrong(i) enddo if(nsigs.gt.0) then do i=1,nsigs ja=ia(i) jb=ib(i) if(ja.lt.0 .or. ja.gt.nfft-1 .or. jb.lt.0 .or. jb.gt.nfft-1) then cycle endif if(jb.eq.-99) jb=ja + min(2*iwid,nfft-1) lstrong(ja:jb)=.true. enddo endif do i=0,nfft-1 if(lstrong(i)) then cxs(i)=fac*cxt(i) cxw(i)=0. else cxs(i)=0. cxw(i)=fac*cxt(i) endif enddo df=12000.0/nfft i0=nint(1500.0/df) cxw2(0:nh2)=cxw(i0:i0+nh2) cxw2(nfft2-nh2:nfft2-1)=cxw(i0-nh2:i0-1) cxs2(0:nh2)=cxs(i0:i0+nh2) cxs2(nfft2-nh2:nfft2-1)=cxs(i0-nh2:i0-1) call four2a(cxw2,nfft2,1,1,1) !Transform weak and strong X call four2a(cxs2,nfft2,1,1,1) !back to time domain, separately if(nwindow.eq.2) then cxw2(0:nh2-1)=cxw2(0:nh2-1)+covxw(0:nh2-1) !Add prev segment's 2nd half covxw(0:nh2-1)=cxw2(nh2:nfft2-1) !Save 2nd half cxs2(0:nh2-1)=cxs2(0:nh2-1)+covxs(0:nh2-1) !Ditto for strong signals covxs(0:nh2-1)=cxs2(nh2:nfft2-1) endif ! Apply noise blanking to weak data if(nb.ne.0) then do i=0,kstep-1 peak=abs(cxw(i)) if(peak.gt.peaklimit) then cxw2(i)=0. nzap=nzap+1 endif enddo endif ! Compute power levels from weak data only px=0. do i=0,kstep-1 px=px + real(cxw2(i))**2 + aimag(cxw2(i))**2 enddo cx1(0:kstep-1)=cxw2(0:kstep-1) + cxs2(0:kstep-1) !Weak + strong return end subroutine timf2x