subroutine symspecx(k,ntrperiod,nsps,ndiskdat,nb,nbslider,pxdb,s,ihsym, & nzap,slimit,lstrong) ! Input: ! k pointer to the most recent new data ! ntrperiod T/R sequence length, minutes ! nsps samples per symbol (12000 Hz) ! ndiskdat 0/1 to indicate if data from disk ! nb 0/1 status of noise blanker (off/on) ! nbslider NB setting, 0-100 ! Output: ! pxdb power (0-60 dB) ! s spectrum for waterfall display ! ihsym index number of this half-symbol (1-322) ! nzap number of samples zero'ed by noise blanker ! slimit NB scale adjustment ! lstrong true if strong signal at this freq parameter (NMAX=1800*12000) !Total sample intervals per 30 minutes parameter (NDMAX=1800*1500) !Sample intervals at 1500 Hz rate parameter (NSMAX=22000) !Max length of saved spectra parameter (NFFT1=1024) parameter (NFFT2=1024,NFFT2A=NFFT2/8) parameter (MAXFFT3=32768) real*4 s(NSMAX),w(NFFT1),w3(MAXFFT3) real*4 stmp(NFFT2/2) real*4 x0(NFFT1),x1(NFFT1) real*4 x2(NFFT2) complex cx2(0:NFFT2/2) complex cx2a(NFFT2A) complex z,zfac complex zsumx complex cx(MAXFFT3) complex cx00(NFFT1) complex cx0(0:1023),cx1(0:1023) logical*1 lstrong(0:1023) integer*2 id2 complex c0 common/jt8com/id2(NMAX),ss(184,NSMAX),savg(NSMAX),c0(NDMAX),nutc,junk(20) equivalence (x2,cx2) data rms/999.0/,k0/99999999/,ntrperiod0/0/,nfft3z/0/ save if(ntrperiod.eq.1) nfft3=1024 if(ntrperiod.eq.2) nfft3=2048 if(ntrperiod.eq.5) nfft3=6144 if(ntrperiod.eq.10) nfft3=12288 if(ntrperiod.eq.30) nfft3=32768 jstep=nsps/16 if(k.gt.NMAX) go to 999 if(k.lt.nfft3) then ihsym=0 go to 999 !Wait for enough samples to start endif if(nfft3.ne.nfft3z) then pi=4.0*atan(1.0) do i=1,nfft3 w3(i)=(sin(i*pi/nfft3))**2 !Window for nfft3 enddo stmp=0. nfft3z=nfft3 endif if(k.lt.k0) then ja=-2*jstep savg=0. ihsym=0 k1=0 k8=0 if(ndiskdat.eq.0) id2(k+1:)=0. !### Should not be needed ??? ### endif k0=k nzap=0 sigmas=1.5*(10.0**(0.01*nbslider)) + 0.7 peaklimit=sigmas*max(10.0,rms) faclim=3.0 px=0. df2=12000.0/NFFT2 ! nwindow=2 nwindow=0 !### No windowing ### kstep1=NFFT1 if(nwindow.ne.0) kstep1=NFFT1/2 fac=1.0/(NFFT1*NFFT2) nblks=(k-k1)/kstep1 do nblk=1,nblks do i=1,NFFT1 x0(i)=fac*id2(k1+i) enddo ! call timf2x(k,NFFT1,nwindow,nb,peaklimit,faclim,x0,x1, & ! slimit,lstrong,px,nzap) x1=x0 !### x2=x1 call four2a(x2,NFFT2,1,-1,0) !Second forward FFT, r2c i0=nint(1000.0/df2) + 1 cx2a(1:NFFT2A/2)=cx2(i0:NFFT2A/2+i0-1) cx2a(NFFT2A/2+1:NFFT2A)=cx2(i0-1-NFFT2A/2:i0-1) call four2a(cx2a,NFFT2A,1,1,1) c0(k8+1:k8+NFFT2A)=cx2a !### Test for gliches at multiples of 128 ! if(k8.lt.1000) then ! do i=k8+1,k8+NFFT2A ! write(82,4002) i,c0(i) !4002 format(i8,2e12.3) ! enddo ! endif !### k1=k1+kstep1 k8=k8+kstep1/8 enddo ja=ja+jstep !Index of first sample if(ja.lt.0) go to 999 do i=1,nfft3 !Copy data into cx cx(i)=c0(ja+i) enddo pxdb=0. if(rmsx.gt.1.0) pxdb=20.0*log10(rmsx) if(pxdb.gt.60.0) pxdb=60.0 ihsym=ihsym+1 call four2a(cx,nfft3,1,-1,1) !Third forward FFT (X) n=min(184,ihsym) df3=1500.0/nfft3 iz=min(NSMAX,nint(1000.0/df3)) do i=1,iz sx=real(cx(i))**2 + aimag(cx(i))**2 ss(n,i)=sx savg(i)=savg(i) + sx s(i)=sx enddo if(ihsym.eq.175) then do i=1,iz write(71,3001) i*df3,savg(i),10.0*log10(savg(i)) 3001 format(f12.6,e12.3,f12.3) enddo endif 999 return end subroutine symspecx