// (C) Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include <boost/math/concepts/real_concept.hpp> #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> #include <boost/test/floating_point_comparison.hpp> #include <boost/math/distributions/non_central_chi_squared.hpp> #include <boost/type_traits/is_floating_point.hpp> #include <boost/array.hpp> #include "functor.hpp" #include "handle_test_result.hpp" #include "table_type.hpp" #include <iostream> #include <iomanip> #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } #define BOOST_CHECK_EX(a, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK(a); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } template <class RealType> RealType naive_pdf(RealType v, RealType lam, RealType x) { // Formula direct from // http://mathworld.wolfram.com/NoncentralChi-SquaredDistribution.html // with no simplification: RealType sum, term, prefix(1); RealType eps = boost::math::tools::epsilon<RealType>(); term = sum = pdf(boost::math::chi_squared_distribution<RealType>(v), x); for(int i = 1;; ++i) { prefix *= lam / (2 * i); term = prefix * pdf(boost::math::chi_squared_distribution<RealType>(v + 2 * i), x); sum += term; if(term / sum < eps) break; } return sum * exp(-lam / 2); } template <class RealType> void test_spot( RealType df, // Degrees of freedom RealType ncp, // non-centrality param RealType cs, // Chi Square statistic RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { boost::math::non_central_chi_squared_distribution<RealType> dist(df, ncp); BOOST_CHECK_CLOSE( cdf(dist, cs), P, tol); #ifndef BOOST_NO_EXCEPTIONS try{ BOOST_CHECK_CLOSE( pdf(dist, cs), naive_pdf(dist.degrees_of_freedom(), ncp, cs), tol * 150); } catch(const std::overflow_error&) { } #endif if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarantee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, cs)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), cs, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), cs, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(ncp, cs, P), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(boost::math::complement(ncp, cs, Q)), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(df, cs, P), ncp, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(boost::math::complement(df, cs, Q)), ncp, tol * 10); } } template <class RealType> // Any floating-point type RealType. void test_spots(RealType) { #ifndef ERROR_REPORTING_MODE RealType tolerance = (std::max)( boost::math::tools::epsilon<RealType>(), (RealType)boost::math::tools::epsilon<double>() * 5) * 150; // // At float precision we need to up the tolerance, since // the input values are rounded off to inexact quantities // the results get thrown off by a noticeable amount. // if(boost::math::tools::digits<RealType>() < 50) tolerance *= 50; if(boost::is_floating_point<RealType>::value != 1) tolerance *= 20; // real_concept special functions are less accurate std::cout << "Tolerance = " << tolerance << "%." << std::endl; using boost::math::chi_squared_distribution; using ::boost::math::chi_squared; using ::boost::math::cdf; using ::boost::math::pdf; // // Test against the data from Table 6 of: // // "Self-Validating Computations of Probabilities for Selected // Central and Noncentral Univariate Probability Functions." // Morgan C. Wang; William J. Kennedy // Journal of the American Statistical Association, // Vol. 89, No. 427. (Sep., 1994), pp. 878-887. // test_spot( static_cast<RealType>(1), // degrees of freedom static_cast<RealType>(6), // non centrality static_cast<RealType>(0.00393), // Chi Squared statistic static_cast<RealType>(0.2498463724258039e-2), // Probability of result (CDF), P static_cast<RealType>(1 - 0.2498463724258039e-2), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(5), // degrees of freedom static_cast<RealType>(1), // non centrality static_cast<RealType>(9.23636), // Chi Squared statistic static_cast<RealType>(0.8272918751175548), // Probability of result (CDF), P static_cast<RealType>(1 - 0.8272918751175548), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(11), // degrees of freedom static_cast<RealType>(21), // non centrality static_cast<RealType>(24.72497), // Chi Squared statistic static_cast<RealType>(0.2539481822183126), // Probability of result (CDF), P static_cast<RealType>(1 - 0.2539481822183126), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(31), // degrees of freedom static_cast<RealType>(6), // non centrality static_cast<RealType>(44.98534), // Chi Squared statistic static_cast<RealType>(0.8125198785064969), // Probability of result (CDF), P static_cast<RealType>(1 - 0.8125198785064969), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(51), // degrees of freedom static_cast<RealType>(1), // non centrality static_cast<RealType>(38.56038), // Chi Squared statistic static_cast<RealType>(0.8519497361859118e-1), // Probability of result (CDF), P static_cast<RealType>(1 - 0.8519497361859118e-1), // Q = 1 - P tolerance * 2); test_spot( static_cast<RealType>(100), // degrees of freedom static_cast<RealType>(16), // non centrality static_cast<RealType>(82.35814), // Chi Squared statistic static_cast<RealType>(0.1184348822747824e-1), // Probability of result (CDF), P static_cast<RealType>(1 - 0.1184348822747824e-1), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(300), // degrees of freedom static_cast<RealType>(16), // non centrality static_cast<RealType>(331.78852), // Chi Squared statistic static_cast<RealType>(0.7355956710306709), // Probability of result (CDF), P static_cast<RealType>(1 - 0.7355956710306709), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(500), // degrees of freedom static_cast<RealType>(21), // non centrality static_cast<RealType>(459.92612), // Chi Squared statistic static_cast<RealType>(0.2797023600800060e-1), // Probability of result (CDF), P static_cast<RealType>(1 - 0.2797023600800060e-1), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(1), // degrees of freedom static_cast<RealType>(1), // non centrality static_cast<RealType>(0.00016), // Chi Squared statistic static_cast<RealType>(0.6121428929881423e-2), // Probability of result (CDF), P static_cast<RealType>(1 - 0.6121428929881423e-2), // Q = 1 - P tolerance); test_spot( static_cast<RealType>(1), // degrees of freedom static_cast<RealType>(1), // non centrality static_cast<RealType>(0.00393), // Chi Squared statistic static_cast<RealType>(0.3033814229753780e-1), // Probability of result (CDF), P static_cast<RealType>(1 - 0.3033814229753780e-1), // Q = 1 - P tolerance); RealType tol2 = boost::math::tools::epsilon<RealType>() * 5 * 100; // 5 eps as a percentage boost::math::non_central_chi_squared_distribution<RealType> dist(static_cast<RealType>(8), static_cast<RealType>(12)); RealType x = 7; using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE( mean(dist) , static_cast<RealType>(8 + 12), tol2); // variance: BOOST_CHECK_CLOSE( variance(dist) , static_cast<RealType>(64), tol2); // std deviation: BOOST_CHECK_CLOSE( standard_deviation(dist) , static_cast<RealType>(8), tol2); // hazard: BOOST_CHECK_CLOSE( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); // mode: BOOST_CHECK_CLOSE( mode(dist) , static_cast<RealType>(17.184201184730857030170788677340294070728990862663L), sqrt(tolerance * 500)); BOOST_CHECK_CLOSE( median(dist), quantile( boost::math::non_central_chi_squared_distribution<RealType>( static_cast<RealType>(8), static_cast<RealType>(12)), static_cast<RealType>(0.5)), static_cast<RealType>(tol2)); // skewness: BOOST_CHECK_CLOSE( skewness(dist) , static_cast<RealType>(0.6875), tol2); // kurtosis: BOOST_CHECK_CLOSE( kurtosis(dist) , static_cast<RealType>(3.65625), tol2); // kurtosis excess: BOOST_CHECK_CLOSE( kurtosis_excess(dist) , static_cast<RealType>(0.65625), tol2); // Error handling checks: check_out_of_range<boost::math::non_central_chi_squared_distribution<RealType> >(1, 1); BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(0, 1), 0), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(-1, 1), 0), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_chi_squared_distribution<RealType>(1, -1), 0), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_chi_squared_distribution<RealType>(1, 1), 2), std::domain_error); #endif } // template <class RealType>void test_spots(RealType) template <class T> T nccs_cdf(T df, T nc, T x) { return cdf(boost::math::non_central_chi_squared_distribution<T>(df, nc), x); } template <class T> T nccs_ccdf(T df, T nc, T x) { return cdf(complement(boost::math::non_central_chi_squared_distribution<T>(df, nc), x)); } template <typename Real, typename T> void do_test_nc_chi_squared(T& data, const char* type_name, const char* test) { typedef typename T::value_type row_type; typedef Real value_type; std::cout << "Testing: " << test << std::endl; #ifdef NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST value_type(*fp1)(value_type, value_type, value_type) = NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST; #else value_type(*fp1)(value_type, value_type, value_type) = nccs_cdf; #endif boost::math::tools::test_result<value_type> result; #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CDF_FUNCTION_TO_TEST)) result = boost::math::tools::test_hetero<Real>( data, bind_func<Real>(fp1, 0, 1, 2), extract_result<Real>(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "non central chi squared CDF", test); #endif #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST)) #ifdef NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST fp1 = NC_CHI_SQUARED_CCDF_FUNCTION_TO_TEST; #else fp1 = nccs_ccdf; #endif result = boost::math::tools::test_hetero<Real>( data, bind_func<Real>(fp1, 0, 1, 2), extract_result<Real>(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "non central chi squared CDF complement", test); std::cout << std::endl; #endif } template <typename Real, typename T> void quantile_sanity_check(T& data, const char* type_name, const char* test) { #ifndef ERROR_REPORTING_MODE typedef typename T::value_type row_type; typedef Real value_type; // // Tests with type real_concept take rather too long to run, so // for now we'll disable them: // if(!boost::is_floating_point<value_type>::value) return; std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions. // It is however a useful sanity check. // value_type precision = static_cast<value_type>(ldexp(1.0, 1 - boost::math::policies::digits<value_type, boost::math::policies::policy<> >() / 2)) * 100; if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { if(Real(data[i][3]) == 0) { BOOST_CHECK(0 == quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3])); } else if(data[i][3] < 0.9999f) { value_type p = quantile(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(data[i][4] == 0) { BOOST_CHECK(0 == quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][3]))); } else if(data[i][4] < 0.9999f) { value_type p = quantile(complement(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), data[i][4])); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(boost::math::tools::digits<value_type>() > 50) { // // Sanity check mode, the accuracy of // the mode is at *best* the square root of the accuracy of the PDF: // #ifndef BOOST_NO_EXCEPTIONS try{ value_type m = mode(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1])); value_type p = pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m); BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 + sqrt(precision) * 50)) <= p, i); BOOST_CHECK_EX(pdf(boost::math::non_central_chi_squared_distribution<value_type>(data[i][0], data[i][1]), m * (1 - sqrt(precision)) * 50) <= p, i); } catch(const boost::math::evaluation_error&) {} #endif // // Sanity check degrees-of-freedom finder, don't bother at float // precision though as there's not enough data in the probability // values to get back to the correct degrees of freedom or // non-cenrality parameter: // #ifndef BOOST_NO_EXCEPTIONS try{ #endif if((data[i][3] < 0.99) && (data[i][3] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(data[i][0], data[i][2], data[i][3]), data[i][1], precision, i); } if((data[i][4] < 0.99) && (data[i][4] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution<value_type>::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_chi_squared_distribution<value_type>::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])), data[i][1], precision, i); } #ifndef BOOST_NO_EXCEPTIONS } catch(const std::exception& e) { BOOST_ERROR(e.what()); } #endif } } #endif } template <typename T> void test_accuracy(T, const char* type_name) { #include "nccs.ipp" do_test_nc_chi_squared<T>(nccs, type_name, "Non Central Chi Squared, medium parameters"); quantile_sanity_check<T>(nccs, type_name, "Non Central Chi Squared, medium parameters"); #include "nccs_big.ipp" do_test_nc_chi_squared<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters"); quantile_sanity_check<T>(nccs_big, type_name, "Non Central Chi Squared, large parameters"); }