/* This file is part of program wsprd, a detector/demodulator/decoder for the Weak Signal Propagation Reporter (WSPR) mode. File name: wsprd.c Copyright 2001-2018, Joe Taylor, K1JT Much of the present code is based on work by Steven Franke, K9AN, which in turn was based on earlier work by K1JT. Copyright 2014-2018, Steven Franke, K9AN License: GNU GPL v3 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <math.h> #include <string.h> #include <stdint.h> #include <time.h> #include <fftw3.h> #include "fano.h" #include "jelinek.h" #include "nhash.h" #include "wsprd_utils.h" #include "wsprsim_utils.h" #define max(x,y) ((x) > (y) ? (x) : (y)) extern void osdwspr_ (float [], unsigned char [], int *, unsigned char [], int *, float *); // Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT, // FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE #define PATIENCE FFTW_ESTIMATE fftwf_plan PLAN1,PLAN2,PLAN3; unsigned char pr3[162]= {1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0, 0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1, 0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1, 1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1, 0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0, 0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1, 0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,1, 0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0, 0,0}; int printdata=0; //*************************************************************************** unsigned long readc2file(char *ptr_to_infile, float *idat, float *qdat, double *freq, int *wspr_type) { float *buffer; double dfreq; int i,ntrmin; char c2file[15]; size_t nr; FILE* fp; fp = fopen(ptr_to_infile,"rb"); if (fp == NULL) { fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile); return 1; } nr=fread(c2file,sizeof(char),14,fp); nr=fread(&ntrmin,sizeof(int),1,fp); nr=fread(&dfreq,sizeof(double),1,fp); *freq=dfreq; buffer=calloc(2*65536,sizeof(float)); nr=fread(buffer,sizeof(float),2*45000,fp); fclose(fp); *wspr_type=ntrmin; for(i=0; i<45000; i++) { idat[i]=buffer[2*i]; qdat[i]=-buffer[2*i+1]; } free(buffer); if( nr == 2*45000 ) { return (unsigned long) nr/2; } else { return 1; } } //*************************************************************************** unsigned long readwavfile(char *ptr_to_infile, int ntrmin, float *idat, float *qdat ) { size_t i, j, npoints, nr; int nfft1, nfft2, nh2, i0; double df; nfft2=46080; //this is the number of downsampled points that will be returned nh2=nfft2/2; if( ntrmin == 2 ) { nfft1=nfft2*32; //need to downsample by a factor of 32 df=12000.0/nfft1; i0=1500.0/df+0.5; npoints=114*12000; } else if ( ntrmin == 15 ) { nfft1=nfft2*8*32; df=12000.0/nfft1; i0=(1500.0+112.5)/df+0.5; npoints=8*114*12000; } else { fprintf(stderr,"This should not happen\n"); return 1; } float *realin; fftwf_complex *fftin, *fftout; FILE *fp; short int *buf2; fp = fopen(ptr_to_infile,"rb"); if (fp == NULL) { fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile); return 1; } buf2 = calloc(npoints,sizeof(short int)); nr=fread(buf2,2,22,fp); //Read and ignore header nr=fread(buf2,2,npoints,fp); //Read raw data fclose(fp); if( nr == 0 ) { fprintf(stderr, "No data in file '%s'\n", ptr_to_infile); return 1; } realin=(float*) fftwf_malloc(sizeof(float)*nfft1); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*(nfft1/2+1)); PLAN1 = fftwf_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE); for (i=0; i<npoints; i++) { realin[i]=buf2[i]/32768.0; } for (i=npoints; i<(size_t)nfft1; i++) { realin[i]=0.0; } free(buf2); fftwf_execute(PLAN1); fftwf_free(realin); fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2); for (i=0; i<(size_t)nfft2; i++) { j=i0+i; if( i>(size_t)nh2 ) j=j-nfft2; fftin[i][0]=fftout[j][0]; fftin[i][1]=fftout[j][1]; } fftwf_free(fftout); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2); PLAN2 = fftwf_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE); fftwf_execute(PLAN2); for (i=0; i<(size_t)nfft2; i++) { idat[i]=fftout[i][0]/1000.0; qdat[i]=fftout[i][1]/1000.0; } fftwf_free(fftin); fftwf_free(fftout); return nfft2; } //*************************************************************************** void sync_and_demodulate(float *id, float *qd, long np, unsigned char *symbols, float *f1, int ifmin, int ifmax, float fstep, int *shift1, int lagmin, int lagmax, int lagstep, float *drift1, int symfac, float *sync, int mode) { /*********************************************************************** * mode = 0: no frequency or drift search. find best time lag. * * 1: no time lag or drift search. find best frequency. * * 2: no frequency or time lag search. calculate soft-decision * * symbols using passed frequency and shift. * ************************************************************************/ static float fplast=-10000.0; static float dt=1.0/375.0, df=375.0/256.0; static float pi=3.14159265358979323846; float twopidt, df15=df*1.5, df05=df*0.5; int i, j, k, lag; float i0[162],q0[162],i1[162],q1[162],i2[162],q2[162],i3[162],q3[162]; float p0,p1,p2,p3,cmet,totp,syncmax,fac; float c0[256],s0[256],c1[256],s1[256],c2[256],s2[256],c3[256],s3[256]; float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2, dphi3, cdphi3, sdphi3; float f0=0.0, fp, ss, fbest=0.0, fsum=0.0, f2sum=0.0, fsymb[162]; int best_shift = 0, ifreq; syncmax=-1e30; if( mode == 0 ) {ifmin=0; ifmax=0; fstep=0.0; f0=*f1;} if( mode == 1 ) {lagmin=*shift1;lagmax=*shift1;f0=*f1;} if( mode == 2 ) {lagmin=*shift1;lagmax=*shift1;ifmin=0;ifmax=0;f0=*f1;} twopidt=2*pi*dt; for(ifreq=ifmin; ifreq<=ifmax; ifreq++) { f0=*f1+ifreq*fstep; for(lag=lagmin; lag<=lagmax; lag=lag+lagstep) { ss=0.0; totp=0.0; for (i=0; i<162; i++) { fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0; if( i==0 || (fp != fplast) ) { // only calculate sin/cos if necessary dphi0=twopidt*(fp-df15); cdphi0=cos(dphi0); sdphi0=sin(dphi0); dphi1=twopidt*(fp-df05); cdphi1=cos(dphi1); sdphi1=sin(dphi1); dphi2=twopidt*(fp+df05); cdphi2=cos(dphi2); sdphi2=sin(dphi2); dphi3=twopidt*(fp+df15); cdphi3=cos(dphi3); sdphi3=sin(dphi3); c0[0]=1; s0[0]=0; c1[0]=1; s1[0]=0; c2[0]=1; s2[0]=0; c3[0]=1; s3[0]=0; for (j=1; j<256; j++) { c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0; s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0; c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1; s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1; c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2; s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2; c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3; s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3; } fplast = fp; } i0[i]=0.0; q0[i]=0.0; i1[i]=0.0; q1[i]=0.0; i2[i]=0.0; q2[i]=0.0; i3[i]=0.0; q3[i]=0.0; for (j=0; j<256; j++) { k=lag+i*256+j; if( (k>0) && (k<np) ) { i0[i]=i0[i] + id[k]*c0[j] + qd[k]*s0[j]; q0[i]=q0[i] - id[k]*s0[j] + qd[k]*c0[j]; i1[i]=i1[i] + id[k]*c1[j] + qd[k]*s1[j]; q1[i]=q1[i] - id[k]*s1[j] + qd[k]*c1[j]; i2[i]=i2[i] + id[k]*c2[j] + qd[k]*s2[j]; q2[i]=q2[i] - id[k]*s2[j] + qd[k]*c2[j]; i3[i]=i3[i] + id[k]*c3[j] + qd[k]*s3[j]; q3[i]=q3[i] - id[k]*s3[j] + qd[k]*c3[j]; } } p0=i0[i]*i0[i] + q0[i]*q0[i]; p1=i1[i]*i1[i] + q1[i]*q1[i]; p2=i2[i]*i2[i] + q2[i]*q2[i]; p3=i3[i]*i3[i] + q3[i]*q3[i]; p0=sqrt(p0); p1=sqrt(p1); p2=sqrt(p2); p3=sqrt(p3); totp=totp+p0+p1+p2+p3; cmet=(p1+p3)-(p0+p2); ss = (pr3[i] == 1) ? ss+cmet : ss-cmet; if( mode == 2) { //Compute soft symbols if(pr3[i]==1) { fsymb[i]=p3-p1; } else { fsymb[i]=p2-p0; } } } ss=ss/totp; if( ss > syncmax ) { //Save best parameters syncmax=ss; best_shift=lag; fbest=f0; } } // lag loop } //freq loop if( mode <=1 ) { //Send best params back to caller *sync=syncmax; *shift1=best_shift; *f1=fbest; return; } if( mode == 2 ) { *sync=syncmax; for (i=0; i<162; i++) { //Normalize the soft symbols fsum=fsum+fsymb[i]/162.0; f2sum=f2sum+fsymb[i]*fsymb[i]/162.0; } fac=sqrt(f2sum-fsum*fsum); for (i=0; i<162; i++) { fsymb[i]=symfac*fsymb[i]/fac; if( fsymb[i] > 127) fsymb[i]=127.0; if( fsymb[i] < -128 ) fsymb[i]=-128.0; symbols[i]=fsymb[i] + 128; } return; } return; } void noncoherent_sequence_detection(float *id, float *qd, long np, unsigned char *symbols, float *f1, int *shift1, float *drift1, int symfac, int *nblocksize, int *bitmetric) { /************************************************************************ * Noncoherent sequence detection for wspr. * * Allowed block lengths are nblock=1,2,3,6, or 9 symbols. * * Longer block lengths require longer channel coherence time. * * The whole block is estimated at once. * * nblock=1 corresponds to noncoherent detection of individual symbols * * like the original wsprd symbol demodulator. * ************************************************************************/ static float fplast=-10000.0; static float dt=1.0/375.0, df=375.0/256.0; static float pi=3.14159265358979323846; float twopidt, df15=df*1.5, df05=df*0.5; int i, j, k, lag, itone, ib, b, nblock, nseq, imask; float xi[512],xq[512]; float is[4][162],qs[4][162],cf[4][162],sf[4][162],cm,sm,cmp,smp; float p[512],fac,xm1,xm0; float c0[257],s0[257],c1[257],s1[257],c2[257],s2[257],c3[257],s3[257]; float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2, dphi3, cdphi3, sdphi3; float f0, fp, fsum=0.0, f2sum=0.0, fsymb[162]; twopidt=2*pi*dt; f0=*f1; lag=*shift1; nblock=*nblocksize; nseq=1<<nblock; int bitbybit=*bitmetric; for (i=0; i<162; i++) { fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0; if( i==0 || (fp != fplast) ) { // only calculate sin/cos if necessary dphi0=twopidt*(fp-df15); cdphi0=cos(dphi0); sdphi0=sin(dphi0); dphi1=twopidt*(fp-df05); cdphi1=cos(dphi1); sdphi1=sin(dphi1); dphi2=twopidt*(fp+df05); cdphi2=cos(dphi2); sdphi2=sin(dphi2); dphi3=twopidt*(fp+df15); cdphi3=cos(dphi3); sdphi3=sin(dphi3); c0[0]=1; s0[0]=0; c1[0]=1; s1[0]=0; c2[0]=1; s2[0]=0; c3[0]=1; s3[0]=0; for (j=1; j<257; j++) { c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0; s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0; c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1; s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1; c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2; s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2; c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3; s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3; } fplast = fp; } cf[0][i]=c0[256]; sf[0][i]=s0[256]; cf[1][i]=c1[256]; sf[1][i]=s1[256]; cf[2][i]=c2[256]; sf[2][i]=s2[256]; cf[3][i]=c3[256]; sf[3][i]=s3[256]; is[0][i]=0.0; qs[0][i]=0.0; is[1][i]=0.0; qs[1][i]=0.0; is[2][i]=0.0; qs[2][i]=0.0; is[3][i]=0.0; qs[3][i]=0.0; for (j=0; j<256; j++) { k=lag+i*256+j; if( (k>0) && (k<np) ) { is[0][i]=is[0][i] + id[k]*c0[j] + qd[k]*s0[j]; qs[0][i]=qs[0][i] - id[k]*s0[j] + qd[k]*c0[j]; is[1][i]=is[1][i] + id[k]*c1[j] + qd[k]*s1[j]; qs[1][i]=qs[1][i] - id[k]*s1[j] + qd[k]*c1[j]; is[2][i]=is[2][i] + id[k]*c2[j] + qd[k]*s2[j]; qs[2][i]=qs[2][i] - id[k]*s2[j] + qd[k]*c2[j]; is[3][i]=is[3][i] + id[k]*c3[j] + qd[k]*s3[j]; qs[3][i]=qs[3][i] - id[k]*s3[j] + qd[k]*c3[j]; } } } for (i=0; i<162; i=i+nblock) { for (j=0;j<nseq;j++) { xi[j]=0.0; xq[j]=0.0; cm=1; sm=0; for (ib=0; ib<nblock; ib++) { b=(j&(1<<(nblock-1-ib)))>>(nblock-1-ib); itone=pr3[i+ib]+2*b; xi[j]=xi[j]+is[itone][i+ib]*cm + qs[itone][i+ib]*sm; xq[j]=xq[j]+qs[itone][i+ib]*cm - is[itone][i+ib]*sm; cmp=cf[itone][i+ib]*cm - sf[itone][i+ib]*sm; smp=sf[itone][i+ib]*cm + cf[itone][i+ib]*sm; cm=cmp; sm=smp; } p[j]=xi[j]*xi[j]+xq[j]*xq[j]; p[j]=sqrt(p[j]); } for (ib=0; ib<nblock; ib++) { imask=1<<(nblock-1-ib); xm1=0.0; xm0=0.0; for (j=0; j<nseq; j++) { if((j & imask)!=0) { if(p[j] > xm1) xm1=p[j]; } if((j & imask)==0) { if(p[j]>xm0) xm0=p[j]; } } fsymb[i+ib]=xm1-xm0; if( bitbybit == 1 ) { fsymb[i+ib]=fsymb[i+ib]/(xm1 > xm0 ? xm1 : xm0); } } } for (i=0; i<162; i++) { //Normalize the soft symbols fsum=fsum+fsymb[i]/162.0; f2sum=f2sum+fsymb[i]*fsymb[i]/162.0; } fac=sqrt(f2sum-fsum*fsum); for (i=0; i<162; i++) { fsymb[i]=symfac*fsymb[i]/fac; if( fsymb[i] > 127) fsymb[i]=127.0; if( fsymb[i] < -128 ) fsymb[i]=-128.0; symbols[i]=fsymb[i] + 128; } return; } /*************************************************************************** symbol-by-symbol signal subtraction ****************************************************************************/ void subtract_signal(float *id, float *qd, long np, float f0, int shift0, float drift0, unsigned char* channel_symbols) { float dt=1.0/375.0, df=375.0/256.0; int i, j, k; float pi=4.*atan(1.0),twopidt, fp; float i0,q0; float c0[256],s0[256]; float dphi, cdphi, sdphi; twopidt=2*pi*dt; for (i=0; i<162; i++) { fp = f0 + ((float)drift0/2.0)*((float)i-81.0)/81.0; dphi=twopidt*(fp+((float)channel_symbols[i]-1.5)*df); cdphi=cos(dphi); sdphi=sin(dphi); c0[0]=1; s0[0]=0; for (j=1; j<256; j++) { c0[j]=c0[j-1]*cdphi - s0[j-1]*sdphi; s0[j]=c0[j-1]*sdphi + s0[j-1]*cdphi; } i0=0.0; q0=0.0; for (j=0; j<256; j++) { k=shift0+i*256+j; if( (k>0) & (k<np) ) { i0=i0 + id[k]*c0[j] + qd[k]*s0[j]; q0=q0 - id[k]*s0[j] + qd[k]*c0[j]; } } // subtract the signal here. i0=i0/256.0; //will be wrong for partial symbols at the edges... q0=q0/256.0; for (j=0; j<256; j++) { k=shift0+i*256+j; if( (k>0) & (k<np) ) { id[k]=id[k]- (i0*c0[j] - q0*s0[j]); qd[k]=qd[k]- (q0*c0[j] + i0*s0[j]); } } } return; } /****************************************************************************** Subtract the coherent component of a signal *******************************************************************************/ void subtract_signal2(float *id, float *qd, long np, float f0, int shift0, float drift0, unsigned char* channel_symbols) { float dt=1.0/375.0, df=375.0/256.0; float pi=4.*atan(1.0), twopidt, phi=0, dphi, cs; int i, j, k, ii, nsym=162, nspersym=256, nfilt=360; //nfilt must be even number. int nsig=nsym*nspersym; int nc2=45000; float *refi, *refq, *ci, *cq, *cfi, *cfq; refi=calloc(nc2,sizeof(float)); refq=calloc(nc2,sizeof(float)); ci=calloc(nc2,sizeof(float)); cq=calloc(nc2,sizeof(float)); cfi=calloc(nc2,sizeof(float)); cfq=calloc(nc2,sizeof(float)); twopidt=2.0*pi*dt; /****************************************************************************** Measured signal: s(t)=a(t)*exp( j*theta(t) ) Reference is: r(t) = exp( j*phi(t) ) Complex amplitude is estimated as: c(t)=LPF[s(t)*conjugate(r(t))] so c(t) has phase angle theta-phi Multiply r(t) by c(t) and subtract from s(t), i.e. s'(t)=s(t)-c(t)r(t) *******************************************************************************/ // create reference wspr signal vector, centered on f0. // for (i=0; i<nsym; i++) { cs=(float)channel_symbols[i]; dphi=twopidt* ( f0 + (drift0/2.0)*((float)i-(float)nsym/2.0)/((float)nsym/2.0) + (cs-1.5)*df ); for ( j=0; j<nspersym; j++ ) { ii=nspersym*i+j; refi[ii]=cos(phi); //cannot precompute sin/cos because dphi is changing refq[ii]=sin(phi); phi=phi+dphi; } } float w[nfilt], norm=0, partialsum[nfilt]; //lowpass filter and remove startup transient for (i=0; i<nfilt; i++) partialsum[i]=0.0; for (i=0; i<nfilt; i++) { w[i]=sin(pi*(float)i/(float)(nfilt-1)); norm=norm+w[i]; } for (i=0; i<nfilt; i++) { w[i]=w[i]/norm; } for (i=1; i<nfilt; i++) { partialsum[i]=partialsum[i-1]+w[i]; } // s(t) * conjugate(r(t)) // beginning of first symbol in reference signal is at i=0 // beginning of first symbol in received data is at shift0. // filter transient lasts nfilt samples // leave nfilt zeros as a pad at the beginning of the unfiltered reference signal for (i=0; i<nsym*nspersym; i++) { k=shift0+i; if( (k>0) && (k<np) ) { ci[i+nfilt] = id[k]*refi[i] + qd[k]*refq[i]; cq[i+nfilt] = qd[k]*refi[i] - id[k]*refq[i]; } } // LPF for (i=nfilt/2; i<45000-nfilt/2; i++) { cfi[i]=0.0; cfq[i]=0.0; for (j=0; j<nfilt; j++) { cfi[i]=cfi[i]+w[j]*ci[i-nfilt/2+j]; cfq[i]=cfq[i]+w[j]*cq[i-nfilt/2+j]; } } // subtract c(t)*r(t) here // (ci+j*cq)(refi+j*refq)=(ci*refi-cq*refq)+j(ci*refq+cq*refi) // beginning of first symbol in reference signal is at i=nfilt // beginning of first symbol in received data is at shift0. for (i=0; i<nsig; i++) { if( i<nfilt/2 ) { // take care of the end effect (LPF step response) here norm=partialsum[nfilt/2+i]; } else if( i>(nsig-1-nfilt/2) ) { norm=partialsum[nfilt/2+nsig-1-i]; } else { norm=1.0; } k=shift0+i; j=i+nfilt; if( (k>0) && (k<np) ) { id[k]=id[k] - (cfi[j]*refi[i]-cfq[j]*refq[i])/norm; qd[k]=qd[k] - (cfi[j]*refq[i]+cfq[j]*refi[i])/norm; } } free(refi); free(refq); free(ci); free(cq); free(cfi); free(cfq); return; } unsigned long writec2file(char *c2filename, int trmin, double freq , float *idat, float *qdat) { int i; float *buffer; FILE *fp; fp = fopen(c2filename,"wb"); if( fp == NULL ) { fprintf(stderr, "Could not open c2 file '%s'\n", c2filename); return 0; } unsigned long nwrite = fwrite(c2filename,sizeof(char),14,fp); nwrite = fwrite(&trmin, sizeof(int), 1, fp); nwrite = fwrite(&freq, sizeof(double), 1, fp); buffer=calloc(2*45000,sizeof(float)); for(i=0; i<45000; i++) { buffer[2*i]=idat[i]; buffer[2*i+1]=-qdat[i]; } nwrite = fwrite(buffer, sizeof(float), 2*45000, fp); free(buffer); if( nwrite == 2*45000 ) { return nwrite; } else { return 0; } } unsigned int count_hard_errors( unsigned char *symbols, unsigned char *channel_symbols) { int i,is; unsigned char cw[162]; unsigned int nerrors; for (i=0; i<162; i++) { cw[i] = channel_symbols[i] >=2 ? 1:0; } deinterleave(cw); nerrors=0; for (i=0; i<162; i++) { is = symbols[i] > 127 ? 1:0; nerrors = nerrors + (is == cw[i] ? 0:1); } return nerrors; } //*************************************************************************** void usage(void) { printf("Usage: wsprd [options...] infile\n"); printf(" infile must have suffix .wav or .c2\n"); printf("\n"); printf("Options:\n"); printf(" -a <path> path to writeable data files, default=\".\"\n"); printf(" -B disable block demodulation - use single-symbol noncoherent demod\n"); printf(" -c write .c2 file at the end of the first pass\n"); printf(" -C maximum number of decoder cycles per bit, default 10000\n"); printf(" -d deeper search. Slower, a few more decodes\n"); printf(" -e x (x is transceiver dial frequency error in Hz)\n"); printf(" -f x (x is transceiver dial frequency in MHz)\n"); printf(" -H do not use (or update) the hash table\n"); printf(" -J use the stack decoder instead of Fano decoder\n"); printf(" -m decode wspr-15 .wav file\n"); printf(" -o n (0<=n<=5), decoding depth for OSD, default is disabled\n"); printf(" -q quick mode - doesn't dig deep for weak signals\n"); printf(" -s single pass mode, no subtraction (same as original wsprd)\n"); printf(" -v verbose mode (shows dupes)\n"); printf(" -w wideband mode - decode signals within +/- 150 Hz of center\n"); printf(" -z x (x is fano metric table bias, default is 0.45)\n"); } //*************************************************************************** int main(int argc, char *argv[]) { char cr[] = "(C) 2018, Steven Franke - K9AN"; (void)cr; extern char *optarg; extern int optind; int i,j,k; unsigned char *symbols, *decdata, *channel_symbols, *apmask, *cw; signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0}; char *callsign, *grid, *call_loc_pow; char *ptr_to_infile,*ptr_to_infile_suffix; char *data_dir="."; char wisdom_fname[200],all_fname[200],spots_fname[200]; char timer_fname[200],hash_fname[200]; char uttime[5],date[7]; int c,delta,maxpts=65536,verbose=0,quickmode=0,more_candidates=0, stackdecoder=0; int usehashtable=1,wspr_type=2, ipass, nblocksize; int nhardmin,ihash; int writec2=0,maxdrift; int shift1, lagmin, lagmax, lagstep, ifmin, ifmax, not_decoded; unsigned int nbits=81, stacksize=200000; struct snode * stack=NULL; unsigned int npoints, cycles, maxnp, metric; float df=375.0/256.0/2; float fsymbs[162]; float dt=1.0/375.0, dt_print; double dialfreq_cmdline=0.0, dialfreq, freq_print; double dialfreq_error=0.0; float fmin=-110, fmax=110; float f1, fstep, sync1, drift1; float dmin; float psavg[512]; float *idat, *qdat; clock_t t0,t00; float tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0; float tsync1=0.0,tsync2=0.0,tosd=0.0,ttotal=0.0; struct cand { float freq; float snr; int shift; float drift; float sync; }; struct cand candidates[200]; struct result { char date[7]; char time[5]; float sync; float snr; float dt; double freq; char message[23]; float drift; unsigned int cycles; int jitter; int blocksize; unsigned int metric; int nhardmin; int ipass; int decodetype;}; struct result decodes[50]; char *hashtab; hashtab=calloc(32768*13,sizeof(char)); char *loctab; loctab=calloc(32768*5,sizeof(char)); int nh; symbols=calloc(nbits*2,sizeof(unsigned char)); apmask=calloc(162,sizeof(unsigned char)); cw=calloc(162,sizeof(unsigned char)); decdata=calloc(11,sizeof(unsigned char)); channel_symbols=calloc(nbits*2,sizeof(unsigned char)); callsign=calloc(13,sizeof(char)); grid=calloc(5,sizeof(char)); call_loc_pow=calloc(23,sizeof(char)); float allfreqs[100]; char allcalls[100][13]; for (i=0; i<100; i++) allfreqs[i]=0.0; memset(allcalls,0,sizeof(char)*100*13); int uniques=0, noprint=0, ndecodes_pass=0; // Parameters used for performance-tuning: unsigned int maxcycles=10000; //Decoder timeout limit float minsync1=0.10; //First sync limit float minsync2=0.12; //Second sync limit int iifac=8; //Step size in final DT peakup int symfac=50; //Soft-symbol normalizing factor int subtraction=1; int npasses=3; int ndepth=-1; //Depth for OSD float minrms=52.0 * (symfac/64.0); //Final test for plausible decoding delta=60; //Fano threshold step float bias=0.45; //Fano metric bias (used for both Fano and stack algorithms) t00=clock(); fftwf_complex *fftin, *fftout; #include "./metric_tables.c" int mettab[2][256]; idat=calloc(maxpts,sizeof(float)); qdat=calloc(maxpts,sizeof(float)); while ( (c = getopt(argc, argv, "a:BcC:de:f:HJmo:qstwvz:")) !=-1 ) { switch (c) { case 'a': data_dir = optarg; break; case 'B': npasses=2; break; case 'c': writec2=1; break; case 'C': maxcycles=(unsigned int) strtoul(optarg,NULL,10); break; case 'd': more_candidates=1; break; case 'e': dialfreq_error = strtod(optarg,NULL); // units of Hz // dialfreq_error = dial reading - actual, correct frequency break; case 'f': dialfreq_cmdline = strtod(optarg,NULL); // units of MHz break; case 'H': usehashtable = 0; break; case 'J': //Stack (Jelinek) decoder, Fano decoder is the default stackdecoder = 1; break; case 'm': //15-minute wspr mode wspr_type = 15; break; case 'o': //use ordered-statistics-decoder ndepth=(int) strtol(optarg,NULL,10); break; case 'q': //no shift jittering quickmode = 1; break; case 's': //single pass mode subtraction = 0; npasses = 1; break; case 'v': verbose = 1; break; case 'w': fmin=-150.0; fmax=150.0; break; case 'z': bias=strtod(optarg,NULL); //fano metric bias (default is 0.45) break; case '?': usage(); return 1; } } if( access(data_dir, R_OK | W_OK)) { fprintf(stderr, "Error: inaccessible data directory: '%s'\n", data_dir); usage(); return EXIT_FAILURE; } if( optind+1 > argc) { usage(); return 1; } else { ptr_to_infile=argv[optind]; } if( stackdecoder ) { stack=calloc(stacksize,sizeof(struct snode)); } // setup metric table for(i=0; i<256; i++) { mettab[0][i]=round( 10*(metric_tables[2][i]-bias) ); mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) ); } FILE *fp_fftwf_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer; strcpy(wisdom_fname,"."); strcpy(all_fname,"."); strcpy(spots_fname,"."); strcpy(timer_fname,"."); strcpy(hash_fname,"."); if(data_dir != NULL) { strncpy(wisdom_fname,data_dir, sizeof wisdom_fname); strncpy(all_fname,data_dir, sizeof all_fname); strncpy(spots_fname,data_dir, sizeof spots_fname); strncpy(timer_fname,data_dir, sizeof timer_fname); strncpy(hash_fname,data_dir, sizeof hash_fname); } strncat(wisdom_fname,"/wspr_wisdom.dat",20); strncat(all_fname,"/ALL_WSPR.TXT",20); strncat(spots_fname,"/wspr_spots.txt",20); strncat(timer_fname,"/wspr_timer.out",20); strncat(hash_fname,"/hashtable.txt",20); if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "r"))) { //Open FFTW wisdom fftwf_import_wisdom_from_file(fp_fftwf_wisdom_file); fclose(fp_fftwf_wisdom_file); } fall_wspr=fopen(all_fname,"a"); fwsprd=fopen(spots_fname,"w"); // FILE *fdiag; // fdiag=fopen("wsprd_diag","a"); if((ftimer=fopen(timer_fname,"r"))) { //Accumulate timing data int nr=fscanf(ftimer,"%f %f %f %f %f %f %f %f", &treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&tosd,&ttotal); fclose(ftimer); if(nr == 0) fprintf(stderr, "Empty timer file: '%s'\n", timer_fname); } ftimer=fopen(timer_fname,"w"); if( strstr(ptr_to_infile,".wav") ) { ptr_to_infile_suffix=strstr(ptr_to_infile,".wav"); t0 = clock(); npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat); treadwav += (float)(clock()-t0)/CLOCKS_PER_SEC; if( npoints == 1 ) { return 1; } dialfreq=dialfreq_cmdline - (dialfreq_error*1.0e-06); } else if ( strstr(ptr_to_infile,".c2") !=0 ) { ptr_to_infile_suffix=strstr(ptr_to_infile,".c2"); npoints=readc2file(ptr_to_infile, idat, qdat, &dialfreq, &wspr_type); if( npoints == 1 ) { return 1; } dialfreq -= (dialfreq_error*1.0e-06); } else { printf("Error: Failed to open %s\n",ptr_to_infile); printf("WSPR file must have suffix .wav or .c2\n"); return 1; } // Parse date and time from given filename strncpy(date,ptr_to_infile_suffix-11,6); strncpy(uttime,ptr_to_infile_suffix-4,4); date[6]='\0'; uttime[4]='\0'; // Do windowed ffts over 2 symbols, stepped by half symbols int nffts=4*floor(npoints/512)-1; fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512); fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512); PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE); float ps[512][nffts]; float w[512]; for(i=0; i<512; i++) { w[i]=sin(0.006147931*i); } if( usehashtable ) { char line[80], hcall[13], hgrid[5]; if( (fhash=fopen(hash_fname,"r+")) ) { while (fgets(line, sizeof(line), fhash) != NULL) { hgrid[0]='\0'; sscanf(line,"%d %s %s",&nh,hcall,hgrid); strcpy(hashtab+nh*13,hcall); if(strlen(hgrid)>0) strcpy(loctab+nh*5,hgrid); } } else { fhash=fopen(hash_fname,"w+"); } fclose(fhash); } //*************** main loop starts here ***************** for (ipass=0; ipass<npasses; ipass++) { if(ipass==1 && ndecodes_pass == 0 && npasses>2) ipass=2; if(ipass < 2) { nblocksize=1; maxdrift=4; minsync2=0.12; } if(ipass == 2 ) { nblocksize=4; // try 3 blocksizes plus bitbybit normalization maxdrift=0; // no drift for smaller frequency estimator variance minsync2=0.10; } ndecodes_pass=0; // still needed? for (i=0; i<nffts; i++) { for(j=0; j<512; j++ ) { k=i*128+j; fftin[j][0]=idat[k] * w[j]; fftin[j][1]=qdat[k] * w[j]; } fftwf_execute(PLAN3); for (j=0; j<512; j++ ) { k=j+256; if( k>511 ) k=k-512; ps[j][i]=fftout[k][0]*fftout[k][0]+fftout[k][1]*fftout[k][1]; } } // Compute average spectrum for (i=0; i<512; i++) psavg[i]=0.0; for (i=0; i<nffts; i++) { for (j=0; j<512; j++) { psavg[j]=psavg[j]+ps[j][i]; } } // Smooth with 7-point window and limit spectrum to +/-150 Hz int window[7]={1,1,1,1,1,1,1}; float smspec[411]; for (i=0; i<411; i++) { smspec[i]=0.0; for(j=-3; j<=3; j++) { k=256-205+i+j; smspec[i]=smspec[i]+window[j+3]*psavg[k]; } } // Sort spectrum values, then pick off noise level as a percentile float tmpsort[411]; for (j=0; j<411; j++) { tmpsort[j]=smspec[j]; } qsort(tmpsort, 411, sizeof(float), floatcomp); // Noise level of spectrum is estimated as 123/411= 30'th percentile float noise_level = tmpsort[122]; /* Renormalize spectrum so that (large) peaks represent an estimate of snr. * We know from experience that threshold snr is near -7dB in wspr bandwidth, * corresponding to -7-26.3=-33.3dB in 2500 Hz bandwidth. * The corresponding threshold is -42.3 dB in 2500 Hz bandwidth for WSPR-15. */ float min_snr, snr_scaling_factor; min_snr = pow(10.0,-8.0/10.0); //this is min snr in wspr bw if( wspr_type == 2 ) { snr_scaling_factor=26.3; } else { snr_scaling_factor=35.3; } for (j=0; j<411; j++) { smspec[j]=smspec[j]/noise_level - 1.0; if( smspec[j] < min_snr) smspec[j]=0.1*min_snr; continue; } // Find all local maxima in smoothed spectrum. for (i=0; i<200; i++) { candidates[i].freq=0.0; candidates[i].snr=0.0; candidates[i].drift=0.0; candidates[i].shift=0; candidates[i].sync=0.0; } int npk=0; unsigned char candidate; for(j=1; j<410; j++) { candidate = (smspec[j]>smspec[j-1]) && (smspec[j]>smspec[j+1]) && (npk<200); if ( candidate ) { candidates[npk].freq = (j-205)*df; candidates[npk].snr = 10*log10(smspec[j])-snr_scaling_factor; npk++; } } if( more_candidates ) { for(j=0; j<411; j=j+3) { candidate = (smspec[j]>min_snr) && (npk<200); if ( candidate ) { candidates[npk].freq = (j-205)*df; candidates[npk].snr = 10*log10(smspec[j])-snr_scaling_factor; npk++; } } } // Compute corrected fmin, fmax, accounting for dial frequency error fmin += dialfreq_error; // dialfreq_error is in units of Hz fmax += dialfreq_error; // Don't waste time on signals outside of the range [fmin,fmax]. i=0; for( j=0; j<npk; j++) { if( candidates[j].freq >= fmin && candidates[j].freq <= fmax ) { candidates[i]=candidates[j]; i++; } } npk=i; // bubble sort on snr int pass; struct cand tmp; for (pass = 1; pass <= npk - 1; pass++) { for (k = 0; k < npk - pass ; k++) { if (candidates[k].snr < candidates[k+1].snr) { tmp = candidates[k]; candidates[k]=candidates[k+1]; candidates[k+1] = tmp; } } } t0=clock(); /* Make coarse estimates of shift (DT), freq, and drift * Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative to nominal start time, which is 2 seconds into the file * Calculates shift relative to the beginning of the file * Negative shifts mean that signal started before start of file * The program prints DT = shift-2 s * Shifts that cause sync vector to fall off of either end of the data vector are accommodated by "partial decoding", such that missing symbols produce a soft-decision symbol value of 128 * The frequency drift model is linear, deviation of +/- drift/2 over the span of 162 symbols, with deviation equal to 0 at the center of the signal vector. */ int idrift,ifr,if0,ifd,k0; int kindex; float smax,ss,pow,p0,p1,p2,p3; for(j=0; j<npk; j++) { //For each candidate... smax=-1e30; if0=candidates[j].freq/df+256; for (ifr=if0-2; ifr<=if0+2; ifr++) { //Freq search for( k0=-10; k0<22; k0++) { //Time search for (idrift=-maxdrift; idrift<=maxdrift; idrift++) { //Drift search ss=0.0; pow=0.0; for (k=0; k<162; k++) { //Sum over symbols ifd=ifr+((float)k-81.0)/81.0*( (float)idrift )/(2.0*df); kindex=k0+2*k; if( kindex < nffts ) { p0=ps[ifd-3][kindex]; p1=ps[ifd-1][kindex]; p2=ps[ifd+1][kindex]; p3=ps[ifd+3][kindex]; p0=sqrt(p0); p1=sqrt(p1); p2=sqrt(p2); p3=sqrt(p3); ss=ss+(2*pr3[k]-1)*((p1+p3)-(p0+p2)); pow=pow+p0+p1+p2+p3; } } sync1=ss/pow; if( sync1 > smax ) { //Save coarse parameters smax=sync1; candidates[j].shift=128*(k0+1); candidates[j].drift=idrift; candidates[j].freq=(ifr-256)*df; candidates[j].sync=sync1; } } } } } tcandidates += (float)(clock()-t0)/CLOCKS_PER_SEC; /* Refine the estimates of freq, shift using sync as a metric. Sync is calculated such that it is a float taking values in the range [0.0,1.0]. Function sync_and_demodulate has three modes of operation mode is the last argument: 0 = no frequency or drift search. find best time lag. 1 = no time lag or drift search. find best frequency. 2 = no frequency or time lag search. Calculate soft-decision symbols using passed frequency and shift. NB: best possibility for OpenMP may be here: several worker threads could each work on one candidate at a time. */ for (j=0; j<npk; j++) { f1=candidates[j].freq; drift1=candidates[j].drift; shift1=candidates[j].shift; sync1=candidates[j].sync; // coarse-grid lag and freq search, then if sync>minsync1 continue fstep=0.0; ifmin=0; ifmax=0; lagmin=shift1-128; lagmax=shift1+128; lagstep=64; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0); tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC; fstep=0.25; ifmin=-2; ifmax=2; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1); if(ipass < 2) { // refine drift estimate fstep=0.0; ifmin=0; ifmax=0; float driftp,driftm,syncp,syncm; driftp=drift1+0.5; sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &driftp, symfac, &syncp, 1); driftm=drift1-0.5; sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &driftm, symfac, &syncm, 1); if(syncp>sync1) { drift1=driftp; sync1=syncp; } else if (syncm>sync1) { drift1=driftm; sync1=syncm; } } tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC; // fine-grid lag and freq search if( sync1 > minsync1 ) { lagmin=shift1-32; lagmax=shift1+32; lagstep=16; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0); tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC; // fine search over frequency fstep=0.05; ifmin=-2; ifmax=2; t0 = clock(); sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1, lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1); tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC; candidates[j].freq=f1; candidates[j].shift=shift1; candidates[j].drift=drift1; candidates[j].sync=sync1; } } int nwat=0; int idupe; for ( j=0; j<npk; j++) { idupe=0; for (k=0;k<nwat;k++) { if( fabsf(candidates[j].freq - candidates[k].freq) < 0.05 && abs(candidates[j].shift - candidates[k].shift) < 16 ) { idupe=1; break; } } if( idupe == 1 ) { if(candidates[j].sync > candidates[k].sync) candidates[k]=candidates[j]; } else if ( candidates[j].sync > minsync2 ) { candidates[nwat]=candidates[j]; nwat++; } } int idt, ii, jittered_shift; float y,sq,rms; int ib, blocksize, bitmetric; int n1,n2,n3,nadd,nu,ntype; int osd_decode; for (j=0; j<nwat; j++) { memset(symbols,0,sizeof(char)*nbits*2); memset(callsign,0,sizeof(char)*13); memset(grid,0,sizeof(char)*5); memset(call_loc_pow,0,sizeof(char)*23); f1=candidates[j].freq; shift1=candidates[j].shift; drift1=candidates[j].drift; not_decoded=1; osd_decode=0; ib=1; while( ib <= nblocksize && not_decoded ) { if (ib < 4) { blocksize=ib; bitmetric=0; } if (ib == 4) { blocksize=1; bitmetric=1; } idt=0; ii=0; while ( not_decoded && idt<=(128/iifac)) { ii=(idt+1)/2; if( idt%2 == 1 ) ii=-ii; ii=iifac*ii; jittered_shift=shift1+ii; nhardmin=0; dmin=0.0; // Get soft-decision symbols t0 = clock(); noncoherent_sequence_detection(idat, qdat, npoints, symbols, &f1, &jittered_shift, &drift1, symfac, &blocksize, &bitmetric); tsync2 += (float)(clock()-t0)/CLOCKS_PER_SEC; sq=0.0; for(i=0; i<162; i++) { y=(float)symbols[i] - 128.0; sq += y*y; } rms=sqrt(sq/162.0); if(rms > minrms) { deinterleave(symbols); t0 = clock(); if ( stack ) { not_decoded = jelinek(&metric, &cycles, decdata, symbols, nbits, stacksize, stack, mettab,maxcycles); } else { not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits, mettab,delta,maxcycles); } tfano += (float)(clock()-t0)/CLOCKS_PER_SEC; if( (ndepth >= 0) && not_decoded ) { for(i=0; i<162; i++) { fsymbs[i]=symbols[i]-128.0; } t0 = clock(); osdwspr_(fsymbs,apmask,&ndepth,cw,&nhardmin,&dmin); tosd += (float)(clock()-t0)/CLOCKS_PER_SEC; for(i=0; i<162; i++) { symbols[i]=255*cw[i]; } fano(&metric,&cycles,&maxnp,decdata,symbols,nbits, mettab,delta,maxcycles); for(i=0; i<11; i++) { if( decdata[i]>127 ) { message[i]=decdata[i]-256; } else { message[i]=decdata[i]; } } unpack50(message,&n1,&n2); if( !unpackcall(n1,callsign) ) break; callsign[12]=0; if( !unpackgrid(n2, grid) ) break; grid[4]=0; ntype = (n2&127) - 64; int itype; if( (ntype >= 0) && (ntype <= 62) ) { nu = ntype%10; itype=1; if( !(nu == 0 || nu == 3 || nu == 7) ) { nadd=nu; if( nu > 3 ) nadd=nu-3; if( nu > 7 ) nadd=nu-7; n3=n2/128+32768*(nadd-1); if( !unpackpfx(n3,callsign) ) { break; } itype=2; } ihash=nhash(callsign,strlen(callsign),(uint32_t)146); if(strncmp(hashtab+ihash*13,callsign,13)==0) { if( (itype==1 && strncmp(loctab+ihash*5,grid,5)==0) || (itype==2) ) { not_decoded=0; osd_decode =1; } } } } } idt++; if( quickmode ) break; } ib++; } if( !not_decoded ) { ndecodes_pass++; for(i=0; i<11; i++) { if( decdata[i]>127 ) { message[i]=decdata[i]-256; } else { message[i]=decdata[i]; } } // Unpack the decoded message, update the hashtable, apply // sanity checks on grid and power, and return // call_loc_pow string and also callsign (for de-duping). noprint=unpk_(message,hashtab,loctab,call_loc_pow,callsign); if( subtraction && !noprint ) { if( get_wspr_channel_symbols(call_loc_pow, hashtab, loctab, channel_symbols) ) { subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols); if(!osd_decode) nhardmin=count_hard_errors(symbols,channel_symbols); } else { break; } } // Remove dupes (same callsign and freq within 4 Hz) int dupe=0; for (i=0; i<uniques; i++) { if(!strcmp(callsign,allcalls[i]) && (fabs(f1-allfreqs[i]) <4.0)) dupe=1; } if( (verbose || !dupe) && !noprint) { strcpy(allcalls[uniques],callsign); allfreqs[uniques]=f1; uniques++; // Add an extra space at the end of each line so that wspr-x doesn't // truncate the power (TNX to DL8FCL!) if( wspr_type == 15 ) { freq_print=dialfreq+(1500+112.5+f1/8.0)/1e6; dt_print=shift1*8*dt-1.0; } else { freq_print=dialfreq+(1500+f1)/1e6; dt_print=shift1*dt-1.0; } strcpy(decodes[uniques-1].date,date); strcpy(decodes[uniques-1].time,uttime); decodes[uniques-1].sync=candidates[j].sync; decodes[uniques-1].snr=candidates[j].snr; decodes[uniques-1].dt=dt_print; decodes[uniques-1].freq=freq_print; strcpy(decodes[uniques-1].message,call_loc_pow); decodes[uniques-1].drift=drift1; decodes[uniques-1].cycles=cycles; decodes[uniques-1].jitter=ii; decodes[uniques-1].blocksize=blocksize+3*bitmetric; decodes[uniques-1].metric=metric; decodes[uniques-1].nhardmin=nhardmin; decodes[uniques-1].ipass=ipass; decodes[uniques-1].decodetype=osd_decode; } } } if( ipass == 0 && writec2 ) { char c2filename[15]; double carrierfreq=dialfreq; int wsprtype=2; strcpy(c2filename,"000000_0001.c2"); printf("Writing %s\n",c2filename); writec2file(c2filename, wsprtype, carrierfreq, idat, qdat); } } // sort the result in order of increasing frequency struct result temp; for (j = 1; j <= uniques - 1; j++) { for (k = 0; k < uniques - j ; k++) { if (decodes[k].freq > decodes[k+1].freq) { temp = decodes[k]; decodes[k]=decodes[k+1];; decodes[k+1] = temp; } } } for (i=0; i<uniques; i++) { printf("%4s %3.0f %4.1f %10.6f %2d %-s \n", decodes[i].time, decodes[i].snr,decodes[i].dt, decodes[i].freq, (int)decodes[i].drift, decodes[i].message); fprintf(fall_wspr, "%6s %4s %3.0f %5.2f %11.7f %-22s %2d %5.2f %2d %2d %4d %2d %3d %5u %5d\n", decodes[i].date, decodes[i].time, decodes[i].snr, decodes[i].dt, decodes[i].freq, decodes[i].message, (int)decodes[i].drift, decodes[i].sync, decodes[i].ipass+1,decodes[i].blocksize,decodes[i].jitter, decodes[i].decodetype,decodes[i].nhardmin,decodes[i].cycles/81, decodes[i].metric); fprintf(fwsprd, "%6s %4s %3d %3.0f %4.1f %10.6f %-22s %2d %5u %4d\n", decodes[i].date, decodes[i].time, (int)(10*decodes[i].sync), decodes[i].snr, decodes[i].dt, decodes[i].freq, decodes[i].message, (int)decodes[i].drift, decodes[i].cycles/81, decodes[i].jitter); } printf("<DecodeFinished>\n"); fftwf_free(fftin); fftwf_free(fftout); if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "w"))) { fftwf_export_wisdom_to_file(fp_fftwf_wisdom_file); fclose(fp_fftwf_wisdom_file); } ttotal += (float)(clock()-t00)/CLOCKS_PER_SEC; fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n", treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,tosd,ttotal); fprintf(ftimer,"Code segment Seconds Frac\n"); fprintf(ftimer,"-----------------------------------\n"); fprintf(ftimer,"readwavfile %7.2f %7.2f\n",treadwav,treadwav/ttotal); fprintf(ftimer,"Coarse DT f0 f1 %7.2f %7.2f\n",tcandidates, tcandidates/ttotal); fprintf(ftimer,"sync_and_demod(0) %7.2f %7.2f\n",tsync0,tsync0/ttotal); fprintf(ftimer,"sync_and_demod(1) %7.2f %7.2f\n",tsync1,tsync1/ttotal); fprintf(ftimer,"sync_and_demod(2) %7.2f %7.2f\n",tsync2,tsync2/ttotal); fprintf(ftimer,"Stack/Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal); fprintf(ftimer,"OSD decoder %7.2f %7.2f\n",tosd,tosd/ttotal); fprintf(ftimer,"-----------------------------------\n"); fprintf(ftimer,"Total %7.2f %7.2f\n",ttotal,1.0); fclose(fall_wspr); fclose(fwsprd); // fclose(fdiag); fclose(ftimer); fftwf_destroy_plan(PLAN1); fftwf_destroy_plan(PLAN2); fftwf_destroy_plan(PLAN3); if( usehashtable ) { fhash=fopen(hash_fname,"w"); for (i=0; i<32768; i++) { if( strncmp(hashtab+i*13,"\0",1) != 0 ) { fprintf(fhash,"%5d %s %s\n",i,hashtab+i*13,loctab+i*5); } } fclose(fhash); } free(hashtab); free(loctab); free(symbols); free(decdata); free(channel_symbols); free(callsign); free(call_loc_pow); free(idat); free(qdat); free(stack); return 0; }