WSJT-X/lib/qra/q65/q65test.c

911 lines
24 KiB
C

// q65test.c
// Word Error Rate test example for the Q65 mode
// Multi-threaded simulator version
// (c) 2020 - Nico Palermo, IV3NWV
//
//
// ------------------------------------------------------------------------------
// This file is part of the qracodes project, a Forward Error Control
// encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
//
// Dependencies:
// q65test.c - this file
// normrnd.c/.h - random gaussian number generator
// npfwht.c/.h - Fast Walsh-Hadamard Transforms
// pdmath.c/.h - Elementary math on probability distributions
// qra15_65_64_irr_e23.c/.h - Tables for the QRA(15,65) irregular RA code used by Q65
// qracodes.c/.h - QRA codes encoding/decoding functions
// fadengauss.c - fading coefficients tables for gaussian shaped fast fading channels
// fadenlorenz.c - fading coefficients tables for lorenzian shaped fast fading channels
//
// -------------------------------------------------------------------------------
//
// This is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// qracodes is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with qracodes source distribution.
// If not, see <http://www.gnu.org/licenses/>.
//
// ------------------------------------------------------------------------------
// OS dependent defines and includes --------------------------------------------
#if _WIN32 // note the underscore: without it, it's not msdn official!
// Windows (x64 and x86)
#define _CRT_SECURE_NO_WARNINGS // we don't need warnings for sprintf/fopen function usage
#include <windows.h> // required only for GetTickCount(...)
#include <process.h> // _beginthread
#endif
#if defined(__linux__)
// remove unwanted macros
#define __cdecl
// implements Windows API
#include <time.h>
unsigned int GetTickCount(void) {
struct timespec ts;
unsigned int theTick = 0U;
clock_gettime( CLOCK_REALTIME, &ts );
theTick = ts.tv_nsec / 1000000;
theTick += ts.tv_sec * 1000;
return theTick;
}
// Convert Windows millisecond sleep
//
// VOID WINAPI Sleep(_In_ DWORD dwMilliseconds);
//
// to Posix usleep (in microseconds)
//
// int usleep(useconds_t usec);
//
#include <unistd.h>
#define Sleep(x) usleep(x*1000)
#endif
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
#include <pthread.h>
#endif
#if __APPLE__
#endif
#include <stdlib.h>
#include <stdio.h>
#include "qracodes.h" // basic qra encoding/decoding functions
#include "normrnd.h" // gaussian numbers generator
#include "pdmath.h" // operations on probability distributions
#include "qra15_65_64_irr_e23.h" // QRA code used by Q65
#include "q65.h"
#define Q65_TS 0.640f // Q65 symbol time interval in seconds
#define Q65_REFBW 2500.0f // reference bandwidth in Hz for SNR estimates
// -----------------------------------------------------------------------------------
#define NTHREADS_MAX 160 // if you have some big enterprise hardware
// channel types
#define CHANNEL_AWGN 0
#define CHANNEL_RAYLEIGH 1
#define CHANNEL_FASTFADING 2
// amount of a-priori information provided to the decoder
#define AP_NONE 0
#define AP_MYCALL 1
#define AP_HISCALL 2
#define AP_BOTHCALL 3
#define AP_FULL 4
#define AP_LAST AP_FULL
const char ap_str[AP_LAST+1][16] = {
"None",
"32 bit",
"32 bit",
"62 bit",
"78 bit",
};
const char fnameout_sfx[AP_LAST+1][64] = {
"-ap00.txt",
"-ap32m.txt",
"-ap32h.txt",
"-ap62.txt",
"-ap78.txt"
};
const char fnameout_pfx[3][64] = {
"wer-awgn-",
"wer-rayl-",
"wer-ff-"
};
// AP masks are computed assuming that the source message has been packed in 13 symbols s[0]..[s12]
// in a little indian format, that's to say:
// s[0] = {src5 src4 src3 src2 src1 src0}
// s[1] = {src11 src10 src9 src8 src7 src6}
// ...
// s[12]= {src78 src77 src76 src75 src74 src73}
//
// where srcj is the j-th bit of the source message.
//
// It is also assumed that the source message is as indicated by the protocol specification of wsjt-x
// structured messages. src78 should be always set to a value known by the decoder (and masked as an AP bit)
// With this convention the field i3 of the structured message is mapped to bits src77 src76 src75,
// that's to say to the 3rd,4th and 5th bit of s[12].
// Therefore, if i3 is known in advance, since src78 is always known,
// the AP mask for s[12] is 0x3C (4 most significant bits of s[12] are known)
const int ap_masks_q65[AP_LAST+1][13] = {
// AP0 Mask
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
// Mask first(c28 r1) .... i3 src78 (AP32my MyCall ? ? StdMsg)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3C},
// Mask second(c28 r1) .... i3 src78 (AP32his ? HisCall ? StdMsg)
{ 0x00, 0x00, 0x00, 0x00, 0x20, 0x3F, 0x3F, 0x3F, 0x3F, 0x0F, 0x00, 0x00, 0x3C},
// Mask (c28 r1 c28 r1) ... i3 src78 (AP62 MyCall HisCall ? StdMsg)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x0F, 0x00, 0x00, 0x3C},
// Mask All (c28 r1 c28 r1 R g15 StdMsg src78) (AP78)
{ 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F, 0x3F},
};
int verbose = 0;
void printword(char *msg, int *x, int size)
{
int k;
printf("\n%s ",msg);
for (k=0;k<size;k++)
printf("%02hx ",x[k]);
printf("\n");
}
typedef struct {
int channel_type;
float EbNodB;
volatile int nt;
volatile int nerrs;
volatile int nerrsu;
volatile int ncrcwrong;
volatile int stop;
volatile int done;
int ap_index; // index to the a priori knowledge mask
const qracode *pcode; // pointer to the code descriptor
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
pthread_t thread;
#endif
} wer_test_ds;
typedef void( __cdecl *pwer_test_thread)(wer_test_ds*);
void wer_test_thread_awgnrayl(wer_test_ds *pdata)
{
// Thread for the AWGN/Rayleigh channel types
int nt = 0; // transmitted codewords
int nerrs = 0; // total number of errors
int ncrcwrong = 0; // number of decodes with wrong crc
q65_codec_ds codec;
int rc, k;
int nK, nN, nM, nm, nSamples;
int *x, *y, *xdec, *ydec;
const int *apMask;
float R;
float *rsquared, *pIntrinsics;
float EsNodBestimated;
// for channel simulation
const float No = 1.0f; // noise spectral density
const float sigma = sqrtf(No/2.0f); // std dev of I/Q noise components
const float sigmach = sqrtf(1/2.0f); // std dev of I/Q channel gains (Rayleigh channel)
float EbNo, EsNo, Es, A;
float *rp, *rq, *chp, *chq;
int channel_type = pdata->channel_type;
rc = q65_init(&codec,pdata->pcode);
if (rc<0) {
printf("error in qra65_init\n");
goto term_thread;
}
nK = q65_get_message_length(&codec);
nN = q65_get_codeword_length(&codec);
nM = q65_get_alphabet_size(&codec);
nm = q65_get_bits_per_symbol(&codec);
R = q65_get_code_rate(&codec);
nSamples = nN*nM;
x = (int*)malloc(nK*sizeof(int));
xdec = (int*)malloc(nK*sizeof(int));
y = (int*)malloc(nN*sizeof(int));
ydec = (int*)malloc(nN*sizeof(int));
rsquared = (float*)malloc(nSamples*sizeof(float));
pIntrinsics = (float*)malloc(nSamples*sizeof(float));
// sets the AP mask to be used for this simulation
if (pdata->ap_index==AP_NONE)
apMask = NULL; // we simply avoid masking if ap-index specifies no AP
else
apMask = ap_masks_q65[pdata->ap_index];
// Channel simulation variables --------------------
rp = (float*)malloc(nSamples*sizeof(float));
rq = (float*)malloc(nSamples*sizeof(float));
chp = (float*)malloc(nN*sizeof(float));
chq = (float*)malloc(nN*sizeof(float));
EbNo = (float)powf(10,pdata->EbNodB/10);
EsNo = 1.0f*nm*R*EbNo;
Es = EsNo*No;
A = (float)sqrt(Es);
// Generate a (meaningless) test message
for (k=0;k<nK;k++)
x[k] = k%nM;
// printword("x", x,nK);
// Encode
q65_encode(&codec,y,x);
// printword("y", y,nN);
// Simulate the channel and decode
// as long as we are stopped by our caller
while (pdata->stop==0) {
// Channel simulation --------------------------------------------
// Generate AWGN noise
normrnd_s(rp,nSamples,0,sigma);
normrnd_s(rq,nSamples,0,sigma);
if (channel_type == CHANNEL_AWGN)
// add symbol amplitudes
for (k=0;k<nN;k++)
rp[k*nM+y[k]]+=A;
else if (channel_type == CHANNEL_RAYLEIGH) {
// generate Rayleigh distributed taps
normrnd_s(chp,nN,0,sigmach);
normrnd_s(chq,nN,0,sigmach);
// add Rayleigh distributed symbol amplitudes
for (k=0;k<nN;k++) {
rp[k*nM+y[k]]+=A*chp[k];
rq[k*nM+y[k]]+=A*chq[k];
}
}
else {
printf("Wrong channel_type %d\n",channel_type);
goto term_thread;
}
// Compute the received energies
for (k=0;k<nSamples;k++)
rsquared[k] = rp[k]*rp[k] + rq[k]*rq[k];
// Channel simulation end --------------------------------------------
// DECODING ----------------------------------------------------------
// Compute intrinsics probabilities from the observed energies
rc = q65_intrinsics(&codec,pIntrinsics,rsquared);
if (rc<0) {
printf("Error in qra65_intrinsics: rc=%d\n",rc);
goto term_thread;
}
// Decode with the given AP information
// This call can be repeated for any desierd apMask
// until we manage to decode the message
rc = q65_decode(&codec,ydec,xdec, pIntrinsics, apMask,x);
switch (rc) {
case -1:
printf("Error in qra65_decode: rc=%d\n",rc);
goto term_thread;
case Q65_DECODE_FAILED:
// decoder failed to converge
nerrs++;
break;
case Q65_DECODE_CRCMISMATCH:
// decoder converged but we found a bad crc
nerrs++;
ncrcwrong++;
break;
}
// compute SNR from decoded codeword ydec and observed energies
if (rc>0 && verbose==1) {
float EbNodBestimated;
float SNRdBestimated;
q65_esnodb(&codec, &EsNodBestimated, ydec,rsquared);
EbNodBestimated = EsNodBestimated -10.0f*log10f(R*nm);
SNRdBestimated = EsNodBestimated -10.0f*log10f(Q65_TS*Q65_REFBW);
printf("\nEstimated Eb/No=%5.1fdB SNR2500=%5.1fdB",
EbNodBestimated,
SNRdBestimated);
}
nt = nt+1;
pdata->nt=nt;
pdata->nerrs=nerrs;
pdata->ncrcwrong = ncrcwrong;
}
term_thread:
free(x);
free(xdec);
free(y);
free(ydec);
free(rsquared);
free(pIntrinsics);
free(rp);
free(rq);
free(chp);
free(chq);
q65_free(&codec);
// signal the calling thread we are quitting
pdata->done=1;
#if _WIN32
_endthread();
#endif
}
void wer_test_thread_ff(wer_test_ds *pdata)
{
// We don't do a realistic simulation of the fading-channel here
// If required give a look to the simulator used in the QRA64 mode.
// For the purpose of testing the formal correctness of the Q65 decoder
// fast-fadind routines here we simulate the channel as a Rayleigh channel
// with no frequency spread but use the q65....-fastfading routines
// to check that they produce correct results also in this case.
const int submode = 2; // Assume that we are using the Q65C tone spacing
const float B90 = 4.0f; // Configure the Q65 fast-fading decoder for a the given freq. spread
const int fadingModel = 1; // Assume a lorenzian frequency spread
int nt = 0; // transmitted codewords
int nerrs = 0; // total number of errors
int ncrcwrong = 0; // number of decodes with wrong crc
q65_codec_ds codec;
int rc, k;
int nK, nN, nM, nm, nSamples;
int *x, *y, *xdec, *ydec;
const int *apMask;
float R;
float *rsquared, *pIntrinsics;
float EsNodBestimated;
int nBinsPerTone, nBinsPerSymbol;
// for channel simulation
const float No = 1.0f; // noise spectral density
const float sigma = sqrtf(No/2.0f); // std dev of I/Q noise components
const float sigmach = sqrtf(1/2.0f); // std dev of I/Q channel gains (Rayleigh channel)
float EbNo, EsNo, Es, A;
float *rp, *rq, *chp, *chq;
int channel_type = pdata->channel_type;
rc = q65_init(&codec,pdata->pcode);
if (rc<0) {
printf("error in q65_init\n");
goto term_thread;
}
nK = q65_get_message_length(&codec);
nN = q65_get_codeword_length(&codec);
nM = q65_get_alphabet_size(&codec);
nm = q65_get_bits_per_symbol(&codec);
R = q65_get_code_rate(&codec);
nBinsPerTone = 1<<submode;
nBinsPerSymbol = nM*(2+nBinsPerTone);
nSamples = nN*nBinsPerSymbol;
// sets the AP mask to be used for this simulation
if (pdata->ap_index==AP_NONE)
apMask = NULL; // we simply avoid masking if ap-index specifies no AP
else
apMask = ap_masks_q65[pdata->ap_index];
x = (int*)malloc(nK*sizeof(int));
xdec = (int*)malloc(nK*sizeof(int));
y = (int*)malloc(nN*sizeof(int));
ydec = (int*)malloc(nN*sizeof(int));
rsquared = (float*)malloc(nSamples*sizeof(float));
pIntrinsics = (float*)malloc(nN*nM*sizeof(float));
// Channel simulation variables --------------------
rp = (float*)malloc(nSamples*sizeof(float));
rq = (float*)malloc(nSamples*sizeof(float));
chp = (float*)malloc(nN*sizeof(float));
chq = (float*)malloc(nN*sizeof(float));
EbNo = (float)powf(10,pdata->EbNodB/10);
EsNo = 1.0f*nm*R*EbNo;
Es = EsNo*No;
A = (float)sqrt(Es);
// -------------------------------------------------
// generate a test message
for (k=0;k<nK;k++)
x[k] = k%nM;
// printword("x", x,nK);
// encode
q65_encode(&codec,y,x);
// printword("y", y,nN);
while (pdata->stop==0) {
// Channel simulation --------------------------------------------
// generate AWGN noise
normrnd_s(rp,nSamples,0,sigma);
normrnd_s(rq,nSamples,0,sigma);
// Generate Rayleigh distributed symbol amplitudes
normrnd_s(chp,nN,0,sigmach);
normrnd_s(chq,nN,0,sigmach);
// Don't simulate a really frequency spreaded signal.
// Just place the tones in the appropriate central bins
// ot the received signal
for (k=0;k<nN;k++) {
rp[k*nBinsPerSymbol+y[k]*nBinsPerTone+nM]+=A*chp[k];
rq[k*nBinsPerSymbol+y[k]*nBinsPerTone+nM]+=A*chq[k];
}
// compute the received energies
for (k=0;k<nSamples;k++)
rsquared[k] = rp[k]*rp[k] + rq[k]*rq[k];
// Channel simulation end --------------------------------------------
// compute intrinsics probabilities from the observed energies
// using the fast-fading version
rc = q65_intrinsics_fastfading(&codec,pIntrinsics,rsquared,submode,B90,fadingModel);
if (rc<0) {
printf("Error in q65_intrinsics: rc=%d\n",rc);
goto term_thread;
}
// decode with the given AP information (eventually with different apMasks and apSymbols)
rc = q65_decode(&codec,ydec,xdec, pIntrinsics, apMask,x);
switch (rc) {
case -1:
printf("Error in q65_decode: rc=%d\n",rc);
goto term_thread;
case Q65_DECODE_FAILED:
// decoder failed to converge
nerrs++;
break;
case Q65_DECODE_CRCMISMATCH:
// decoder converged but we found a bad crc
nerrs++;
ncrcwrong++;
break;
}
// compute SNR from decoded codeword ydec and observed energies rsquared
if (rc>0 && verbose==1) {
float EbNodBestimated;
float SNRdBestimated;
// use the fastfading version
q65_esnodb_fastfading(&codec, &EsNodBestimated, ydec,rsquared);
EbNodBestimated = EsNodBestimated -10.0f*log10f(R*nm);
SNRdBestimated = EsNodBestimated -10.0f*log10f(Q65_TS*Q65_REFBW);
printf("\nEstimated Eb/No=%5.1fdB SNR2500=%5.1fdB",
EbNodBestimated,
SNRdBestimated);
}
nt = nt+1;
pdata->nt=nt;
pdata->nerrs=nerrs;
pdata->ncrcwrong = ncrcwrong;
}
term_thread:
free(x);
free(xdec);
free(y);
free(ydec);
free(rsquared);
free(pIntrinsics);
free(rp);
free(rq);
free(chp);
free(chq);
q65_free(&codec);
// signal the calling thread we are quitting
pdata->done=1;
#if _WIN32
_endthread();
#endif
}
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
void *wer_test_pthread_awgnrayl(void *p)
{
wer_test_thread_awgnrayl((wer_test_ds *)p);
return 0;
}
void *wer_test_pthread_ff(void *p)
{
wer_test_thread_ff((wer_test_ds *)p);
return 0;
}
#endif
int wer_test_proc(const qracode *pcode, int nthreads, int chtype, int ap_index, float *EbNodB, int *nerrstgt, int nitems)
{
int k,j,nt,nerrs,nerrsu,ncrcwrong,nd;
int cini,cend;
char fnameout[128];
FILE *fout;
wer_test_ds wt[NTHREADS_MAX];
float pe,peu,avgt;
if (nthreads>NTHREADS_MAX) {
printf("Error: nthreads should be <=%d\n",NTHREADS_MAX);
return -1;
}
sprintf(fnameout,"%s%s%s",
fnameout_pfx[chtype],
pcode->name,
fnameout_sfx[ap_index]);
fout = fopen(fnameout,"w");
fprintf(fout,"#Code Name: %s\n",pcode->name);
fprintf(fout,"#ChannelType (0=AWGN,1=Rayleigh,2=Fast-Fading)\n#Eb/No (dB)\n#Transmitted Codewords\n#Errors\n#CRC Errors\n#Undetected\n#Avg dec. time (ms)\n#WER\n#UER\n");
printf("\nTesting the code %s\nSimulation data will be saved to %s\n",
pcode->name,
fnameout);
fflush (stdout);
// init fixed thread parameters and preallocate buffers
for (j=0;j<nthreads;j++) {
wt[j].channel_type=chtype;
wt[j].ap_index = ap_index;
wt[j].pcode = pcode;
}
for (k=0;k<nitems;k++) {
printf("\nTesting at Eb/No=%4.2f dB...",EbNodB[k]);
fflush (stdout);
for (j=0;j<nthreads;j++) {
wt[j].EbNodB=EbNodB[k];
wt[j].nt=0;
wt[j].nerrs=0;
wt[j].nerrsu=0;
wt[j].ncrcwrong=0;
wt[j].done = 0;
wt[j].stop = 0;
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
if (chtype==CHANNEL_FASTFADING) {
if (pthread_create (&wt[j].thread, 0, wer_test_pthread_ff, &wt[j])) {
perror ("Creating thread: ");
exit (255);
}
}
else {
if (pthread_create (&wt[j].thread, 0, wer_test_pthread_awgnrayl, &wt[j])) {
perror ("Creating thread: ");
exit (255);
}
}
#else
if (chtype==CHANNEL_FASTFADING)
_beginthread((void*)(void*)wer_test_thread_ff,0,&wt[j]);
else
_beginthread((void*)(void*)wer_test_thread_awgnrayl,0,&wt[j]);
#endif
}
nd = 0;
cini = GetTickCount();
while (1) {
// count errors
nerrs = 0;
for (j=0;j<nthreads;j++)
nerrs += wt[j].nerrs;
// stop the working threads
// if the number of errors at this Eb/No value
// reached the target value
if (nerrs>=nerrstgt[k]) {
for (j=0;j<nthreads;j++)
wt[j].stop = 1;
break;
}
else { // continue with the simulation
Sleep(2);
nd = (nd+1)%100;
if (nd==0) {
if (verbose==0) {
printf(".");
fflush (stdout);
}
}
}
}
cend = GetTickCount();
// wait for the working threads to exit
for (j=0;j<nthreads;j++)
#if defined(__linux__) || ( defined(__MINGW32__) || defined (__MIGW64__) )
{
void *rc;
if (pthread_join (wt[j].thread, &rc)) {
perror ("Waiting working threads to exit");
exit (255);
}
}
#else
while(wt[j].done==0)
Sleep(1);
#endif
printf("\n");
fflush (stdout);
// compute the total number of transmitted codewords
// the total number of errors and the total number of undetected errors
nt = 0;
nerrs =0;
nerrsu = 0;
ncrcwrong = 0;
for (j=0;j<nthreads;j++) {
nt += wt[j].nt;
nerrs += wt[j].nerrs;
nerrsu += wt[j].nerrsu;
ncrcwrong += wt[j].ncrcwrong;
}
pe = 1.0f*nerrs/nt; // word error rate
avgt = 1.0f*(cend-cini)/nt; // average time per decode (ms)
peu = 1.0f*ncrcwrong/4095/nt;
printf("Elapsed Time=%6.1fs (%5.2fms/word)\nTransmitted=%8d Errors=%6d CRCErrors=%3d Undet=%3d - WER=%8.2e UER=%8.2e \n",
0.001f*(cend-cini),
avgt, nt, nerrs, ncrcwrong, nerrsu, pe, peu);
fflush (stdout);
// save simulation data to output file
fprintf(fout,"%01d %6.2f %6d %6d %6d %6d %6.2f %8.2e %8.2e\n",
chtype,
EbNodB[k],
nt,
nerrs,
ncrcwrong,
nerrsu,
avgt,
pe,
peu);
fflush(fout);
}
fclose(fout);
return 0;
}
const qracode *codetotest[] = {
&qra15_65_64_irr_e23,
};
void syntax(void)
{
printf("\nQ65 Word Error Rate Simulator\n");
printf("2020, Nico Palermo - IV3NWV\n\n");
printf("Syntax: q65test [-q<code_index>] [-t<threads>] [-c<ch_type>] [-a<ap_index>] [-f<fnamein>[-h]\n");
printf("Options: \n");
printf(" -q<code_index>: code to simulate. 0=qra_15_65_64_irr_e23 (default)\n");
printf(" -t<threads> : number of threads to be used for the simulation [1..24]\n");
printf(" (default=8)\n");
printf(" -c<ch_type> : channel_type. 0=AWGN 1=Rayleigh 2=Fast-Fading\n");
printf(" (default=AWGN)\n");
printf(" -a<ap_index> : amount of a-priori information provided to decoder. \n");
printf(" 0= No a-priori (default)\n");
printf(" 1= 32 bit (Mycall)\n");
printf(" 2= 32 bit (Hiscall)\n");
printf(" 3= 62 bit (Bothcalls\n");
printf(" 4= 78 bit (full AP)\n");
printf(" -v : verbose (output SNRs of decoded messages\n");
printf(" -f<fnamein> : name of the file containing the Eb/No values to be simulated\n");
printf(" (default=ebnovalues.txt)\n");
printf(" This file should contain lines in this format:\n");
printf(" # Eb/No(dB) Target Errors\n");
printf(" 0.1 5000\n");
printf(" 0.6 5000\n");
printf(" 1.1 1000\n");
printf(" 1.6 1000\n");
printf(" ...\n");
printf(" (lines beginning with a # are treated as comments\n\n");
}
#define SIM_POINTS_MAX 20
int main(int argc, char* argv[])
{
float EbNodB[SIM_POINTS_MAX];
int nerrstgt[SIM_POINTS_MAX];
FILE *fin;
char fnamein[128]= "ebnovalues.txt";
char buf[128];
int nitems = 0;
int code_idx = 0;
int nthreads = 8;
int ch_type = CHANNEL_AWGN;
int ap_index = AP_NONE;
// parse command line
while(--argc) {
argv++;
if (strncmp(*argv,"-h",2)==0) {
syntax();
return 0;
}
else
if (strncmp(*argv,"-q",2)==0) {
code_idx = (int)atoi((*argv)+2);
if (code_idx>7) {
printf("Invalid code index\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-t",2)==0) {
nthreads = (int)atoi((*argv)+2);
// printf("nthreads = %d\n",nthreads);
if (nthreads>NTHREADS_MAX) {
printf("Invalid number of threads\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-c",2)==0) {
ch_type = (int)atoi((*argv)+2);
if (ch_type>CHANNEL_FASTFADING) {
printf("Invalid channel type\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-a",2)==0) {
ap_index = (int)atoi((*argv)+2);
if (ap_index>AP_LAST) {
printf("Invalid a-priori information index\n");
syntax();
return -1;
}
}
else
if (strncmp(*argv,"-f",2)==0) {
strncpy(fnamein,(*argv)+2,127);
}
else
if (strncmp(*argv,"-h",2)==0) {
syntax();
return -1;
}
else
if (strncmp(*argv,"-v",2)==0)
verbose = TRUE;
else {
printf("Invalid option\n");
syntax();
return -1;
}
}
// parse points to be simulated from the input file
fin = fopen(fnamein,"r");
if (!fin) {
printf("Can't open file: %s\n",fnamein);
syntax();
return -1;
}
while (fgets(buf,128,fin)!=0)
if (*buf=='#' || *buf=='\n' )
continue;
else
if (nitems==SIM_POINTS_MAX)
break;
else
if (sscanf(buf,"%f %u",&EbNodB[nitems],&nerrstgt[nitems])!=2) {
printf("Invalid input file format\n");
syntax();
return -1;
}
else
nitems++;
fclose(fin);
if (nitems==0) {
printf("No Eb/No point specified in file %s\n",fnamein);
syntax();
return -1;
}
printf("\nQ65 Word Error Rate Simulator\n");
printf("(c) 2016-2020, Nico Palermo - IV3NWV\n\n");
printf("Nthreads = %d\n",nthreads);
switch(ch_type) {
case CHANNEL_AWGN:
printf("Channel = AWGN\n");
break;
case CHANNEL_RAYLEIGH:
printf("Channel = Rayleigh\n");
break;
case CHANNEL_FASTFADING:
printf("Channel = Fast Fading\n");
break;
}
printf("Codename = %s\n",codetotest[code_idx]->name);
printf("A-priori = %s\n",ap_str[ap_index]);
printf("Eb/No input file = %s\n\n",fnamein);
wer_test_proc(codetotest[code_idx], nthreads, ch_type, ap_index, EbNodB, nerrstgt, nitems);
printf("\n\n\n");
return 0;
}